Достоинства геотермальной энергии

Тип работы:
Реферат
Предмет:
Экология


Узнать стоимость

Детальная информация о работе

Выдержка из работы

Содержание

  • 1. Перспективы использования геотермальных источников энергии
  • 2. Экологические фонды, их назначение, виды
  • 3. Задача
  • Список литературы

1. Перспективы использования геотермальных источников энергии

Геотермальная энергия — это энергия внутренних областей Земли.

Еще 150 лет тому назад на нашей планете использовались исключительно возобновляемые и экологически безопасные источники энергии: водные потоки рек и морских приливов — для вращения водяных колес, ветер — для приведение в действие мельниц и парусов, дрова, торф, отходы сельского хозяйства — для отопления. Однако с конца XIX века все более и более растущие темпы бурного промышленного развития вызвали необходимость сверхинтенсивного освоения и развития сначала топливной, а затем и атомной энергетики. Это привело к стремительному истощению углеродных ископаемых и к все более возрастающей опасности радиоактивного заражения и парникового эффекта земной атмосферы. Поэтому на пороге нынешнего века пришлось вновь обратиться к безопасным и возобновляемым энергетическим источникам: ветровой, солнечной, геотермальной, приливной энергии, энергии биомасс растительного и животного мира и на их основе создавать и успешно эксплуатировать новые нетрадиционные энергоустановки: приливные электростанции (ПЭС), ветровые энергоустановки (ВЭУ), геотермальные (ГеоТЭС) и солнечные (СЭС) электростанции, волновые энергоустановки (ВлЭУ), морские электростанции на месторождениях газа (КЭС).

В то время, как достигнутые успехи в создании ветровых, солнечных и ряда других типов нетрадиционных энергоустановок широко освещаются в журнальных публикациях, геотермальным энергоустановкам и, в частности, геотермальным электростанциям не уделяется того внимания, которого они по праву заслуживают. А между тем перспективы использования энергии тепла Земли поистине безграничны, поскольку под поверхностью нашей планеты, являющейся, образно говоря, гигантским естественным энергетическим котлом, сосредоточены огромнейшие резервы тепла и энергии, основными источниками которых являются происходящие в земной коре и мантии радиоактивные превращения, вызываемые распадом радиоактивных изотопов. Энергия этих источников столь велика, что она ежегодно на несколько сантиметров сдвигает литосферные пласты Земли, вызывает дрейф материков, землетрясения и извержения вулканов.

Современная востребованность геотермальной энергии как одного из видов возобновляемой энергии обусловлена: истощением запасов органического топлива и зависимостью большинства развитых стран от его импорта (в основном импорта нефти и газа), а также с существенным отрицательным влиянием топливной и ядерной энергетики на среду обитания человека и на дикую природу. Все же, применяя геотермальную энергию, следует в полной мере учитывать ее достоинства и недостатки.

Главным достоинством геотермальной энергии является возможность ее использования в виде геотермальной воды или смеси воды и пара (в зависимости от их температуры) для нужд горячего водо — и теплоснабжения, для выработки электроэнергии либо одновременно для всех трех целей, ее практическая неиссякаемость, полная независимость от условий окружающей среды, времени суток и года. Тем самым использование геотермальной энергии (наряду с использованием других экологически чистых возобновляемых источников энергии) может внести существенный вклад в решение следующих неотложных проблем:

· Обеспечение устойчивого тепло — и электроснабжения населения в тех зонах нашей планеты, где централизованное энергоснабжение отсутствует или обходится слишком дорого (например, в России на Камчатке, в районах Крайнего Севера и т. п.).

· Обеспечение гарантированного минимума энергоснабжения населения в зонах неустойчивого централизованного энергоснабжения из-за дефицита электроэнергии в энергосистемах, предотвращение ущерба от аварийных и ограничительных отключений и т. п.

· Снижение вредных выбросов от энергоустановок в отдельных регионах со сложной экологической обстановкой.

