Диагностика и техническое обслуживание автомобиля ВАЗ 21213

Тип работы:
Реферат
Предмет:
ТЕХНИЧЕСКИЕ НАУКИ


Узнать стоимость

Детальная информация о работе

Выдержка из работы

Диагностика и техническое обслуживание автомобиля ВАЗ 21 213

Содержание

диагностика автомобиль впрыск ремонт

1. Введение

2. Преимущества впрысковых систем подачи топлива

3. Устройство системы впрыска топлива автомобиля ВАЗ 21 213

4. Электросхема системы впрыска топлива автомобиля ВАЗ 21 213

5. Работа системы впрыска топлива автомобиля ВАЗ 21 213

6. Диагностические коды системы впрыска автомобиля ВАЗ 21 213

7. Диагностика и ремонт системы впрыска топлива ВАЗ 21 213

7.1 Диагностические приборы

7.2 Основные этапы диагностики

7.3 Промывка инжектора

8. Заключение

9. Список литературы

1. Введение

Под общим понятием «впрыск топлива», которому многие наши автомобилисты предпочитают не совсем корректное «инжектор» (это не вся система, а лишь форсунка), скрывается немало схем подачи топлива терминов, их обозначающих, и того больше.

Первые системы впрыска топлива появились в 1894 году — даже раньше, чем простейшие карбюраторы. Однако из-за сложности конструкции о них долгое время не вспоминали. Внедрение систем впрыска бензина в серийные автомобили началось в 60-е годы, когда впервые возникла необходимость снизить токсичность отработавших газов. Вначале это были чисто механические системы, в которых количество впрыскиваемого топлива напрямую зависело от степени открытия дроссельной заслонки. С развитием электротехники на смену механическим системам пришли электронные. Именно ими и оснащено большинство эксплуатируемых у нас иномарок.

Почетное место первопроходца занял так называемый моно или одноточечный впрыск (single point fuel injection), который в русскоязычных изданиях принято называть центральным. В этой схеме топливо подает всего одна форсунка, которая расположена над дроссельной заслонкой во впускном коллекторе. Многие автомобилисты, не без оснований, считают одноточечный впрыск самым надежным — ведь чем меньше узлов и проще конструкция, тем меньше поводов для отказа. Но одноточечный впрыск, особенно ранние его версии с механическим приводом форсунки, — это вчерашний, если не позавчерашний день двигателестроения.

В стремлении подогнать моторы под более жесткие экологические требования и сделать их экономичнее, конструкторы развили схему: свою форсунку во впускном тракте получил каждый цилиндр. Так родился многоточечный впрыск топлива (multipoint fuel injection). Система получилось сложнее, но, главное, подачу топлива и, соответственно, процесс сгорания стала контролировать точнее. По аналогии с центральным, такой впрыск назвали распределенным.

Сила электроники — в стабильности работы, в точности и надёжности, способности парировать отказы. Поэтому впрыск бесповоротно вытеснил карбюратор как на зарубежных, так и на отечественных автомобилях.

В данной курсовой работе рассматривалась система моно впрыска топлива, установленная на автомобиле ВАЗ 21 213 (Chevrolet Niva).

2. Преимущества впрысковых систем подачи топлива

Как известно, бензиновые двигатели оснащаются карбюратором или имеют топливный инжектор. Инжекторные системы подачи топлива имеют ряд преимуществ над карбюраторными и являются более прогрессивными практически по всем параметрам.

Карбюраторный двигатель смешивает топливо с воздухом перед подачей в камеры сгорания с большим усилием через узкое горло — карбюратор, расходуя при этом около 10 процентов своей мощности. На смешивание бензина с воздухом тоже уходят силы двигателя. Если карбюратор получает много горючего, то он захлебывается и начинает «коптить», если мало, то тогда «не тянет».

В инжекторном двигателе бензин не засасывается, а впрыскивается из форсунки под давлением сразу в камеру сгорания, либо во впускной коллектор. И впрыскивается ровно столько, сколько нужно, ведь за этим следит электроника. Соответственно, мощность и экономичность увеличиваются. Простейшая электронная система впрыска включает в себя: электрический бензонасос, регулятор давления, электронный блок управления, датчик угла поворота дроссельной заслонки, датчик температуры охлаждающей жидкости, датчик числа оборотов коленвала и непосредственно инжектор.

В общем, инжекторные системы подачи топлива имеют перед карбюраторными следующие основные преимущества:

Точное дозирование топлива и, следовательно, более экономичный его расход. Дозирование топлива осуществляется довольно просто. Форсунки впрыскивают топливо каждый раз перед открытием впускного клапана. Причем столько, сколько решил дать блок управления, соответственно возникает импульс разной длины. Чем длиннее импульс, тем больше бензина за раз попадет.

Снижение токсичности выхлопных газов. Достигается за счет оптимальности топливно-воздушной смеси и применения датчиков параметров выхлопных газов.

Увеличение мощности двигателя примерно на 7−10%. Происходит за счет улучшения наполнения цилиндров, оптимальной геометрии впускного коллектора, оптимальной установки угла опережения зажигания, соответствующего рабочему режиму двигателя.

Улучшение динамических свойств автомобиля. Система впрыска незамедлительно реагирует на любые изменения нагрузки. Улучшенные параметры топливно-воздушной смеси увеличивают динамический момент двигателя. Легкость пуска независимо от погодных условий. Например, в сильные морозы двигатель практически не требует прогрева и запускается «с пол-оборота», так что почти сразу можно ехать. За счет качества приготовления смеси и стабильность её состава реже, чем карбюратор требует чистки и замены. Контроль за системой производит электроника. Наличие электроники в инжекторе и вовсе может рассматриваться и как преимущество и как недостаток. Ведь электроника может выйти из строя в самый неподходящий момент, например, в дальней дороге. И если нет запасного блока, то придется вызывать помощь. А с карбюратором, кроме засорения жиклёров — устройств, распрыскивающих топливо в воздух, практически ничего не может случиться, и вы в любом случае доберетесь до пункта назначения или хотя бы до ближайшего сервиса. Большая надежность и долговечность и т. д. В зависимости от количества форсунок и места подачи топлива, системы впрыска подразделяются на три типа: одноточечный (одна форсунка во впускном коллекторе на четыре цилиндра), многоточечный или распределенный (у каждого цилиндра своя форсунка, которая подает топливо в коллектор) и непосредственный (топливо подается форсункой непосредственно в цилиндры, как у дизелей). Одноточечный впрыск конечно проще, он менее начинен управляющей электроникой, но и менее эффективен. Управляющая электроника позволяет снимать информацию с датчиков и сразу же менять параметры впрыска. У одноточечного впрыска преимущество перед карбюратором состоит в экономии топлива, экологической чистоте и относительной стабильности и надежности параметров. А вот в приёмистости двигателя одноточечный впрыск проигрывает. Еще один недостаток: при использовании одноточечного впрыска, как и при использовании карбюратора до 30% бензина оседает на стенках коллектора. Распределенный впрыск мощнее, экономичнее и сложнее. Применение такого впрыска увеличивает мощность двигателя примерно на 7−10 процентов.

