Влияние типа кристаллической решетки на пластичность материалов

Тип работы:
Реферат
Предмет:
Производство и технологии


Узнать стоимость

Детальная информация о работе

Выдержка из работы

Влияние типа кристаллической решетки на пластичность материалов

Содержание

Введение

1. Типы кристаллических решёток

2. Влияние типов кристаллической решётки на пластичность материалов

Заключение

Список используемой литературы

Введение

Научно-технический прогресс тесно связан с разработкой и применением новых материалов. Не случайно даже историческая хронология строится по названиям материалов — каменный век, медный век, бронзовый век, железная эра. По мере накопления знаний и умений людей появлялись все новые материалы. Нынешнее время трудно охарактеризовать каким либо материалом. Его называют веком полупроводников, веком полимеров, веком сверхпроводников, и т. д. Даже понятие «век компьютерных технологий» неотделимо от материалов, поскольку только прогресс в области материаловедения позволил создать и компьютеры, и линии их связи [2].

Материаловедение — прикладная наука о связи состава, строения и свойств материалов. Теоретической основой материаловедения являются соответствующие разделы физики и химии.

Для конструкционных материалов основными свойствами являются:

физические: плотность, теплопроводность, теплоемкость, электропроводность, магнитные свойства;

химические: способность вступать в химические соединения, жаростойкость;

механические: прочность, пластичность, твердость, упругость и вязкость. ;

технологические: жидкотекучесть, ковкость, обрабатываемость резанием;

эксплуатационные: сопротивление коррозии, изнашиванию и усталости, жаропрочность, хладостойкость и др.

Все эти свойства определяются составом и строением материалов.

Среди различных физических и химических параметров материалов одними из достаточно значимых считаются их пластичность и хрупкость. Пластичностью называют способность любого материала менять свою форму, а также размеры под воздействием некоторого усилия, но при этом:

— не образовывать трещин;

— сохранять образовываемую форму после завершения (снятия) прилагаемой нагрузки.

Идеальная кристаллическая решетка представляет собой многократное повторение элементарных кристаллических ячеек. Для реального металла характерно наличие большого количества дефектов строения, нарушающих периодичность расположения атомов в кристаллической решетке. Эти дефекты оказывают существенное влияние на свойства материала.

Основные свойства материалов можно подразделить на физические, механические, технологические и эксплуатационные.

От физических и механических свойств зависят технологические и эксплуатационные свойства материалов.

Среди механических свойств прочность занимает особое место, так как прежде всего от нее зависит неразрушаемость изделий под воздействием эксплуатационных нагрузок. Учение о прочности и разрушении является одной из важнейших составных частей материаловедения. Оно является теоретической основой для выбора подходящих конструкционных материалов для деталей различного целевого назначения и поиска рациональных способов формирования в них требуемых прочностных свойств для обеспечения надежности и долговечности изделий [1].

1. Типы кристаллических решёток

Абсолютно любое химическое вещество, существующее в природе, образовано большим числом одинаковых частиц, которые связаны между собою. Все вещества существуют в трёх агрегатных состояниях: газообразном, жидком и твёрдом. Когда затруднено тепловое движение (при низких температурах), а также в твердых веществах частицы строго ориентированы в пространстве, что проявляется в их точной структурной организации.

Кристаллическая решётка вещества — это структура с геометрически упорядоченным расположением частиц (атомы, молекулы либо ионы) в определённых точках пространства. В различных решетках различают межузловое пространство и непосредственно узлы — точки, в которых расположены сами частицы.

Кристаллическая решётка бывает четырех типов: металлическая, молекулярная, атомная, ионная. Типы решеток определяются в соответствии с видом частиц, расположенных в их узлах, а также характером связей между ними [4, 6, 12].

Кристаллическая решётка называется молекулярной в том случае, если в ее узлах располагаются молекулы. Они связаны между собой межмолекулярными сравнительно слабыми силами, называемые ван-дер-ваальсовыми, однако сами атомы внутри молекулы соединяются существенно более сильной ковалентной связью (полярной либо неполярной). Молекулярная кристаллическая решетка свойственна хлору, твердому водороду, двуокиси углерода и другим веществам, являющимся газообразными при обычной температуре.

