Безопасность эксплуатации системы учета электроэнергии

Тип работы:
Контрольная
Предмет:
Безопасность жизнедеятельности


Узнать стоимость

Детальная информация о работе

Выдержка из работы

1. Анализ опасных и вредных факторов при эксплуатации системы учета электроэнергии

1.1 Анализ опасных факторов

При эксплуатации системы учета электроэнергии опасным фактором является возможность поражения работников электрическим током при прикосновении к токоведущим частям трансформатора тока ТПОЛ-10 и трансформатора напряжения НОМ-10, находящихся под напряжением.

Расчет токов, которые протекают через человека в случае прикосновения к токоведущим частям, сведем в таблицу 1.1 и 1.2.

Табл. 1.1. Оценка опасности при эксплуатации трансформатора тока напряжением 10 кВ

Вид прикосновения

Схема

Расчет

Однофазное прикосновение к токоведущим частям трансформатора в нормальном режиме работы сети напряжением 10 кВ

Однофазное прикосновение к токоведущим частям трансформатора в аварийном режиме работы сети напряжением 10 кВ

Двухфазное прикосновение к токоведущим частям трансформатора в нормальном режиме к сети 10 кВ

В таблице приняты следующие обозначения: — фазное напряжение трансформатора тока; хс — емкостное сопротивление фазы относительно земли; RЧ = 2103 Ом — сопротивление цепи человека при однофазном прикосновении; UЛ = 10103 В — линейное напряжение трансформатора тока; RД = 1500 Ом — сопротивление электрической дуги; RК = 100 Ом — сопротивление контакта в месте замыкания на земле; R'Ч = 1103 Ом — сопротивление цепи человека при двухфазном прикосновении.

Табл. 1.2. Оценка опасности при эксплуатации трансформатора напряжения напряжением 10/0,1 кВ

Вид прикосновения

Схема

Расчет

Однофазное прикосновение к токоведущим частям трансформатора в нормальном режиме работы сети напряжением 10 кВ

Однофазное прикосновение к токоведущим частям трансформатора в аварийном режиме работы сети 10 кВ

Двухфазное прикосновение к токоведущим частям трансформатора в нормальном режиме к сети 10 кВ

В таблице приняты следующие обозначения: — фазное напряжение трансформатора напряжения; хс — емкостное сопротивление фазы относительно земли; RЧ = 2103 Ом — сопротивление цепи человека при однофазном прикосновении; UЛ = 10103 В-линейное напряжение трансформатора напряжения; RД = 1500 Ом — сопротивление электрической дуги; RК = 100 Ом — сопротивление контакта в месте замыкания на земле; R'Ч = 1103 Ом — сопротивление цепи человека при двухфазном прикосновении.

На основании анализа произведенных расчетов вариантов включения человека в электрическую цепь для сети напряжением 10 кВ можно сделать вывод, что величины расчетных токов превышают допустимые значения во всех случаях:

1. Однофазное прикосновение к токоведущим частям трансформатора в нормальном режиме работы сети, IЧ =2,88 А

2. Однофазное прикосновение к токоведущим частям трансформатора в аварийном режиме работы сети, IЧ =2,78 А

3. Двухфазное прикосновение к токоведущим частям трансформатора в нормальном режиме работы сети, IЧ =4 А

1. 2 Анализ вредных факторов

При эксплуатации измерительных трансформаторов тока и напряжения напряжением 10 кВ вредными факторами являются: шум, возникающий из-за неплотного стягивания пакетов стальных сердечников; плохое освещение при выполнении работ в темное время суток и при недостаточной видимости.

2. Профилактические меры для нормализации условий труда

2.1 Меры защиты от электрического напряжения

Контроль изоляции измерительного трансформатора тока напряжением 10 кВ представлен в таблице 2.1.

опасный вредный трансформатор напряжение

Таблица 2. 1

Контролируемый параметр

Температура обмоток трансформатора тока напряжением 10 кВ, С°

10

20

30

40

50

60

70

Сопротивление изоляции R60, МОм

450

300

200

130

90

60

40

tg?, %

1,2

1,5

2

2,5

3,4

4,5

6

Коэффициент абсорбции: R60/ R15

Не ниже 1,3

Повышенное напряжение, кВ

Для обмотки напряжением 10 кВ = 14,4 кВ

R60 и R15 измеряются мегомметрами на напряжении 2500 В, а tg? — мостами переменного тока.