При этом в вулканических регионах планеты высокотемпературное тепло, нагревающее геотермальную воду до значений температур, превышающих 140 — 150 °C, экономически наиболее выгодно использовать для выработки электроэнергии. Подземные геотермальные воды со значениями температур, не превышающими 100 °C, как правило, экономически выгодно использовать для нужд теплоснабжения, горячего водоснабжения и для других целей

Таб. 1.

Значение температуры геотермальной воды,°С

Область применения геотермальной воды

Более 140

Выработка электроэнергии

Менее 100

Системы отопления зданий и сооружений

Около 60

Системы горячего водоснабжения

Менее 60

Системы геотермального теплоснабжения теплиц, геотермальные холодильные установки и т. п.

По мере развития и совершенствования геотермальных технологий пересматриваются в сторону использования для производства электроэнергии геотермальных вод с все более низкими температурами. Так, разработанные в настоящее время комбинированные схемы использования геотермальных источников позволяют использовать для производства электроэнергии теплоносители с начальными температурами 70 — 80 °C, что значительно ниже рекомендуемых в таблице температур (150°С и выше). В частности, в Санкт-Петербургском политехническом институте созданы гидропаровые турбины, использование которых на ГеоТЭС позволяет увеличивать полезную мощность двухконтурных систем (второй контур — водный пар) в диапазоне температур 20 — 200 °C в среднем на 22%.

Значительно повышается эффективность применения термальных вод при их комплексном использовании. При этом в разных технологических процессах можно достичь наиболее полной реализации теплового потенциала воды, в том числе и остаточного, а также получить содержащиеся в термальной воде ценные компоненты (йод, бром, литий, цезий, кухонная соль, глауберова соль, борная кислота и многие другие) для их промышленного использования.

Основной недостаток геотермальной энергии - необходимость обратной закачки отработанной воды в подземный водоносный горизонт. А так же применение геотермальных вод не может рассматриваться как экологически чистое потому, что пар часто сопровождается газообразными выбросами, включая сероводород и радон — оба считаются опасными. На геотермальных станциях пар, вращающий турбину, должен быть конденсирован, что требует источника охлаждающей воды, точно так же как этого требуют электростанции на угле или ядерном топливе. В результате сброса как охлаждающей, так и конденсационной горячей воды возможно тепловое загрязнение среды. Кроме того, там, где смесь воды и пара извлекается из земли для электростанций, работающих на влажном паре, и там, где горячая вода извлекается для станций с бинарным циклом, воду необходимо удалять. Эта вода может быть необычно соленой (до 20% соли), и тогда потребуется перекачка ее в океан или нагнетание в землю. Сброс такой воды в реки или озера мог бы уничтожить в них пресноводные формы жизни. В геотермальных водах нередко содержатся также значительные количества сероводорода — дурно пахнущего газа, опасного в больших концентрациях.

Однако в связи с внедрением новых, менее затратных, технологий бурения скважин, применением эффективных способов очистки воды от токсичных соединений и металлов капитальные затраты на отбор тепла от геотермальных вод непрерывно снижаются. К тому же следует иметь ввиду, что геотермальная энергетика в последнее время существенно продвинулась в своем развитии. Так, последние разработки показали возможность выработки электроэнергии при температуре пароводяной смеси ниже 80єС, что позволяет гораздо шире применять ГеоТЭС для выработки электроэнергии. В связи с эти ожидается, что в странах со значительным геотермальным потенциалом и первую очередь в США мощность ГеоТЭС в самое ближайшее время удвоится.

Еще более впечатляет появившаяся несколько лет тому назад новая, разработанная австралийской компанией Geodynamics Ltd., поистине революционная технология строительства ГеоТЭС — так называемая технология Hot-Dry-Rock, существенно повышающая эффективность преобразования энергии геотермальных вод в электроэнергию. Суть этой технологии заключается в следующем [5].