Кристаллы, которые образуют благородные газы, также имеют молекулярные решетки, состоящие из одноатомных молекул. Большинство твердых органических веществ имеют именно такую структуру. Число же неорганических веществ, которым свойственна молекулярная структура, весьма невелико. Это, например, твердые галогеноводороды, природная сера, лед, твердые простые вещества и некоторые другие.

При нагревании относительно слабые межмолекулярные связи разрушаются довольно легко, поэтому вещества с такими решетками имеют очень низкие температуры плавления и малую твердость, они нерастворимы либо малорастворимы в воде, растворы их практически не проводят электрический ток, характеризуются значительной летучестью. Минимальные температуры кипения и плавления — у веществ из неполярных молекул.

Металлической называется такая кристаллическая решетка, узлы которой сформированы атомами и положительными ионами (катионами) металла со свободными валентными электронами (отцепившимися от атомов при образовании ионов), беспорядочно движущимися в объеме кристалла. Однако эти электроны по существу являются полусвободными, так как могут беспрепятственно перемещаться только в рамках, которые ограничивает данная кристаллическая решетка [3].

Электростатические электроны и положительные ионы металлов взаимно притягиваются, чем объясняется стабильность металлической кристаллической решетки. Совокупность свободных движущихся электронов называют электронным газом — он обеспечивает хорошую электро- и теплопроводность металлов. При появлении электрического напряжения электроны устремляются к положительной частице, участвуя в создании электрического тока и взаимодействуя с ионами.

Металлическая кристаллическая решетка характерна, главным образом, для элементарных металлов, а также для соединений различных металлов друг с другом. Основные свойства, которые присущи металлическим кристаллам (механическая прочность, летучесть, температура плавления), достаточно сильно колеблются. Однако такие физические свойства, как пластичность, ковкость, высокая электро- и теплопроводность, характерный металлический блеск свойственны лишь исключительно кристаллам с металлической решеткой.

Все металлы являются кристаллическими телами, имеющими определенный тип кристаллической решетки, состоящей из малоподвижных положительно заряженных ионов, между которыми движутся свободные электроны (так называемый электронный газ). Такой тип структуры называется металлической связью.

Тип решетки определяется формой элементарного геометрического тела, многократное повторение которого по трем пространственным осям образует решетку данного кристаллического тела.

1. Простая кубическая решётка: в узлах кубика атомы касаются друг друга. Параметры: Период решётки (расстояние между атомами a =d), d — диаметр атома. 1/8·8 =1 атом на элемент, ячейку. Для химического соединения данный тип решётки.

2. Кубическая объёмно-центрированная решётка EMBED PBrush характерна для тугоплавких металлов. a =1,21·d. 1/8·8 +1 =2. Feб, Ti, W, Nb.

3. Кубическая гранецентрированная решётка EMBED PBrush. 1/8·8 +½·6 =4. Характерна для пластичных металлов. Cu, Feг, Au.

Основные типы решеток (Таб. 1)

Таблица 1

схема

название

количество атомов

кубическая

1

Объемно-центрированная кубическая (ОЦК)

2

Гранецентрированная кубическая (ГЦК)

3

Интересна связь строения кристаллической решетки с механическими и физическими свойствами материала. От прочности связи зависит степень сопротивления деформации. От строения зависит способность к пластической деформации. Деформирование происходит за счет сдвига атомных плоскостей. Сдвиг происходит наиболее легко вдоль атомных плоскостей с наиболее плотной упаковкой атомов. Рассмотрим объемно-центрическую кубическую решетку (ОЦК):

1) Плоскость ABCD. Количество атомов в плоскости ABCD — 1; площадь ABCD = a2; площадь, приходящаяся на 1 атом — удельная площадь: — мера плотности упаковки.

2) Плоскость ABGH. Количество атомов в плоскости ABGH — 2; площадь ABGH = a2;.