Контроль изоляции измерительного трансформатора напряжения напряжением 10/0,1 кВ представлен в таблице 2.2.

Таблица 2. 2

Контролируемый параметр

Температура обмоток трансформатора напряжения напряжением 10 и 0,1 кВ, С°

10

20

30

40

50

60

70

Сопротивление изоляции R60, МОм

450

300

200

130

90

60

40

tg?, %

1,2

1,5

2

2,5

3,4

4,5

6

Коэффициент абсорбции: R60/ R15

Не ниже 1,3

Повышенное напряжение, кВ

Для обмотки напряжением 0,1 кВ = 2,7 кВ

Для обмотки напряжением 10 кВ = 14,4 кВ

R60 и R15 измеряются мегомметрами на напряжении 2500 В, а tg? — мостами переменного тока.

Методы ориентации: маркировка каждого трансформатора тока и напряжения, наносится на корпуса трансформаторов условными обозначениями (буквы, цифры — ТТ1,…, ТТ3; ТН1,…, ТН3); знак безопасности «Осторожно! Электрическое напряжение» наносится на корпуса трансформаторов; соответствующее расположение и окраска токоведущих частей: фаза L1 — левая желтого цвета, фаза L2 — средняя зеленого цвета, фаза L3 — правая красного цвета; световая сигнализация, указывает на включенное (отключенное) состояние трансформатора тока и напряжения.

Сеть напряжением 10 кВ выполняется с изолированной нейтралью. В этих сетях необходимый постоянный контроль замыкания на землю.

Мерой защиты от электрического напряжения так же является защитное заземление, которое защищает от напряжения прикосновения. Расчеты защитных заземлений выполнены в пунктах 2.2 и 2.3.

Электрозащитные средства, используемые при работе с трансформатором тока напряжением 10 кВ, представлены в таблице 2.3.

Основные ЭЗС

Название

Тип

Количество

10 кВ

10 кВ

Изолирующая штанга

ШПК-10

2 шт.

Изолирующие клещи

1 шт.

Электроизмерительные клещи

Ц4502

1 шт.

Указатели напряжения

УВН-10

2 шт.

Дополнительные ЭЗС

Название

Тип

Количество

10 кВ

10 кВ

Диэлектрические: — перчатки

— боты

— ковры

со швом

? 2 пар

1 пара

2 шт.

Изолирующие подставки, накладки

Переносное заземление

25 мм2

? 2 шт.

Оградильные устройства

? 2 шт.

Плакаты безопасности

4 шт.

Электрозащитные средства, используемые при работе с трансформатором напряжения напряжением 10 кВ, представлены в таблице 2.4.

Основные ЭЗС

Название

Тип

Количество

0,1 кВ

10 кВ

0,1 кВ

10 кВ

Изолирующая штанга

ШПК-10

ШПК-10

2 шт.

2 шт.

Изолирующие клещи

К-1000

1 шт.

1 шт.

Электроизмерительные клещи

Ц4501

Ц4502

1 шт.

1 шт.

Указатели напряжения

УНН1

УВН-10

2 шт.

2 шт.

Диэлектрические перчатки

со швом

-

2 пары

-

Дополнительные ЭЗС

Название

Тип

Количество

0,4 кВ

6,3 кВ

0,4 кВ

6,3 кВ

Диэлектрические: — перчатки

— боты

— ковры

-

со швом

-

? 2 пар

1 пара

2 шт.

Изолирующие подставки, накладки

Переносное заземление

16 мм2

25 мм2

? 2 шт.

? 2 шт.

Оградильные устройства

? 2 шт.

? 2 шт.

Плакаты безопасности

2 шт.

4 шт.

2.2 Расчет заземления для трансформатора тока напряжением 10 кВ

Исходные данные для расчета:

— напряжение обмотки трансформатора тока = 10 кВ = 10 000 В;

— ток замыкания на землю:

;

т.к., а — длина кабельной линии, то;

— измерительный трансформатор тока напряжением 10 кВ расположен в ячейке КРУ и занимает площадь: ;

— тип грунта — суглинок Ом м;

— естественные заземлители отсутствуют.