До самого последнего времени в термоэнергетике незыблемым считался главный принцип работы всех геотермальных станций, заключающийся в использовании естественного выхода пара из подземных резервуаров и источников. Австралийцы отступили от этого принципа и решили сами создать подходящий «гейзер». Для создания такого гейзера австралийские геофизики отыскали в пустыне на юго-востоке Австралии точку, где тектоника и изолированность скальных пород создают аномалию, которая круглогодично поддерживает в округе очень высокую температуру. По оценкам австралийских геологов, залегающие на глубине 4,5 км гранитные породы разогреваются до 270 °C, и поэтому если на такую глубину через скважину закачать под большим давлением воду, то она, повсеместно проникая в трещины горячего гранита, будет их расширять, одновременно нагреваясь, а затем по другой пробуренной скважине будет подниматься на поверхность. После этого нагретую воду можно будет без особого труда собирать в теплообменнике, а полученную от нее энергию использовать для испарения другой жидкости с более низкой температурой кипения, пар которой, в свою очередь, и приведет в действие паровые турбины. Вода, отдавшая геотермальное тепло, вновь будет направлена через скважину на глубину, и цикл таким образом повторится. Принципиальная схема получения электроэнергии по технологии, предложенной австралийской компанией Geodynamics Ltd., приведена на рис. 1.

Рис. 1.

Безусловно, реализовать эту технологию можно не в любом месте, а только там, где залегающий на глубине гранит нагревается до температуры не менее 250 — 270 °C. При применении такой технологии ключевую роль играет температура, понижение которой на 50 °C по оценкам ученых вдвое повысит стоимость электроэнергии.

Для подтверждения прогнозов специалисты компании Geodynamics Ltd. Уже пробурили две скважины глубиной по 4,5 км каждая и получили доказательство того, что на этой глубине температура достигает искомых 270 — 300 °C. В настоящее время проводятся работы по оценке общих запасов геотермальной энергии в этой аномальной точке юга Австралии. По предварительным расчетам в этой аномальной точке можно получать электроэнергию мощностью более 1 ГВт, причем стоимость этой энергии будет вдвое дешевле стоимости ветровой энергии и в 8 — 10 раз дешевле солнечной.

геотермальная энергия экологический фонд

Мировой потенциал геотермальной энергии и перспективы его использования

Группа экспертов из Всемирной ассоциации по вопросам геотермальной энергии, которая произвела оценку запасов низко — и высокотемпературной геотермальной энергии для каждого континента, получила следующие данные по потенциалу различных типов геотермальных источников нашей планеты (табл. 2).

Таб. 2.

Наименование континента

Тип геотермального источника:

высокотемпературный, используемый для производства электроэнергии, ТДж/год

низкотемпературный, используемый в виде теплоты, ТДж/год (нижняя граница)

традиционные технологии

традиционные и бинарные технологии

Европа

1830

3700

> 370

Азия

2970

5900

> 320

Африка

1220

2400

> 240

Северная Америка

1330

2700

> 120

Латинская Америка

2800

5600

> 240

Океания

1050

2100

> 110

Мировой потенциал

11 200

22 400

> 1400

Как видно из таблицы, потенциал геотермальных источников энергии просто таки колоссален. Однако используется он крайне незначительно, но в настоящее время геотермальная электроэнергетика развивается ускоренными темпами, не в последнюю очередь из-за галопирующего увеличения стоимости нефти и газа. Этому развитию во многом способствуют принятые во многих странах мира правительственные программы, поддерживающие это направление развития геотермальной энергетики.

Характеризуя развитие мировой геотермальной электроэнергетики как неотъемлемой составной части возобновляемой энергетики на более отдаленную перспективу, отметим следующее. Согласно прогнозным расчетам в 2030 году ожидается некоторое (до 12,5% по сравнению с 13,8% в 2000 году) снижение доли возобновляемых источников энергии в общемировом объеме производства энергии. При этом энергия солнца, ветра и геотермальных вод будет развиваться ускоренными темпами, ежегодно увеличиваясь в среднем на 4,1%, однако вследствие «низкого» старта их доля в структуре возобновляемых источников и в 2030 году будет оставаться наименьшей.