Основные преимущества распределенного впрыска:

1 возможность настройки на разных оборотах и соответственно улучшение наполнения цилиндров, в итоге при той же максимальной мощности инжектор разгоняется гораздо быстрее;

2 бензин брызгает непосредственно прямо на клапан, что позволяет сделать более точную регулировку подачи топлива.

Что касается преимуществ бензинового двигателя с прямым или непосредственным впрыском, то они заключаются в том, что благодаря форсункам с электромагнитными клапанами возможен впрыск дозированного количества топлива в камеру сгорания в определенное время. Электронный блок подает в камеры сгорания ровно столько топлива и масла, сколько требуется двигателю при определенном числе оборотов коленчатого вала, реагируя на изменение режима работы мотора, меняя дозировку. Все это обеспечивает моторам улучшенные технические характеристики.

Кроме того, при использовании прямого впрыска концентрация токсичных веществ в выхлопных газах также уменьшается. А двигатели с прямым впрыском FSI еще и на 15% экономичнее бензиновых двигателей с обычной системой впрыска. FSI расшифровывается как fuel stratified injection, что в переводе с английского означает «послойный впрыск топлива». В системе прямого впрыска FSI насос высокого давления нагнетает бензин в общую для всех цилиндров топливную рампу. При этом топливо попадает сразу в камеру сгорания через форсунки. Блок управления дает команду на открытие каждой форсунки, а фазы ее работы значительно зависят от нагрузки двигателя и его оборотов.

Прямой впрыск позволяет добиться преимущества перед карбюратором не только в увеличении мощности двигателя, эта система также обеспечивает хорошую тягу на низких и средних оборотах из-за постоянно изменяемых фаз газораспределения и позволяет серьезно экономить бензин.

Однако все свои положительные качества инжектор проявляет только при условии соблюдения правил пользования и эксплуатации.

3. Устройство системы впрыска топлива автомобиля ВАЗ-21 213

Схема устройства системы впрыска топлива автомобиля ВАЗ-21 213 изображена на рисунке 1

Рисунок 1 Схема устройства системы впрыска топлива автомобиля ВАЗ-21 213

Корпус дроссельной заслонки 2. Регулятор холостого хода 3. Сектор привода дроссельной заслонки 4. Корпус топливоподачи 5. Регулятор давления топлива 6. Форсунка 7. Держатель форсунки 8. Штуцер подвода топлива 9. Топливный бак 10. Электробензонасос с датчиком уровня топлива 11. Магистраль подачи топлива 12. Магистраль слива топлива 13. Топливный фильтр 14. Агрегат центрального впрыска топлива 15. Датчик положения дроссельной заслонки 16. Клапан регулятора давления топлива 17. Диафрагма 18. Ось дроссельной заслонки 19. Дроссельная заслонка 20. Модуль вакуумных трубок 21. Клапан регулятора холостого хода а) Канал подвода топлива в) Канал слива топлива с) Патрубок для шланга продувки адсорбера d) Патрубок для шаланга системы вентиляции картера е) Патрубок для шаланга к датчику абсолютногодавления I. Схема работы регулятора давления топлива II. Схема работы регулятора холостого хода: А-подача воздуха в обход дроссельной заслонки

На автомобилях ВАЗ-21 214 устанавливается двигатель с системой центрального впрыска топлива, т. е. топливо впрыскивается одной форсункой в агрегат центрального впрыска. Здесь топливо перемешивается с воздухом и в виде горючей смеси по впускной трубе подается в цилиндры двигателя.

Система впрыска топлива в сочетании с каталитическим нейтрализатором в системе выпуска позволяет снизить токсичность отработавших газов при улучшении ездовых качеств автомобиля. В качестве топлива необходимо применять только неэтилированный бензин. Применение этилированного бензина приведет к повреждению нейтрализатора, датчика кислорода и к отказу системы.

Нейтрализатор устанавливается в системе выпуска отработавших газов перед дополнительным глушителем. Он содержит два окислительных катализатора (ускорителя химической реакции) и один восстановительный. Окислительные катализаторы (платина и палладий) способствуют преобразованию углеводородов в водяной пар, а окиси углерода в двуокись углерода. Восстановительный катализатор (родий) способствует преобразованию окислов азота в безвредный азот.

В связи с тем, что каталитическому нейтрализатору требуется кислород для нейтрализации углеводородов и окиси углерода, и одновременно он должен отнимать кислород для нейтрализации окислов азота, необходимо очень строго поддерживать баланс смеси воздух/топливо (примерно 14,7: 1), поступающей в двигатель. Эту функцию выполняет электронный блок управления.

Электронный блок управления (ЭБУ), расположенный под панелью приборов на левой боковине кузова, является управляющим центром системы впрыска топлива. Это специализированный компьютер. Он непрерывно обрабатывает информацию от различных датчиков и управляет системами, влияющими на токсичность отработавших газов и на эксплуатационные показатели автомобиля.

ЭБУ выполняет также диагностическую функцию системы впрыска топлива. Он может распознавать неполадки в работе системы, предупреждая о них водителя через контрольную лампу «CHECK ENGINE». Кроме того, он хранит диагностические коды, указывающие области неисправности, чтобы помочь специалистам в проведении ремонта.