Расчет

Так как заземлению подлежит установка напряжением до 1 кВ и выше 1 кВ, то сопротивление искусственного заземлителя рассчитывается по формуле и оно должно быть =10 Ом.

Конфигурация заземлителя — прямоугольник.

В качестве вертикальных электродов выбираем стальной электрод диаметром и длиной 3 метра.

В качестве соединительной полосы выбираем полосу у которой.

Определим сопротивление току растекание с одного вертикального заземлителя:

Ом

Определим количество параллельно соединенных вертикальных заземлителей:

где — коэффициент использования заземлителей, для вертикальных стержневых, расположенных по контуру при метра (расстояние между электродами) и метра.

Полученное округлим до целого числа штук и пересчитаем

.

Определим длину полосы, применяемой для связи вертикальных электродов: при расположении заземлителей по контуру метров

Определим сопротивление току растекания горизонтального электрода:

Ом

Эквивалентное сопротивление току растекания искусственных заземлителей:

Ом,

где — коэффициент использования горизонтального электрода с учетом вертикальных при расположении вертикального по контуру.

Полученное сопротивление искусственного электродов не превышает требуемого, т. е. (6,32Ом<8. 33Ом<10Ом), значит, расчет удовлетворяет условиям.

Заземление ложем в грунт на t0=0,8 метра.

Расчет заземления для трансформатора напряжения напряжением 10/0,1 кВ

Исходные данные для расчета:

— напряжение высшей обмотки трансформатора напряжения = 10 кВ = 10 000 В;

— ток замыкания на землю:

;

т.к., а — длина кабельной линии, то;

— измерительный трансформатор напряжения напряжением 10/0,1 кВ расположен в ячейке КРУ и занимает площадь:;

— тип грунта — суглинок Ом м;

— естественные заземлители отсутствуют.

Расчет

Так как заземлению подлежит установка напряжением до 1 кВ и выше 1 кВ, то сопротивление искусственного заземлителя рассчитывается по формуле и оно должно быть =10 Ом.

Конфигурация заземлителя — прямоугольник.

В качестве вертикальных электродов выбираем стальной электрод диаметром и длиной 3 метра.

В качестве соединительной полосы выбираем полосу у которой.

Определим сопротивление току растекание с одного вертикального заземлителя:

Ом

Определим количество параллельно соединенных вертикальных заземлителей:

где — коэффициент использования заземлителей, для вертикальных стержневых, расположенных по контуру при метра (расстояние между электродами) и метра.

Полученное округлим до целого числа штук и пересчитаем

.

Определим длину полосы, применяемой для связи вертикальных электродов: при расположении заземлителей по контуру метров

Определим сопротивление току растекания горизонтального электрода:

Ом

Эквивалентное сопротивление току растекания искусственных заземлителей:

Ом,

где — коэффициент использования горизонтального электрода с учетом вертикальных при расположении вертикального по контуру.

Полученное сопротивление искусственного электродов не превышает требуемого, т. е. (6,32 Ом<8. 33 Ом< 10 Ом), значит расчет удовлетворяет условиям.

Заземление ложем в грунт на t0=0,8 метра.

Схема заземления представлена на рисунке 1.

Рис. 1

2. 4 Защита от вредных факторов

Защита от шума достигается с помощью снижения шума самих трансформаторов — применение малошумных трансформаторов, рационального размещения трансформаторов и рабочих мест работников, а так же индивидуальных средств защиты (противошумные наушники, шлемы и каски). Защитой от плохого освещения или его отсутствия, служат независимые источники питания аварийного освещения.

3. Пожарная безопасность

Горючими веществами у измерительных трансформаторов тока и напряжения являются:

— трансформаторное масло;

— краска бака трансформатора;

— изоляция обмоток.

Причинами пожара могут быть: систематические перегрузки; токи короткого замыкания; токовые перегрузки проводников; местный перегрев сердечника; несоблюдение работниками правил пожарной безопасности.

Площадка, на которой установлены трансформаторы тока и напряжения, оборудована стационарной установкой пожаротушения. Тушение пожаров осуществляется водой. Для тушения пожаров в измерительных трансформаторах применяют дренчерные установки.

Профилактические меры пожарной безопасности: защита, отключающая поврежденный трансформатор от сети со всех сторон; стационарная установка пожаротушения.

ПоказатьСвернуть
Заполнить форму текущей работой