Влияние электрических и магнитных полей на живой организм.
Использование ЯМР и ЭПР в медицинских исследованиях

Тип работы:
Реферат
Предмет:
Физика


Узнать стоимость

Детальная информация о работе

Выдержка из работы

КАРАГАНДИНСКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ

Кафедра медицинской биофизики и информатики

Тема: «Влияние электрических и магнитных полей на живой организм. Использование ЯМР и ЭПР в медицинских исследованиях»

Работу выполнил

Ильясов Е. Т 180-ОМФ

Проверил: Коршуков И. В.

Караганда 2013 г.

Введение

Технический прогресс, как известно, принес человечеству не только облегчение и удобство в производстве и быту, но и создал ряд серьезных проблем. В частности, возникла проблема защиты человека и других организмов от сильных электромагнитных, магнитных и электрических полей, создаваемых различными техническими устройствами. Позже появилась проблема защиты человека от длительного воздействия слабых электромагнитных полей, которое, как оказалось, также наносит вред жизнедеятельности человека. И только в последнее время стали обращать внимание и проводить соответствующие исследования по оценке влияния на живые организмы экранирования естественных геомагнитных и электрических полей.

Влияние мощных постоянных и переменных электрических полей техногенного происхождения на живые организмы изучается сравнительно давно. Источниками таких полей являются, прежде всего, высоковольтные линии электропередач (ЛЭП).

Влияние электрических и магнитных полей на живой организм

Биологическое влияние электрических и магнитных полей на организм людей и животных достаточно много исследовалось. Наблюдаемые при этом эффекты, если они и возникают, до сих пор не ясны и трудно поддаются определению, поэтому эта тема остается по-прежнему актуальной.

Электрическое поле Земли — это естественное электрическое поле Земли как планеты, которое наблюдается в твёрдом теле Земли, в морях, в атмосфере и магнитосфере. Электрическое поле 3емли обусловлено сложным комплексом геофизических явлений. Существование электрического поля в атмосфере Земли связано в основном с процессами ионизации воздуха и пространственным разделением возникающих при ионизации положительных и отрицательных электрических зарядов. Ионизация воздуха происходит под действием космических лучей ультрафиолетового излучения Солнца; излучения радиоактивных веществ, имеющихся на поверхности Земли и в воздухе; электрических разрядов в атмосфере и т. д. Многие атмосферные процессы: конвекция образование облаков, осадки и другие -- приводят к частичному разделению разноимённых зарядов и возникновению атмосферных электрических полей. Относительно атмосферы поверхность Земли заряжена отрицательно.

Магнитные поля на нашей планете имеют двоякое происхождение — естественное и антропогенное. Естественные магнитные поля, так называемые магнитные бури, зарождаются в магнитосфере Земли. Антропогенные магнитные возмущения охватывают меньшую территорию, чем природные, зато их проявление значительно интенсивнее, а следовательно, приносит и более ощутимый ущерб. В результате технической деятельности человек создает искусственные электромагнитные поля, которые в сотни раз сильнее естественного магнитного поля Земли. Источниками антропогенных излучений являются: мощные радиопередающие устройства, электрифицированные транспортные средства, линии электропередачи.

Один из наиболее сильных возбудителей электромагнитных волн -- токи промышленной частоты (50 Гц). Так, напряженность электрического поля непосредственно под линией электропередачи может достигать нескольких тысяч вольт на метр почвы, хотя из-за свойства снижения напряженности почвой уже при удалении от линии на 100 м напряженность резко падает до нескольких десятков вольт наметр.

Исследования биологического воздействия электрического поля обнаружили, что уже при напряженности 1 кВ/м оно оказывает неблагоприятное влияние на нервную систему человека, что в свою очередь ведет к нарушениям эндокринного аппарата и обмена веществ в организме (меди, цинка, железа и кобальта), нарушает физиологические функции: ритм сердечных сокращений, уровень кровяного давления, активность мозга, ход обменных процессов и иммунную активность.

Электрическое поле, создаваемое линиями высоковольтных ЛЭП, оказывает неблагоприятное влияние на живые организмы. Наиболее чувствительны к электрическим полям копытные животные и человек в обуви, изолирующей его от земли. Копыто животных также является хорошим изолятором. В этом случае на изолированном от земли проводящем объемном теле наводится потенциал, зависящий от соотношения емкости тела на землю и на провода ЛЭП. Чем меньше емкость на землю (чем толще, например, подошва обуви), тем больше наведенный потенциал, который может составлять несколько киловольт и даже достигать 10 кВ.