В плоскости ABGH плотность упаковки больше чем в ABСD. Наиболее вероятен сдвиг вдоль диагональных плоскостей [9].

Реальное строение кристаллов.

Неоднородный химический состав и внешние условия вызывают дефекты кристаллической решетки. Выделяют дефекты трех типов:

1) точечные (вакансии, внедренные атомы);

2) линейные (краевые и винтовые дислокации);

3) объемные (микропоры, трещины, газовые пузырьки).

Точечные дефекты:

Вакансия — отсутствие атома в узле кристаллической решетки.

Внедренные атомы: а) чужеродный атом в узле кристаллической решетки; б) атом вне узла, в межузельном пространстве.

Линейные дефекты:

Дислокации: краевые — оборванный край атомной плоскости внутри кристаллической решетки; винтовые — условная ось внутри кристалл, относительно которой закручиваются атомные плоскости в процессе кристаллизации.

Объемные дефекты:

Возникают из-за влияния внешних условий кристаллизации или под действием внешних нагрузок. В результате несколько вакансий дают пору; несколько линейных дислокаций — трещину [4].

От типа кристаллической решетки сильно зависят свойства металла.

2. Влияние типов кристаллической решётки на пластичность материалов

Свойства металлов, применяемых в строительстве, определяются в основном механическими и технологическими характеристиками.

Металлы имеют характерные общие свойства. К ним относятся: — высокая пластичность; - высокие тепло и электропроводность; - положительный температурный коэффициент электрического сопротивления, означающий рост сопротивления с повышением температуры и сверхпроводимость многих металлов (около 30) при температурах, близких к абсолютному нулю; хорошая отражательная способность (металлы непрозрачны и имеют характерный металлический блеск); - термоэлектронная эмиссия, т. е. способность к испусканию электронов при нагреве; кристаллическое строение в твердом состоянии.

Общее свойство металлов и сплавов -- их кристаллическое строение, характеризующееся определенным закономерным расположением атомов в пространстве [9].

ДЕФОРМАЦИЯ (от лат. deformatio — искажение) — изменение взаимного расположения точек твердого тела, при котором меняется расстояние между ними, в результате внешних воздействий или различных физико-механических процессов, возникающих в самом теле (например, изменение объёма кристаллов при изменении температуры). Деформация называется упругой, если она исчезает после удаления воздействия, и пластической, если она полностью не исчезает. Наиболее простые виды деформации — растяжение, сжатие, изгиб, кручение.

С понятием деформации связаны два механических свойства металла:

— Прочность- сопротивление металла (сплава) деформации и разрушению.

— Способность металла под воздействием внешних сил деформироваться без разрушения и сохранять остаточную деформацию называют пластичностью.

Многочисленные исследования изменения структуры поверхности твердых тел при пластической деформации свидетельствуют о том, что пластическая деформация происходит путем послойного смещения одной части кристалла относительно другой.

Материалы с плотноупакованными кристаллическими решетками — металлы — обладают высокой пластичностью [1].

Пластическими называют деформации, при которых происходит необратимое смещение атомов в кристаллической решётке под действием предельных значений касательных напряжений ф. Необратимое смещение атомов в решётке происходит за счёт сдвига части атомов при их скольжении по плоскостям сдвига в направлениях наиболее плотной упаковки. Сдвигу атомов по плоскостям скольжения явно способствуют искажения решётки, вызванные дислокациями.

Дислокации принадлежат к линейным несовершенствам кристалла. Они являются особым типом несовершенств в решетке, резко отличным по своей природе от других, в том числе, и линейных несовершенств. Первоначально представления о дислокациях были введены в физику кристаллов (Орован, Поляни, Тэйлор, 1934 г.) для того, чтобы объяснить несоответствие между наблюдаемой и теоретической прочностью и описать атомный механизм скольжения при пластической деформации кристаллов. Впоследствии теория дислокаций получила широкое развитие и стала применяться для анализа самых разнообразных явлений в металлах и сплавах [7].