Агрегат центрального впрыска топлива 14 устанавливается на впускной трубе вместо карбюратора. В нем находится форсунка 6 для впрыска топлива, регулятор 5 давления топлива, регулятор 2 холостого хода, дроссельная заслонка 19 и датчик 15 положения дроссельной заслонки. Для отбора разрежения имеются три патрубка с, d и е, соединенные с задроссельным пространством.

Форсунка 6 представляет собой электромагнитный клапан. Когда на нее от ЭБУ поступает импульс напряжения, то клапан открывается и топливо через распылитель тонко распыленной струей под давлением впрыскивается в смесительную камеру над дроссельной заслонкой. После прекращения подачи электрического импульса подпружиненный клапан перекрывает подачу топлива.

Регулятор 5 давления топлива состоит из клапана 16 с диафрагмой 17, поджатого пружиной к седлу в корпусе 4. Когда давление топлива превышает 190−210 кПа, клапан открывается, и избыток топлива по сливной магистрали 12 сливается в топливный бак.

Регулятор 2 холостого хода регулирует частоту вращения коленчатого вала на режиме холостого хода, управляя количеством подаваемого воздуха в обход закрытой дроссельной заслонки 19. Он состоит из двухполюсного шагового электродвигателя и соединенного с ним конусного клапана 21. Клапан выдвигается или убирается по сигналам ЭБУ.

Датчик 15 положения дроссельной заслонки установлен на корпусе 1 дроссельной заслонки и связан с осью 18 дроссельной заслонки. Датчик представляет собой потенциометр, на один конец которого подается напряжение питания 5 В, а другой конец соединен с массой. С третьего вывода потенциометра (от ползунка) идет выходной сигнал к ЭБУ.

4. Электросхема системы впрыска топлива автомобиля ВАЗ 21 213

Электросхема системы впрыска топлива автомобиля ВАЗ 21 213 приведена на рисунке 2.

Рисунок 2 Схема электрических соединений системы впрыска топлива автомобиля ВАЗ 21 213

Датчик температуры воздуха; 2. Регулятор холостого хода; 3. Электронный блок управления; 4. Октан-потенциометр; 5. Свечи зажигания; 6. Модуль зажигания; 7. Датчик положения коленчатого вала; 8. Электробензонасос с датчиком уровня топлива; 9. Комбинация приборов с тахометром и контрольной лампой «CHECK ENGINE»; 10. Основной блок предохранителей автомобиля; 11. Датчик скорости; 12. Колодка диагностики; 13. Форсунка; 14. Клапан продувки адсорбера; 15. Блок предохранителей системы впрыска; 16. Реле зажигания; 17. Реле включения бензонасоса; 18. Реле электроподогревателя впускной трубы; 19. Электроподогреватель впускной трубы; 20. Предохранитель подогревателя впускной трубы; 21. Датчик концентрации кислорода; 22. Датчик температуры охлаждающей жидкости; 23. Датчик положения дроссельной заслонки; 24. Датчик абсолютного давления; А. К клемме «плюс» аккумуляторной батареи; В. К клемме «15» выключателя зажигания.

Электробензонасос 10 — двухступенчатый, роторного типа, установлен в топливном баке. Топливо из насоса через топливный фильтр 13 тонкой очистки (рисунок 1) подается в агрегат центрального впрыска под давлением более 184 кПа. Электробензонасос включается с помощью вспомогательного реле 17. Топливный фильтр с бумажным фильтрующим элементом установлен в моторном отсеке на левом брызговике.

Датчик температуры охлаждающей жидкости представляет собой термистор (резистор, сопротивление которого изменяется от температуры). Датчик завернут в выпускной патрубок охлаждающей жидкости на головке цилиндров. При низкой температуре датчик имеет высокое сопротивление (100 Ом при 40°С), а при высокой температуре — низкое (70 Ом при 130°С).

Датчик температуры воздуха, завернутый в дно корпуса воздушного фильтра, также является термистором. При понижении температуры воздуха его сопротивление возрастает, а при повышении — уменьшается.

Датчик концентрации кислорода устанавливается на выпускном коллекторе. Кислород, содержащийся в отработавших газах, реагирует с датчиком кислорода, создавая разность потенциалов на выходе датчика. Она изменяется приблизительно от 0,1 В (высокое содержание кислорода — бедная смесь) до 0,9 В (мало кислорода — богатая смесь). В датчик встроен нагревательный элемент для повышения эффективности его работы.

Датчик абсолютного давления воздуха закреплен в коробке воздухопритока, и соединен шлангом с патрубком е. Чувствительный элемент датчика — миниатюрная диафрагма с напыленным на ней резистором. В зависимости от давления воздуха изменяется натяжение диафрагмы и соответственно меняется сопротивление резистора. Встроенная в датчик микросхема преобразует это изменение сопротивления в изменение напряжения на выходе датчика.

Датчик скорости автомобиля устанавливается на раздаточной коробке между приводом спидометра и наконечником гибкого вала привода спидометра. Принцип действия датчика основан на эффекте Холла. Датчик выдает на ЭБУ прямоугольные импульсы напряжения с частотой, пропорциональной скорости вращения ведущих колес.

Октан-потенциометр установлен в моторном отсеке на стенке коробки воздухопритока и представляет собой переменный резистор. Он выдает в электронный блок управления сигнал корректировки угла опережения зажигания. Регулировка октан-потенциометра выполняется только на станции технического обслуживания с применением диагностического оборудования.

Датчик положения коленчатого вала — индуктивного типа, установлен на крышке привода распределительного вала напротив задающего диска на шкиве привода генератора. На диске имеется 6 прорезей, равно расположенных по окружности и одна прорезь, расположенная на 10° от одной из них и служащая для генерирования импульса синхронизации. При вращении коленчатого вала прорези изменяют магнитное поле датчика, наводя импульсы напряжения переменного тока. В системе зажигания применяется метод распределения искры, называемый методом «холостой искры». Цилиндры двигателя объединены в пары 1−4 и 2−3, и искрообразование происходит одновременно в двух цилиндрах: в цилиндре, в котором заканчивается такт сжатия (рабочая искра) и в цилиндре, в котором происходит такт выпуска (холостая искра). В связи с постоянным направлением тока в обмотках катушек зажигания, ток искрообразования у одной свечи всегда протекает с центрального электрода на боковой, а у второй — с бокового на центральный. Свечи применяются типа А17ДВРМ или AC. R43XLS с зазором между электродами 1,0−1,13 мм.