В опытах, проведенных многими исследователями, обнаружено четкое пороговое значение напряженности поля, при котором наступает разительное изменение реакции подопытного животного. Оно определено равным 160 кВ/м, меньшая напряженность поля сколько-нибудь заметного вреда живому организму не наносит.

Напряженность электрического поля в рабочих зонах ЛЭП 750 кВ на высоте человеческого роста примерно в 5−6 раз меньше опасных значений. Выявлено неблагоприятное воздействие электрического поля промышленной частоты на персонал ЛЭП и подстанций напряжением 500 кВ и выше; при напряжении 380 и 220 кВ это действие выражено слабо. Но при всех напряжениях действие поля зависит от продолжительности нахождения в нем.

На основании исследований разработаны соответствующие санитарные нормы и правила, где указываются минимально допустимые расстояния расположения жилых построек от стационарных излучающих объектов, как, например, линий электропередач. Эти нормы предусматривают также и максимально допустимые (предельные) уровни излучения для других энергоопасных объектов. В ряде случаев, для защиты человека применяются громоздкие металлические экраны, в виде листов, сеток и других приспособлений.

Однако многочисленные исследования ученых в различных странах (Германия, США, Швейцария и др.) показали, что такие меры безопасности не могут полностью защитить человека от влияния вредных электромагнитных излучений (ЭМИ). При этом было установлено, что слабые электромагнитные поля (ЭМП), мощность которых измеряется тысячными долями Ватт, не менее опасны, а в ряде случаев и более опасны, чем излучения большой мощности. Ученые объясняют это тем, что интенсивность слабых электромагнитных полей соизмерима с интенсивностью излучений самого человеческого организма, его внутренней энергетики, которая формируется в результате функционирования всех систем и органов, включая клеточный уровень. Такими низкими (нетепловыми) интенсивностями характеризуются излучения электронных бытовых приборов, имеющихся сегодня в каждом доме. Это, главным образом, компьютеры, телевизоры, мобильные телефоны, СВЧ-печи и т. п. Они то и являются источниками вредных, т.н. техногенных ЭМИ, которые обладают свойством накапливаться в организме человека, нарушая при этом его биоэнергетическое равновесие, и в первую очередь, т.н. энергоинформационный обмен (ЭНИО). А это, в свою очередь, приводит к нарушению нормального функционирования основных систем организма. Многочисленные исследования в области биологического действия электромагнитных полей (ЭМП) позволили определить, что наиболее чувствительными системами организма человека являются: нервная, иммунная, эндокринная и половая. Биологический эффект ЭМП в условиях длительного многолетнего воздействия может привести к развитию отдаленных последствий, включая дегенеративные процессы центральной нервной системы, рак крови (лейкозы), опухоли мозга, гормональные заболевания и др.

Исследования показали, что максимальный ток в теле человека, индуцированный электрическим полем, намного выше, чем ток, вызванный магнитным полем. Так, вредное воздействие магнитного поля проявляется лишь при его напряженности около 200 А/м, что бывает на расстоянии 1--1,5 м от проводов фазы линии и опасно только для обслуживающего персонала при работах под напряжением. Это обстоятельство позволило сделать вывод об отсутствии биологического влияния магнитных полей промышленной частоты на людей и животных, находящихся под ЛЭП Таким образом, электрическое поле ЛЭП является главным биологически действенным фактором протяженной электропередачи, который может оказаться барьером на пути миграции движения разных видов водной и сухопутной фауны.

В действии электрического поля на человека доминирующую роль играют протекающие через его тело токи. Это определяется высокой проводимостью тела человека, где преобладают органы с циркулирующей в них кровью и лимфой.

В настоящее время экспериментами на животных и людях-добровольцах установлено, что плотность тока проводимостью 0,1 мкА/см и ниже не влияет на работу мозга, так как импульсные биотоки, обычно протекающие в мозгу, существенно превышают плотность такого тока проводимости.

При плотностью тока проводимостью 1 мкА/см в глазах человека наблюдается мелькание световых кругов, более высокие плотности токов уже захватывают пороговые значения стимуляции сенсорных рецепторов, а также нервных и мышечных клеток, что ведет к появлению испуга, непроизвольным двигательным реакциям.

В случае касания человека к изолированным от земли объектам в зоне электрического поля значительной интенсивности, плотность тока в зоне сердца сильно зависит от состояния «подстилающих» условий (вида обуви, состояния почвы и т. д.), но уже может достигать этих величин.