Дислокации под действием касательных напряжений легко перемещаются в направлении действия сил, облегчая тем самым пластическое (остаточное) деформирование. При пластическом (остаточном) деформировании после снятия внешней нагрузки в деформируемом теле наблюдается остаточное изменение формы и размеров при сохранении сплошности тела. При дальнейшем развитии пластического деформирования может произойти пластичное (вязкое) разрушение путём сдвига.

Как было сказано ранее, сдвиг в кристаллической решётке сопровождается скольжением одной части решётки относительно другой в направлении наиболее плотной упаковки атомов. Эти плоскости называются плоскостями скольжения или сдвига и зависят от типа кристаллической решётки. Чем больше элементов сдвига в решётке, тем выше пластичность металла. Заштрихованные плоскости являются плоскостями скольжения. По этим плоскостям смещаются атомы вещества при пластическом деформировании кристалла [3].

Реальные металлы состоят из большого числа кристаллов и имеют большое число дефектов, которые получаются при кристаллизации из расплава. К линейным дефектам относятся дислокации. Дефекты в металлах снижают его прочность, но например, бездефектное железо невозможно подвергнуть пластическому деформированию, а следовательно затруднена его обработка в холодном состоянии.

Итак: Пластическая деформация в кристаллах может осуществляться скольжением и двойникованием. Скольжение- это смещение частей кристалла друг относительно друга и зависит от вида кристаллической решётки. Чем больше направлений в кристалле вдоль которых происходит скольжение, тем пластичнее металл.

Процесс скольжения не нужно представлять, как одновременное передвижение одной части кристалла относительно другой. Скольжение осуществляется в результате перемещения в кристалле дислокаций т. е перемещение атомов. Дислокации могут двигаться по плоскости скольжения в кристаллической решетке при очень малых напряжениях сдвига. Подтверждением этого служат небольшие напряжения при которых происходит пластическая деформация у монокристаллов чистых металлов. При больших деформациях движение дислокаций вызывает появление или размножение большого количества новых дислокаций в процессе пластической деформации.

Двойникование. Пластическая деформация некоторых металлов, имеющих плотноупакованные решётки, помимо скольжения, может осуществляться двойникованием, которое сводится к переориентировке части кристалла в положение, симметричное по отношению к первой части относительно плоскости, называемой плоскостью двойникования. Двойникование подобно скольжению сопровождается прохождением дислокаций сквозь кристалл.

Пластичность металла очень важное свойство, кот учитывается и при проектировании деталей механизмов и в машине, что особенно важно при изготовлении этих деталей давлением, резанием и т. д. По показаниям пластичности можно дать частичную оценку свойств различных металлов, а также произвести контроль качества их изготовления [5].

Свойства металлов, влияющих на прочность металла, определяют с помощью испытаний.

Для пластичных металлов предел прочности ув. характеризует сопротивление металла значительным пластическим деформациям.

На пластичность материала влияют различные факторы:

1)Чем больше в металле возможных плоскостей и направлений скольжения, тем выше его способность к пластической деформации. Металлы, имеющие кубическую кристаллическую решётку (например, алюминий, медь) обладают высокой пластичностью, так как скольжение в них происходит во многих направлениях. Металлы с гексагональной плотноупакованной структурой (цинк, магний) менее пластичны и поэтому труднее, чем металлы с кубической структурой, поддаются прокатке, штамповке и другим способам деформации.

2)С увеличением плотности дислокаций происходит взаимодействие между ними, что тормозит их перемещение и уменьшает пластичность. В металле, упрочённом деформацией, при нагреве обычно повышается пластичность (напр., у меди, никеля).

3)Перспективными являются волокнистые (композиционные материалы). Высокая прочность и пластичность в них достигается путём армирования мягкой металлической матрицы (медь, алюминий, серебро и т. д.) бездефектными нитевидными кристаллами или волокнами неметаллов (напр., углеродные волокна)

4)Деформация бывает горячая- при температуре выше температуры рекристаллизации. Её в зависимости от состава сплава обычно проводят при Т=0,7−0,75 Т пл. При такой темп снижается сопротивление металла пластической деформации и повышается пластичность.