Система зажигания. В системе зажигания не используются традиционные распределитель и катушка зажигания. Здесь применяется модуль зажигания, состоящий из двух катушек зажигания и управляющей электроники высокой энергии. Система зажигания не имеет подвижных деталей и поэтому не требует обслуживания. Она также не имеет регулировок (в том числе и угла опережения зажигания), т.к. управление зажиганием осуществляет ЭБУ.

Модуль зажигания получает сигнал от датчика положения коленчатого вала, обрабатывает его и посылает в ЭБУ опорный сигнал с. частотой один импульс за 180° поворота коленчатого вала. Модуль зажигания также посылает сигнал для работы тахометра в комбинации приборов. При оборотах двигателя до 500 об/мин зажиганием управляет модуль зажигания путем включения каждой катушки с заданным интервалом только на базе данных частоты вращения коленчатого вала.

При оборотах выше 500 об/мин — зажиганием управляет ЭБУ, используя следующую информацию:

— частота вращения коленчатого вала;

— нагрузка двигателя (абсолютное давление воздуха);

— атмосферное (барометрическое) давление воздуха;

— температура охлаждающей жидкости;

— температура воздуха на впуске;

— положение коленчатого вала.

Система улавливания паров бензина. В системе применен метод улавливания паров угольным адсорбером, установленным в моторном отсеке. На неработающем двигателе пары бензина из сепаратора подаются через гравитационный клапан в адсорбер, где они поглощаются активированным углем. Затем при работающем двигателе адсорбер продувается воздухом и пары отсасываются к патрубку с, а затем во впускную трубу для сжигания в ходе рабочего процесса.

ЭБУ управляет продувкой адсорбера, включая электромагнитный клапан 14, расположенный на крышке адсорбера. При подаче на клапан напряжения он открывается, выпуская пары во впускную трубу. Управление клапаном осуществляется методом широтно-импульсной модуляции. Клапан включается и выключается с частотой 16 раз в секунду (16 Гц). Чем выше расход воздуха, тем больше длительность импульсов включения клапана.

ЭБУ включает клапан продувки адсорбера при выполнении всех следующих условий:

— температура охлаждающей жидкости выше 80 °C;

— система управления топливоподачей работает в режиме замкнутого цикла;

— скорость автомобиля превышает 21 км/ч. После включения клапана критерий скорости меняется. Клапан отключится только при снижении скорости до 9 км/ч;

— открытие дроссельной заслонки превышает 2%. Этот фактор в дальнейшем не имеет значения, если он не превышает 99%. При полном открытии дроссельной заслонки ЭБУ отключает клапан продувки адсорбера.

Электроподогреватель впускной трубы установлен в нижней части впускной трубы непосредственно под агрегатом центрального впрыска топлива. Он служит для ускоренного прогрева системы впуска холодного двигателя. Это обеспечивает быстрое испарение топлива и его равномерное распределение по цилиндрам. В результате улучшаются ездовые качества с холодным двигателем и уменьшается токсичность отработавших газов.

ЭБУ включает электроподогреватель 19 с помощью вспомогательного реле 18 при выполнении следующих условий: температура охлаждающей жидкости ниже 65 °C, температура воздуха на впуске ниже 80 °C и напряжение питания более 8 В. Эти условия имеют место на непрогретом работающем двигателе с минимальной электрической нагрузкой от вспомогательных агрегатов. ЭБУ выключает электроподогреватель при выполнении следующих условий: температура охлаждающей жидкости выше или равна 65 °C, температура воздуха на впуске больше 80 °C и напряжение питания меньше 6 В. Эти условия имеют место на прогретом двигателе и/или при высокой электрической нагрузке от вспомогательных агрегатов.

5. Работа системы впрыска топлива автомобиля ВАЗ 21 213

Количество топлива, подаваемого форсункой, регулируется электрическим импульсным сигналом от электронного блока управления (ЭБУ). ЭБУ отслеживает данные о состоянии двигателя, рассчитывает потребность в топливе и определяет необходимую длительность подачи топлива форсункой (длительность импульса). Для увеличения количества подаваемого топлива длительность импульса увеличивается, а для уменьшения подачи топлива — сокращается.

ЭБУ обладает способностью оценивать результаты своих расчетов и команд, а также запоминать опыт недавней работы и действовать в соответствии с ним. «Самообучение» ЭБУ является непрерывным процессом, продолжающимся в течение всего срока эксплуатации автомобиля.

Обычно к форсунке подается один импульс на один опорный импульс датчика положения коленчатого вала. Топливо подается либо синхронно с опорными импульсами, либо асинхронно, т. е. без совпадения с ними по времени. Синхронный впрыск топлива — наиболее употребительный способ подачи топлива. Асинхронный впрыск топлива применяется, когда необходимо дополнительное топливо при резком открытии дроссельной заслонки, о чем сигнализирует датчик положения дроссельной заслонки. Этот впрыск топлива подобен подаче топлива ускорительным насосом карбюратора при резком открытии дроссельной заслонки.

Независимо от метода впрыска подача топлива определяется состоянием двигателя, т. е. режимом его работы. Эти режимы обеспечиваются ЭБУ и описаны ниже.

Режим пуска двигателя. При включении зажигания ЭБУ включает на 2 сек реле электробензонасоса, и он создает давление в магистрали подачи топлива к агрегату центрального впрыска. ЭБУ учитывает показания от датчиков температуры охлаждающей жидкости и положения дроссельной заслонки и определяет правильное соотношение воздух/топливо для пуска.

После начала вращения коленчатого вала ЭБУ будет работать в пусковом режиме, пока обороты не превысят 420 об/мин, в противном случае возможно переключение на режим «продувки» двигателя. Длительность каждого импульса на форсунку при пуске составляет 4−6 мс в зависимости от температуры охлаждающей жидкости и положения дроссельной заслонки.