электрический магнитный ядерный организм

Влияние электрического поля на растения

Опыты проводились в специальной камере в неискаженном поле с напряженностью от 0 до 50 кВ/м. Было выявлено небольшое повреждение ткани листьев при экспозиции от 20 до 50 кВ/м, зависящее от конфигурации растения и первоначального содержания влаги в нем. Омертвление ткани наблюдалось в частях растений с острыми краями. Толстые, с гладкой закругленной поверхностью растения не повреждались при напряженности 50 кВ/м. Повреждения являются следствием короны на выступающих частях растений. У наиболее слабых растений повреждения наблюдались уже через 1 — 2 ч после экспозиции. Важно, что у сеянцев пшеницы, имеющих очень острые концы, корона и повреждения были заметны при сравнительно низкой напряженности, равной 20 кВ/м. Это был самый низкий порог появления повреждений в исследованиях.

Наиболее вероятный механизм повреждения ткани растений — тепловой. Поражение ткани появляется тогда, когда напряженность поля становится достаточно высокой, чтобы вызвать коронирование, и через кончик листка течет ток короны высокой плотности. Тепло, выделяемое при этом на сопротивлении ткани листа, приводит к гибели узкого слоя клеток, которые сравнительно быстро теряют воду, высыхают и сжимаются. Однако этот процесс имеет предел и процент высохшей поверхности растения невелик.

Влияние электрического поля на животных

Исследования проводились по двум направлениям: изучение на уровне биосистемы и изучение порогов обнаруженных влияний. Среди цыплят, помещенных в поле с напряженностью 80 кВ/м, отмечалась прибавка массы, жизнеспособность, низкая смертность. Порог восприятия поля измерялся на домашних голубях. Было показано, что голуби обладают каким-то механизмом для обнаружения электрических полей малой напряженности. Генетических изменений не наблюдалось. Отмечено, что животные, пребывающие в электрическом поле большой напряженности, могут испытывать мини-шок из-за посторонних факторов, зависящих от условий эксперимента, которые могут привести к некоторому беспокойству и возбуждению испытываемых.

В ряде стран имеются нормативные документы, ограничивающие предельные значения напряженности поля в зоне трасс воздушных ЛЭП. Максимальная напряженность 20 кВ/м была рекомендована в Испании, и такое же значение рассматривается в настоящее время как предельное в Германии.

Общественная осведомленность о влиянии электромагнитного поля на живые организмы продолжает расти, и некоторый интерес и беспокойство в связи с этим влиянием будут приводить к продолжению соответствующих медицинских исследований, особенно на людях, проживающих вблизи воздушных линий электропередачи.

Метод электронного парамагнитного резонанса

Метод электронного парамагнитного резонанса является основным методом для изучения парамагнитных частиц. К парамагнитным частицам, имеющим важное биологическое значение, относятся два основных типа — это свободные радикалы и комплексы металлов переменной валентности (таких, как Fe, Cu, Co, Ni, Mn).

Метод электронного парамагнитного резонанса был открыт в 1944 г. Е. К. Завойским при исследовании взаимодействия электромагнитного излучения микроволнового диапазона с солями металлов.

В основе метода ЭПР лежит поглощение электромагнитного излучения радиодиапазона неспаренными электронами, находящимися в магнитном поле.

Cуть метода

Суть явления электронного парамагнитного резонанса заключается в резонансном поглощении электромагнитного излучения неспаренными электронами. Электрон имеет спин S = 1 / 2 и ассоциированный с ним магнитный момент.

Если поместить свободный радикал с результирующим моментом количества движения J в магнитном поле с напряжённостью B0, то для J, отличного от нуля, в магнитном поле снимается вырождение, и в результате взаимодействия с магнитным полем возникает 2J+1 уровней, положение которых описывается выражением:

W = gвB0M, (где М = +J, +J-1, …-J)

и определяется Зеемановским взаимодействием магнитного поля с магнитным моментом J. Расщепление энергетических уровней электрона показано на рисунке.

Энергетические уровни и разрешенные переходы для атома с ядерным спином 1 в постоянном (А) и переменном (В) поле.