2. Экологические фонды, их назначение, виды

Вопросы, которые включает в себя охрана окружающей среды, являются довольно актуальными и значимыми в наши дни. Одним из них является вопрос об экологических фондах. Именно от него напрямую зависит эффективность всего процесса, так как сегодня без определенных вложений добиться чего-то бывает очень непросто.

Экологические фонды представляют собой единую систему внебюджетных государственных средств, которая помимо непосредственного экологического фонда должна включать в себя областные, краевые, местные, а также республиканские фонды. Экологические фонда, как правило, создаются с целью решения самых важных и неотложных природоохранительных задач. Кроме того они необходимы при компенсации причиненного вреда, а также в случае восстановления потерь в окружающей природной среде.

Также не менее важным вопросом в данном случае является то, откуда берутся данные фонды, которые играют довольно важную роль в таком процессе как охрана окружающей среды. Чаще всего экологические фонды образуются из средств, которые поступают от организаций, учреждений, граждан и предприятий, а также от юридических граждан и лиц. Как правило, в качестве них выступают всевозможные платы за сбросы отходов, выбросы вредных веществ, размещение отходов, а также прочие виды загрязнений.

Помимо этого экологические фонды формируются за счет средств реализации конфискованных инструментов и орудий рыболовства и охоты, сумм, которые получаются по искам о возмещении штрафов и вреда за ухудшение экологического состояния, инвалютных поступлений от иностранных граждан и лиц, а также от полученных дивидендов по банковским депозитам, вкладам в качестве процентов, и от долевого использования фондовых средств в деятельности данных лиц и их предприятий.

Как правило, все вышеперечисленные средства должны быть зачислены на специальные счета банков в определенном соотношении. Так, например, на реализацию природоохранных мероприятий, которые имеют федеральное значение, выделяют десять процентов средств, на реализацию мероприятий республиканского и областного значения — тридцать процентов. Остальная сумма должна пойти на реализацию природоохранных мероприятий, которые имеют местное значение.

3. Задача

Определить полный годовой экономический ущерб от загрязнения ТЭС, производительностью 298 т/сутки угля при выбросах: SO2 — 18 кг/т; летучая зола — 16 кг/сутки; СО2 — 1,16 т/т.

Эффект очистки принять 68%. Удельный ущерб от загрязнений на единицу выбросов составляет: у SO2=98 руб/т; у СО2=186 руб/т; уз=76 руб/т.

Дано:

Q=298 т/сутки;

gл. з. =16 кг/сутки;

gSO2=18 кг/т;

gCO2=1,16т/т

?=68%

П=?

Решение:

mл. з. =0,016*298*0,68=3,24 т/сутки

mSO2=0. 018*298*0,68=3. 65 т/сутки

mCO2=1. 16*298*0,68=235. 06 т/сутки

Пл. з. =360*3,24*76=88 646,4 руб/год

ПSO2=360*3. 65*98=128 772 руб/год

ПСО2=360*235,06*186=15 739 617 руб/год

Пполн=88 646,4+128 772+15739617=15 957 035,4 руб/год

Ответ: полный годовой экономический ущерб от загрязнений ТЭС составляет 15 957 035,4 рублей в год.

Список литературы

1. http: //elementy. ru/news/164 982

2. http: //ustoj. com/Energy5. htm

3. http: //www. electrician. com. ua/magazine/view246. html

4. http: //dic. academic. ru/dic. nsf/dic_economic_law/18 098/%D0%AD%D0%9A%D0%9E%D0%9B%D0%9E%D0%93%D0%98%D0%A7%D0%95%D0%A1%D0%9A%D0%98%D0%95

ПоказатьСвернуть
Заполнить форму текущей работой