Режим продувки двигателя. Если двигатель «залит топливом», он может быть пущен путем полного открытия дроссельной заслонки при одновременном проворачивании коленчатого вала. ЭБУ в этом режиме выдает на форсунку импульсы, соответствующие соотношению воздух/топливо 26:1 (длительность импульса около 2 мсек), что «очищает» залитый двигатель. ЭБУ поддерживает указанную длительность импульсов до тех пор, пока обороты двигателя ниже 420 об/мин, и датчик положения дроссельной заслонки показывает, что она почти полностью открыта (более 85%).

Если дроссельная заслонка удерживается почти полностью открытой при попытке нормального пуска «не залитого» двигателя, то двигатель может не пуститься. Соотношение воздух/топливо 26:1 может быть недостаточным для пуска «незалитого» двигателя, особенно если он не прогрет.

Режим открытого цикла после пуска (без обратной связи). После пуска двигателя (когда обороты более 420 об/мин) ЭБУ будет управлять системой подачи топлива в режиме «открытого цикла». На этом режиме ЭБУ игнорирует сигнал от датчика кислорода и рассчитывает длительность импульса на форсунку по сигналам от датчика положения коленчатого вала (информация о частоте вращения), датчика абсолютного давления воздуха, датчика температуры охлаждающей жидкости и датчика положения дроссельной заслонки.

В режиме открытого цикла рассчитанная длительность импульса впрыска может давать соотношение воздух/топливо, отличающееся от 14,7:1. Примером может служить непрогретое состояние двигателя, т.к. при этом для обеспечения хороших ездовых качеств требуется обогащенная смесь.

Система будет оставаться в режиме открытого цикла до тех пор, пока не будут выполнены все следующие условия:

-сигнал датчика кислорода изменяется, показывая, что он достаточно прогрет для нормальной работы;

— температура охлаждающей жидкости больше 32 °C;

— двигатель проработал определенный период времени с момента пуска.

Время может варьироваться от 6 сек до 5 мин в зависимости от температуры охлаждающей жидкости в момент пуска двигателя. В том случае, если температура была ниже 18 °C, период составляет 5 мин. Если температура была выше 75 °C, задержка составляет 6 сек.

Режим замкнутого цикла после пуска (с обратной связью). На режиме замкнутого цикла ЭБУ сначала рассчитывает длительность импульса на форсунку на основе сигналов от тех же датчиков, что и в режиме открытого цикла. Отличие состоит в том, что в режиме замкнутого цикла ЭБУ еще использует сигнал от датчика кислорода для корректировки и тонкой регулировки расчетного импульса, чтобы точно поддерживать соотношение воздух/топливо на уровне 14,6−14,7:1. Это позволяет каталитическому нейтрализатору работать с максимальной эффективностью.

Режим обогащения при ускорении. ЭБУ следит за резкими изменениями положения дроссельной заслонки (по датчику положения дроссельной заслонки) и за давлением во впускной трубе (по датчику абсолютного давления) и обеспечивает подачу добавочного количества топлива за счет увеличения длительности импульса на форсунку.

Если возросшая потребность в топливе слишком велика из-за резкого открытия дроссельной заслонки, то ЭБУ может добавить асинхронные импульсы на форсунку в промежутках между синхронными, которых при нормальной работе приходится один на каждый опорный импульс от датчика положения коленчатого вала.

Режим мощностного обогащения. ЭБУ следит за сигналом датчика положения дроссельной заслонки и частотой вращения коленчатого вала для определения моментов, в которые водителю необходима максимальная мощность двигателя. Для достижения максимальной мощности требуется обогащенная горючая смесь, и ЭБУ изменяет соотношение воздух/топливо приблизительно до 12:1. На этом режиме сигнал датчика концентрации кислорода игнорируется, т.к. он будет указывать на обогащенность смеси.

Режим обеднения при торможении. При торможении автомобиля с закрытой дроссельной заслонкой могут увеличиваться выбросы в атмосферу токсичных компонентов. Чтобы не допустить этого, электронный блок управления следит за уменьшением угла открытия дроссельной заслонки и величины давления во впускной трубе и своевременно уменьшает количество подаваемого топлива путем сокращения импульса впрыска.

Режим отключения подачи топлива при торможении двигателем. При торможении двигателем с включенной передачей и сцеплением ЭБУ может на короткие периоды времени полностью отключить импульсы впрыска топлива. Отключение подачи топлива наступает при выполнении всех следующих условий:

1. Температура охлаждающей жидкости выше 44 °C.

2. Частота вращения коленчатого вала выше 3150 об/мин.

3. Скорость автомобиля выше 42 км/ч.

4. Дроссельная заслонка закрыта.

5. Сигнал датчика абсолютного давления показывает отсутствие нагрузки двигателя (давление меньше 24 кПа).

6. Таблица, вложенная в постоянную память ЭБУ и сравнивающая частоту вращения коленчатого вала со скоростью автомобиля, определяет включенную передачу коробки передач.

При торможении автомобиля двигателем любое из следующих условий вызовет возобновление импульсов впрыска топлива:

1. Частота вращения коленчатого вала ниже 2100 об/мин.

2. Скорость автомобиля менее 42 км/ч.

3. Дроссельная заслонка открыта не менее, чем на 2%.

4. Сигнал датчика абсолютного давления во впускной трубе показывает наличие нагрузки (давление более 25 кПа).

5. Сцепление выключено. Это может быть определено по быстрому падению частоты вращения коленчатого вала.

Компенсация падения напряжения питания. При падении напряжения питания система зажигания может давать слабую искру, а механическое движение «открытия» форсунки может занимать больше времени. ЭБУ компенсирует это путем увеличения времени накопления тока в катушке зажигания при падении напряжения питания ниже 12 В, а при падении напряжения ниже 8 В — путем увеличения оборотов холостого хода и длительности импульса впрыска.

Режим отключения подачи топлива. При выключенном зажигании топливо форсункой не подается, чем исключается самовоспламенение смеси при перегретом двигателе. Кроме того, импульсы впрыска топлива не подаются, если ЭБУ не получает опорных сигналов положения коленчатого вала, т. е. это означает, что двигатель не работает.