Если теперь к парамагнитному центру приложить электромагнитное поле с частотой н, поляризованное в плоскости, перпендикулярной вектору магнитного поля B0, то оно будет вызывать магнитные дипольные переходы, подчиняющиеся правилу отбора ДМ = 1. При совпадении энергии электронного перехода с энергией фотона электромагнитной волны будет происходить резонансное поглощение СВЧ излучения. Таким образом, условие резонанса определяются фундаментальным соотношением магнитного резонанса:

hн = gвB0

Поглощение энергии СВЧ поля наблюдается в том случае, если между уровнями существует разность заселённостей.

При тепловом равновесии существует небольшая разность заселённостей зеемановских уровней, определяемая больцмановским распределением N + / N? = exp (gвB0/kT). В такой системе при возбуждении переходов очень быстро должно наступить равенство заселённостей энергетических подуровней и исчезнуть поглощение СВЧ поля. Однако, в действительности существует много различных механизмов взаимодействия, в результате которых электрон безызлучательно переходит в первоначальное состояние. Эффект неизменности интенсивности поглощения при увеличении мощности возникает за счёт электронов, не успевающих релаксировать, и называется насыщением. Насыщение появляется при высокой мощности СВЧ излучения и может заметно исказить результаты измерения концентрации центров методом ЭПР.

Метод ЭПР позволяет нам изучать свойства парамагнитных центров посредством регистрации спектров поглощения электромагнитного излучения этими частицами. Зная характеристики спектров, можно судить о свойствах парамагнитных частиц.

К основным характеристикам спектров относятся амплитуда, ширина линии, g-фактор и сверхтонкая структура спектров.

Применение спиновых меток

Спиновые метки — химически стабильные парамагнитные молекулы, которые используются в качестве молекулярных зондов для изучения структуры и молекулярной подвижности различных физико-химических и биологических систем. Суть метода спиновых меток заключается в следующем. В исследуемую систему вводят в качестве спиновых зондов парамагнитные молекулы, которые дают характерные сигналы электронного парамагнитного резонанса (ЭПР). Сигналы ЭПР спиновых меток зависят от их молекулярной подвижности и физико-химических свойств ближайшего окружения. Поэтому, наблюдая за сигналами ЭПР молекулярных зондов, можно изучать структурные характеристики исследуемой системы и динамику происходящих в ней молекулярных процессов. Термин «спиновые метки» происходит от английского слова «spin» (веретено, волчок), которым называют собственный механический момент электрона. Электрон, как известно из квантовой механики, обладает механическим моментом, равным величине «/2, и собственным магнитным моментом, где «- постоянная Планка, e и m — заряд и масса электрона, с — скорость света. Парамагнитные свойства молекулярных зондов определяются наличием в них неспаренного электрона, обладающего спином и являющегося источником сигнала ЭПР. В качестве спиновых меток обычно используют стабильные нитроксильные радикалы. Все молекулы спиновых меток, несмотря на разнообразие их химического строения, как правило, содержат одинаковый парамагнитный фрагмент — химически стабильный нитроксильный радикал (> N-OJ). На этом радикале локализован неспаренный электрон, служащий источником сигнала ЭПР. Конкретный выбор спиновых меток определяется задачей исследования. Так, например, для того чтобы с помощью спиновых меток следить за конформационными перестройками белков, молекулы метки обычно «пришивают» к определенным участкам белка. В этом случае спиновая метка должна содержать специальную реакционную группу, которая может образовать ковалентную химическую связь с аминокислотными остатками молекулы белка. Для изучения свойств искусственных и биологических мембран обычно используют жирорастворимые спиновые метки, способные встраиваться в липидный слой мембраны.

Исследования с помощью ЭПР металлсодержащих белков

Далеко не все биологические молекулы обладают неспаренным электроном, но некоторые белки содержат парамагнитные ионы металлов, которые играют важную роль в их функционировании и в формировании структуры. При исследовании таких белков ЭПР оказывается особенно ценным методом. В спектрах протонного резонанса сигналы от множества ядер располагаются в относительно узком спектральном интервале. В спектрах ЭПР проблема наложения разных сигналов устраняется автоматически, поскольку имеется лишь один источник сигналов -- ион металла вместе с его окружением. В сущности этот ион является естественной меткой.

Применение ЭПР в медицине

В последние годы метод электронного парамагнитного резонанса (ЭПР) широко применяется к решению ряда медико-биологических задач. Он довольно успешно используется в следующих исследованиях: изучение состояния метаболических реакций и их молекулярного механизма, изучение молекулярных механизмов патологических изменений и «установление возможности диагностики заболеваний методом ЭПР. Так, за прошедшие годы было установлено, что состояние эндогенных парамагнитных центров (ПМЦ) зависит от физиологического состояния организма, изменяется при лучевой болезни, злокачественном росте опухолей. В ряде работ получены данные, по-видимому, имеющие значение для диагностики некоторых заболеваний.