5)Снижение температуры повышает сопротивление пластической деформации уменьшается пластичность. Поэтому металлы, вязкие при сравнительно высоких температурах, могут при низких температурах разрушаться хрупко.

6)На пластичность влияют различные соединения и примеси. В стали, например, количество цементита прямо пропорционально содержанию углерода и чем его больше, тем больше сопротивление деформации и уменьшение пластичности. Марганец повышает прочность и практически не влияет на пластичность. Сера снижает пластичность (особенно в поперечном направлении вытяжки при прокате и ковке) Фосфор сильно уменьшает пластичность. 7) Скорость и степень деформации зависят от приложенной силы. у = P / F кгс/ммІ [10].

кристаллическая решетка пластичность материал

Заключение

Обычно кусок металла состоит из скопления большого числа маленьких кристаллов неправильной формы, называемых зёрнами. Кристаллические решётки в отдельных зёрнах ориентированы относительно друг друга случайным образом. Поверхности раздела зёрен называются границами зёрен. Такой кусок металла является поликристаллом. При определённых условиях, обычно при очень медленном контролируемом отводе тепла при кристаллизации (затвердевании металла), может быть получен кусок металла, представляющий собой один кристалл, его называют монокристаллом. Встречаются в природе кристаллы, как монокристаллы, так и зёрна в поликристаллах, никогда не обладают строгой периодичностью в расположении атомов, т. е. не являются идеальными кристаллами. В действительности реальные кристаллы содержат несовершенства (дефекты) кристаллического строения.

Дислокация — линейный дефект определяет высокую пластичность материала.

Наличие в металлах подвижных дислокаций (уже в процессе кристаллизации возникает до 106…108 дислокаций в сечении, равном 1см2) приводит к их пониженной сопротивляемости нагружению, т. е. высокой пластичности и невысокой прочности.

Очевидно, что наиболее эффективным способом повышения прочности будет удаление дислокаций из металла. 10 мкм. Однако такой путь не технологичен, т.к. бездислокационные металлы удается получать лишь в виде тонких нитей (так называемых «усов») диаметром в несколько микрон и длиной до 10 мкм.

Поэтому практические способы упрочнения основаны на торможении, блокировании подвижных дислокаций путем резкого увеличения числа дефектов решетки (в первую очередь линейных и поверхностных!), а также создании многофазных материалов.

Таким образом пластичность материалов напрямую зависит от дефектов кристаллической решётки.

Список используемой литературы

1. Аникина Валентина Ильинична, доцент, кандидат технических наук ОСНОВЫ КРИСТАЛЛОГРАФИИ И ДЕФЕКТЫ КРИСТАЛЛИЧЕСКОГО СТРОЕНИЯ

2. Вонсовский С. В. Магнетизм. М.: Наука, 1984. — 208 с.

3. Власов С. Н. и др. Устройство, наладка и обслуживание металлорежущих станков и автоматических линий. М., 2008

4. Орлов А. Н., Введение в теорию дефектов в кристаллах, М., 1983;

5. Рыбин В. В., Большие пластические деформации и разрушение металлов, М., 1986.

6. Xоникомб Р., Пластическая деформация металлов, пер. с англ., М., 1972;

7. Xирт Дж., Лоте И., Теория дислокаций, [пер. с англ. ], М., 1972;

8. Кочергин А. И. и др. Металлообрабатывающие станки, линии и инструменты. Минск, 2007

9. Металлические стекла /Под ред. Дж. Дж. Гилмана и Х. Дж Лими. — М.: Металлургия, 1984. — 263 с.

10. Пасынков В. В., Сорокин В. С. Материалы электронной техники. М.: Высш. шк., 1986. — 367 с.

11. Пихтин А. Н. Физические основы квантовой электроники и оптотроники. — М.: Высшая школа, 1983. — 367 с.

12. Полухин П. И., Горелик С. С., Воронцов В. К. Физические основы пластической деформации. М.: Металлургия. 1982. — 584 с.

ПоказатьСвернуть
Заполнить форму текущей работой