Отключение подачи топлива также происходит при превышении предельно допустимой частоты вращения коленчатого вала двигателя, равной 6500 об/мин. Импульсы впрыска возобновятся после падения частоты вращения коленчатого вала ниже 5850 об/мин.

6. Диагностические коды системы впрыска автомобиля ВАЗ 21 213

Семейство автомобилей Chevrolet Niva (ВАЗ 21 213) выпускается с контроллером Bosch MP 7.0. Масса ЭСУД берется с блока двигателя, со шпилек М8, находящихся в его нижней левой части, под модулем зажигания.

Диагностические коды контроллеров BOSCH MP7. 0H приведены в таблице 1.

Таблица 1 Диагностические коды контроллеров BOSCH MP7. 0H под нормы токсичности EURO II

Код

Описание

Р0102

Низкий уровень сигнала датчика массового расхода воздуха

Р0103

Высокий уровень сигнала датчика массового расхода воздуха

Р0115

Неверный сигнал датчика температуры охлаждающей жидкости

Р0117

Низкий уровень сигнала датчика температуры охлаждающей жидкости

Р0118

Высокий уровень сигнала датчика температуры охлаждающей жидкости

Р0122

Низкий уровень сигнала датчика положения дроссельной заслонки

Р0123

Высокий уровень сигнала датчика положения дроссельной заслонки

Р0130

Неверный сигнал датчика кислорода

Р0131

Низкий уровень сигнала датчика кислорода

Р0132

Высокий уровень сигнала датчика кислорода

Р0134

Отсутствие сигнала датчика кислорода

Р0201, Р0202, Р0203, Р0204

Обрыв цепи управления форсункой 1, 2, 3, 4-го цилиндра (соответственно)

Р0261, Р0264, Р0267, Р0270

Замыкание на массу цепи управления форсункой 1,2,3, 4-го цилиндра (соответственно)

Р0262, Р0265, Р0268, Р0271

Замыкание на источник питания цепи управления форсункой 1,2,3, 4-го цилиндра (соответственно)

Р0327

Низкий уровень сигнала датчика детонации

Р0328

Высокий уровень сигнала датчика детонации

Р0335

Неверный сигнал датчика положения коленчатого вала

Р0336

Ошибка датчика положения коленчатого вала

Р0444

Замыкание на источник питания или обрыв цепи управления клапаном продувки адсорбера

Р0445

Замыкание на массу цепи управления клапаном продувки адсорбера

Р0480

Неисправная цепь управления реле вентилятора охлаждения

Р0500

Неверный сигнал датчика скорости автомобиля

Р0503

Прерывающийся сигнал датчика скорости автомобиля

Р0506

Низкие обороты холостого хода

Р0507

Высокие обороты холостого хода

Р0560

Неверное напряжение бортовой сети

Р0562

Пониженное напряжение бортовой сети

Р0563

Повышенное напряжение бортовой сети

Р0601

Ошибка контрольной суммы ПЗУ

Р0603

Ошибка внешнего ОЗУ

Р0604

Ошибка внутреннего ОЗУ

Р0607

Неверный сигнал канала детонации контроллера

Р1102

Низкое сопротивление нагревателя датчика кислорода

Р1115

Неисправная цепь управления нагревом датчика кислорода

P1123

Богатая смесь на холостом ходу

P1124

Бедная смесь на холостом ходу

P1127

Богатая смесь в режиме частичных нагрузок

P1128

Бедная смесь в режиме частичных нагрузок

P1136

Богатая смесь в режиме малых нагрузок

P1137

Бедная смесь в режиме малых нагрузок

Р1140

Неверный сигнал датчика массового расхода воздуха

Р1500

Обрыв цепи управления реле электробензонасоса

Р1501

Замыкание на массу цепи управления реле электробензонасоса

Р1502

Замыкание на источник питания цепи управления реле электробензонасоса

Р1509

Перегрузка цепи управления регулятором холостого хода

Р1513

Замыкание на массу цепи управления регулятором холостого хода

Р1514

Обрыв цепи управления регулятором холостого хода

Р1570

Неверный сигнал АПС

Р1602

Пропадание напряжения бортовой сети в контроллере

Р1689

Ошибочные значения кодов в памяти ошибок контроллера

7. Диагностика и ремонт системы впрыска топлива автомобиля ВАЗ 21 213

7.1 Диагностические приборы

Из всех типов диагностических приборов можно выделить три основные группы. Эти группы — основа основ, это то, без чего грамотный поиск неисправности превращается в тупой процесс, основанный на методе подмены. На участке диагностики совершенно необходимо иметь хотя бы по одному представителю этих трех групп:

1. Сканеры

2. Мотортестеры

3. Газоанализаторы

Сканеры

Система управления современного двигателя, отвечающего строгим нормам токсичности, в качестве главного своего элемента содержит электронный блок управления (ЭБУ). Так вот сканер предназначен именно для работы с ЭБУ, для его «сканирования». Вспомним, по какой схеме функционирует блок. Он получает информацию о текущем состоянии двигателя с установленных на последнем датчиков, обрабатывает ее в соответствии с заложенной программой и выдает управляющие сигналы на так называемые исполнительные механизмы (ИМ). Кроме того, ЭБУ наделен способностью обнаруживать сбои в работе системы управления. А так как сканер работает с блоком, то он позволяет нам:

1. Наблюдать сигналы с датчиков системы, следить за их изменением во времени.

2. Проверять работу исполнительных механизмов путем приведения их в действие и визуального или другого контроля.

3. Считывать сохраненные системой коды неисправностей.

4. Посмотреть идентификационные данные ЭБУ, системы и т. п.