Применяется метод электронного парамагнитного резонанса (ЭПР) для изучения плазмы, эритроцитов, слюны, секрета носа, желудочного, дуоденального и перитонеального содержимого, желчи, кала, синовиальной жидкости, содержимого кист верхнечелюстной пазухи, выделенных из организма здорового человека, а также больных ишемической болезнью сердца, железодефицитной анемией, язвенной болезнью желудка и двенадцатиперстной кишки, ревматоидным артритом и деформирующим остеоартрозом, поражением верхних дыхательных путей, больных перитонитом. Интерпретированы спектры ЭПР исследованных биологических жидкостей. Выяснены структуры, ответственные за парамагнитные центры (ПМЦ). Изучены процессы формирования и роль гемового и негемового железа, меди, марганца, метгемоглобина, гем-NO, моно- и динитрозильных комплексов и свободных радикалов в развитии указанных заболеваний. Наш многолетний опыт применения метода ЭПР в медицине показывает, что он может с успехом применяться для решения ряда вопросов. Данный способ позволяет уточнить патогенез некоторых заболеваний внутренних органов терапевтического и хирургического профиля. Также им можно дифференцировать заболевания, изучать метаболизм и механизм действия лекарственных препаратов.

Медико-биологическое применение метода ЭПР состоит в исследовании свободных радикалов, что позволяет при изучении спектров облученных белков объяснить механизм образования свободных радикалов, проследить изменение первичных и вторичных продуктов при радиационном поражении. ЭПР используется для изучения фотохимических процессов, в частности фотосинтеза, для изучения концентрации свободных радикалов в воздухе.

Ядерный магнитный резонанс

ЯМР -- резонансное поглощение электромагнитной энергии веществом, содержащим ядра с ненулевым спином во внешнем магнитном поле, обусловленное переориентацией магнитных моментов ядер.

Явление ядерного магнитного резонанса было открыто в 1938 году Исааком Раби в молекулярных пучках, за что он был удостоен нобелевской премии 1944 года. В 1946 году Феликс Блох и Эдвард Миллз Парселл получили ядерный магнитный резонанс в жидкостях и твердых телах (нобелевская премия 1952 года).

Одни и те же ядра атомов в различных окружениях в молекуле показывают различные сигналы ЯМР. Отличие такого сигнала ЯМР от сигнала стандартного вещества позволяет определить так называемый химический сдвиг, который обусловлен химическим строением изучаемого вещества. В методиках ЯМР есть много возможностей определять химическое строение веществ, конформации молекул, эффекты взаимного влияния, внутримолекулярные превращения.

Происхождение спектров ЯМР

Ядра с нецелым спином могут вступать во взаимодействие со внешним магнитным полем, переходя в результате на другие энергетические уровни. Энергия этих уровней строго квантована и зависит от природы ядра, его электронного окружения, различных внутри- и межмолекулярных взаимодействий. Влияние электронной оболочки на ЯМР проявляется, в частности, следующим образом. Внешнее магнитное поле, в которое помещен исследуемый образец, действует на электроны атомов или молекул образца. В случае диамагнитного образца в электронных оболочках его атомов внешним полем B0 индуцируются такие токи, которые создают вторичное магнитное поле B`, направленные в сторону, противоположную полю B0. Это вторичное поле также действует на ядро атома. Складываясь с внешним полем, оно уменьшает действие последнего на ядро. Величина B` пропорциональна B0:

B=B0(1-у)

где у — безразмерная величина, называемая константой экранирования. Она включает в себя три составляющих: атомный вклад в экранирование, зависящий от заместителя, стоящего около резонирующего атома, вклад молекулы в целом или отдельных ее составляющих (анизотропные участки), межмолекулярный вклад, зависящий от температуры, растворителя и других внешних факторов.

Спектры ЯМР

Спектр 1H 4-этоксибензальдегида. В слабом поле (синглет ~9,25 м. д) сигнал протона альдегидной группы, в сильном (триплет ~1,85−2 м.д.) -- протонов метила этоксильной группы.

Для качественного анализа c помощью ЯМР используют анализ спектров, основанный на таких замечательных свойствах данного метода:

— сигналы ядер атомов, входящих в определенные функциональные группы, лежат в строго определенных участках спектра;

— интегральная площадь, ограниченная пиком, строго пропорциональна количеству резонирующих атомов;

— ядра, лежащие через 1−4 связи, способны давать мультиплетные сигналы в результате т. н. расщепления друг на друге.