Следует совершенно четко понимать, что показания сканера — это то, что «видит» ЭБУ. Это отнюдь не истинные значения напряжений или других параметров. Если по какой-либо причине (например, плохая «масса») датчик врет, то на экране сканера мы увидим это самое вранье. Другими словами, сканер не является измерительным прибором. Он всего лишь отображает данные с ЭБУ. Точно так же осторожно следует относиться к считанным кодам неисправностей. Эти коды — не руководство к замене, а лишь пища для дальнейших размышлений и поиска. Пример: ошибка датчика кислорода, богатая смесь. Менять? Ни в коем случае. Надо искать причину богатой (бедной) смеси. А ошибка «Обрыв датчика детонации» на системах Бош уже вошла в легенды. Что касается разновидностей сканеров, то их по большому счету две: портативные и программные, работающие совместно с персональным компьютером. И тот и другой тип имеют как свои преимущества, так и недостатки. Для работы программного сканера понадобятся:

· Компьютер. Лучше не особо мощный, но ноутбук (РIII-600 и выше). Обязательным условием является наличие на ноутбуке COM — порта или переходника PCMCI-COM (На данном этапе это основной разъем сопряжения с диагностическим оборудованием).

· Адаптер K-Line (K-L-Line) с комплектом проводов и разъемов.

· Диагностическое П О, например, недорогая программа SMS-Diagnostic — тестирование всех современных ЭСУД ВАЗ/ГАЗ. Это первая из отечественных разработок, которая работает напрямую через USB, активно развивается и постоянно обрастает новыми возможностями.

Мотортестеры

Это совершенно другой тип диагностического оборудования. Мотортестер — это измерительный прибор. Предоставляемая им информация снимается непосредственно с двигателя и позволяет найти неисправности, недоступные сканеру. Это формы напряжения и токов датчиков и исполнительных механизмов, это и осциллограммы высокого напряжения, и осциллограммы давления в цилиндрах, давления топлива, и возможность проверить баланс цилиндров, померить стартерный ток, УОЗ и многое другое. Рассмотрим работу с мотортестерами подробнее.

Мотортестер MotoDocII-M, так же, как и MotoDocII, представляет собой отдельный блок, который подключается к сетевой карте компьютера. При помощи набора соединительных проводов и датчиков прибор подключается к электрическим цепям автомобиля.

Комплекс MotoDocII-M (mini) представляет собой усеченную и удешевленную весию прибора MotoDocII.

У MotoDocII-M отсутствуют:

· канал первичного напряжения

· второй канал датчика давления

· второй канал дифференциального осциллографического входа

MotoDocII-M не поддерживает режим баланса цилиндров с блокировкой первичного напряжения и с блокировкой форсунок.

Назначения и возможности совпадают с мотортестером MotoDocII за исключением ограничений, описанных пунктом выше.

Прежде, чем начать разговор о методиках работы с прибором, надо определиться с выбором типа синхронизации.

Предположим, мы выбрали для измерений какой-либо канал. Для того чтобы «картинка» на экране монитора была стабильной, необходимо, чтобы частота развертки поля осциллограмм была кратна частоте сигнала. А для этого программе нужен какой-либо импульс привязки. Способов привязки, то есть синхронизации, в мотортестере MotoDoc II несколько. Рассмотрим их по порядку.

1. Внешняя синхронизация. В этом случае источником синхроимпульса является датчик первого цилиндра, надеваемый на высоковольтный провод. Привязка происходит по моменту искрообразования в первом цилиндре. Естественно, датчик можно установить на любой цилиндр, и привязка пойдет по нему, но тогда надо совершенно четко понимать, что отсчет начнется от момента искрообразования в этом цилиндре, и анализировать полученную осциллограмму соответствующим образом.

2. DIS. Тип синхронизации, очень похожий на предыдущий. Источник синхроимпульса — тот же самый датчик первого цилиндра. Но есть особенность. Как известно, в системах зажигания типа DIS искра в цилиндре за один рабочий цикл возникает дважды: на такте сжатия и на такте выпуска (так называемая холостая искра). Чтобы временная привязка происходила корректно, программа игнорирует каждый второй импульс с датчика.

Два рассмотренных типа синхронизации можно условно отнести к первой группе, вследствие их сходства и использования одного и того же датчика. Во вторую группу можно выделить два следующих типа.

3. Внутренняя синхронизация. При использовании этого типа никаких синхроимпульсов извне не поступает. Программа просто «рисует» в поле осциллограмм сигналы выбранных каналов. При этом кадры осциллограммы записываются в ОЗУ компьютера, и их возможное количество ограничено свободным объемом оперативной памяти. Так как время доступа к ОЗУ относительно мало, то в этом режиме программа позволяет записывать быстро изменяющиеся сигналы.

4. Самописец. Данный тип синхронизации аналогичен предыдущему, с той лишь разницей, что кадры записываются на жесткий диск компьютера. Время доступа к жесткому диску намного больше, чем к ОЗУ, вследствие чего достоверно фиксируются только медленно протекающие процессы. Зато количество записанных кадров ограничено только объемом жесткого диска и практически неисчерпаемо. Например, можно записывать интересующий нас сигнал несколько часов, что очень удобно при поиске «плавающего» дефекта.

При включении внутренней синхронизации или самописца мотортестер работает как старый добрый магнитофон: просто записывает то, что нас интересует, а потом дает «послушать».

«Симбиоз» первой и второй групп дают нам следующий тип синхронизации.

5. Автоматическая синхронизация. При выборе этого типа программа сочетает в себе внешнюю и внутреннюю синхронизацию. Когда поступает сигнал с датчика первого цилиндра, привязка осуществляется по нему. Если же сигнал отсутствует, то включается «магнитофон» — внутренняя синхронизация. Это бывает удобно в том случае, если, например, дефектные высоковольтные провода не позволяют нормально синхронизироваться по искре первого цилиндра.

Следующие три типа образуют последнюю группу, которую я бы условно назвал «синхронизация по каналу».

6. Синхронизация по импульсу. Источником служит сигнал какого-либо измерительного канала. Например, можно подключить осциллографический щуп к датчику положения распредвала и привязаться к нему. Сигнал этого датчика представляет собой прямоугольные импульсы. Программа позволяет осуществлять временную привязку, как к переднему, так и к заднему фронту импульса. Это можно выбрать при настройке режима синхронизации. Также можно выбрать и уровень, на котором будет производиться захват импульса, с помощью полозка, расположенного справа от поля осциллограмм. Частным случаем синхронизации по импульсу является синхронизация по датчику положения коленчатого вала (ДПКВ).