Положение сигнала в спектрах ЯМР характеризуют химическим сдвигом их относительно эталонного сигнала. В качестве последнего в ЯМР 1Н и 13С применяют тетраметилсилан Si (CH3)4 (ТМС). Единицей химического сдвига является миллионная доля (м.д.) частоты прибора. Если принять сигнал ТМС за 0, а смещение сигнала в слабое поле считать положительным химическим сдвигом, то мы получим так называемую шкалу д. Если резонанс тетраметилсилана приравнять 10 м.д. и обратить знаки на противоположные, то результирующая шкала будет шкалой ф, практически не используемой в настоящее время. Если спектр вещества слишком сложен для интерпретирования, можно воспользоваться квантовохимическими методами расчета констант экранирования и на их основании соотнести сигналы.

Применение ЯМР в медицине: ЯМР-интроскопия

Явление ядерного магнитного резонанса можно применять не только в физике и химии, но и в медицине: организм человека -- это совокупность все тех же органических и неорганических молекул.

Чтобы наблюдать это явление, объект помещают в постоянное магнитное поле и подвергают действию радиочастотных и градиентных магнитных полей. В катушке индуктивности, окружающей исследуемый объект, возникает переменная электродвижущая сила (ЭДС), амплитудно-частотный спектр которой и переходные во времени характеристики несут информацию о пространственной плотности резонирующих атомных ядер, а также о других параметрах, специфических только для ядерного магнитного резонанса. Компьютерная обработка этой информации формирует объёмное изображение, которое характеризует плотность химически эквивалентных ядер, времена релаксации ядерного магнитного резонанса, распределение скоростей потока жидкости, диффузию молекул и биохимические процессы обмена веществ в живых тканях.

Сущность ЯМР-интроскопии (или магнитно-резонансной томографии) состоит, по сути дела, в реализации особого рода количественного анализа по амплитуде сигнала ядерного магнитного резонанса. В обычной ЯМР-спектроскопии стремятся реализовать, по возможности, наилучшее разрешение спектральных линий. Для этого магнитные системы регулируются таким образом, чтобы в пределах образца создать как можно лучшую однородность поля. В методах ЯМР-интроскопии, напротив, магнитное поле создается заведомо неоднородным. Тогда есть основание ожидать, что частота ядерного магнитного резонанса в каждой точке образца имеет свое собственное значение, отличающееся от значений в других частях. Задав какой-либо код для градаций амплитуды ЯМР-сигналов (яркость или цвет на экране монитора), можно получить условное изображение (томограмму) срезов внутренней структуры объекта.

Заключение

Результаты многочисленных исследований показывают, что невидимые, неосязаемые электромагнитные, магнитные и электрические поля оказывают серьезное воздействие на человеческий и другие организмы. Влияние сильных полей изучено достаточно широко. Влияние слабых полей, на которое раньше не обращали внимание, оказалось ничуть не менее важным для живых организмов. Но исследования в этой области только начались.

Современный человек все больше времени проводит в помещениях железобетонного типа, в кабинах автомобилей. Но практически нет исследований, связанных с оценкой влияния на здоровье людей экранирующего действия помещений, металлических кабин автомобилей, самолетов и т. п. Особенно это касается экранирования естественного электрического поля Земли. Следовательно, такие исследования в настоящее время являются весьма актуальными.

«Современное человечество, как и все живое, обитает в своеобразном электромагнитном океане, поведение которого определяется теперь не только естественными причинами, но и искусственным вмешательством. Нам нужны опытные лоцманы, досконально знающие скрытые течения этого океана, его отмели и острова. И требуются еще более строгие навигационные правила помогающие оберегать путников от электромагнитных бурь», -- так образно описал нынешнюю ситуацию один из первопроходцев отечественной магнитобиологии Ю. А. Холодов.

Список использованной литературы

1. Ю. А. Владимиров, Е. В. Проскунина — Лекции по медицинской биофизике ИКЦ «Академкнига», 2007. — 432 с.

2. В. Ф. Антонов, А. В. Кожуев — Физика и биофизика. Курс лекций для студентов медицинских вузов. — 3-е изд., ГЭОТАР-Медиа, 2007. — 240 с.

ПоказатьСвернуть
Заполнить форму текущей работой