7. Синхронизация по ДПКВ. Программа дает нам замечательную возможность осуществить временную привязку аналогично тому, как это делает ЭБУ. Для этого нужно подключить осциллографический щуп к ДПКВ. Причем по умолчанию выбран задающий диск типа 60−2, применяемый как на отечественных двигателях, так и на многих двигателях иномарок.

8. И еще один тип синхронизации по каналу — ВМТ (верхняя мертвая точка). В качестве источника синхроимпульса используется датчик давления, который заворачивается вместо одной из свечей. Снимаемая с него осциллограмма имеет максимум, соответствующий ВМТ цилиндра. Строго говоря, этот максимум и ВМТ не совпадают, но расхождение не существенно при решении задач диагностики.

При синхронизации по каналу необходимо, чтобы этот канал был включен.

Параметры режимов синхронизации можно задавать вручную по своему усмотрению. Жестко заданы лишь параметры внутренней, внешней и автоматической синхронизаций.

А теперь подробнее остановимся на применении комплекса в диагностике двигателей. Рассмотрим несколько примеров использования его возможностей при работе с двигателем ВАЗ.

Вторичное напряжение

Состояние высоковольтной части системы зажигания, как известно, очень сильно влияет на качество работы двигателя. Проверить состояние ее компонентов можно по осциллограмме вторичного напряжения. Для этого измерительные датчики подключаются к двигателю в последовательности, изложенной в фирменной инструкции.

Самым информативным с точки зрения диагностики режимом является переход от холостого хода к дросселированию, потому, что при открытии дроссельной заслонки наполнение цилиндров воздухом увеличивается, соответственно возрастает пробивное напряжение. И большая часть дефектов «вылезает наружу».

При работе с вторичным напряжением логичнее всего использовать внешнюю синхронизацию. Но если имеются дефекты, то вполне возможен ее срыв. Поэтому очень логично поступать так: воспользоваться внутренней синхронизацией и «записать» момент резкого нажатия на «газ» с режима холосто хода. Практически все дефекты вторичной цепи зажигания не замедлят себя проявить.

ДПКВ (датчик положения коленчатого вала)

Это самый главный датчик в системе впрыска, по нему осуществляется синхронизация работы ЭБУ. Подключать к нему мотортестер приходится достаточно часто, поэтому рекомендуется для удобства изготовить из разъема и старого датчика переходник. Как уже говорилось, этот датчик может служить источником синхронизации и для мотортестера. Итак, воспользуемся переходником для подключения ДПКВ к осциллографическому каналу, включаем этот канал и выбираем тип синхронизации «по ДПКВ». В поле осциллограмм появится такая картинка:

Цифры слева на оси осциллограммы — это значения напряжений, вычисленные программой: максимальное, среднее и минимальное. По их значению, при наличии соответствующего опыта, легко сделать вывод о «здоровье» ДПКВ. Короткозамкнутые витки, к примеру, приводят к снижению амплитуды сигнала ДПКВ и искажениям его формы.

Поднимем обороты двигателя до 3000. Осциллограмма и напряжение изменились:

Следует отметить, что задающий диск на подопытном двигателе, как говорят, «бьет». Это видно по изменяющейся амплитуде сигнала.

Предположим, есть двигатель, по какой-то причине отказывающийся заводиться. Воспользуемся внутренней синхронизацией для записи на «магнитофон» сигнала ДПКВ. Прокрутка двигателя с отключенными форсунками выглядит примерно так:

ДПРВ (датчик положения распределительного вала

ВАЗовский двигатель использует датчик Холла в качестве этого датчика.

Итак, мы не знаем, работает ли этот датчик и поступает ли с него сигнал в ЭБУ. Выбираем один из «магнитофонов», например, самописец. Находим сигнальный вывод датчика и подключаемся к нему. Запускаем измерение и оно представляет собой прямоугольные импульсы амплитудой 12.3 вольта:

Попробуем разглядеть подробнее. Выбираем «синхронизацию по каналу», предварительно задав в настройках «пропуск двух импульсов» и «по заднему фронту». Запускаем съем и двигаем полозок уровня захвата:

Прямоугольные импульсы, амплитуда 12. 7, на вершинах всплески напряжения от закрывающихся форсунок. Обратим внимание на едва заметные вертикальные линии по заднему фронту импульсов. Это программа отмечает моменты синхронизации. Они особенно показательны при внешней синхронизации.

Проведем еще одно интересное наблюдение. Подключим одновременно ДПКВ и ДПРВ, выберем синхронизацию от ДПКВ. Получаем картинку:

Видно, что коленвал вращается в два раза быстрее распредвала, и видно, что пропуск зубьев на задающем диске совпадает с началом отрицательного импульса ДПРВ.

ДМРВ (датчик массового расхода воздуха

Этот датчик тоже можно проверить мотортестером. Для удобства работы можно тоже изготовить переходник. Одна из методик проверки сводится к снятию в режиме самописца осциллограммы сигнала датчика при перегазовке. Вторая методика менее известная и менее достоверная и заключается в снятии осциллограммы переходного процесса на выходе ДМРВ в момент его включения. Так как этот процесс достаточно скоротечен, выбираем в качестве «магнитофона» внутреннюю синхронизацию. Подключаем осциллографический щуп к выходу ДМРВ и включаем зажигание. Картинка исправного датчика выглядит так:

Видно, что всплеск напряжения в момент включения достигает 3. 11 вольт, и переходный процесс очень короткий. А теперь взглянем на осциллограмму неисправного датчика:

Всплеск 2. 9, переходный процесс затянут, напряжение в установившемся режиме 1. 02 вольта и какие-то шумы в самом начале.

ДПДЗ (датчик положения дроссельной заслонки)

Проверку этого датчика можно произвести в режиме самописца, открывая дроссельную заслонку. Напряжение на выходе должно нарастать плавно, без скачков и шумов.

Датчик температуры проверять мотортестером нерационально. Это делается сканером либо простым мультиметром.

Форсунки

MotoDoc II предоставляет прекрасную возможность наблюдать напряжение и ток форсунок. Он имеет в своем составе соответствующий шнур для соединения со жгутом форсунок двигателя ВАЗ. В качестве синхронизации можно выбрать либо внешнюю, либо синхронизацию по ДПКВ. Теоретически можно вообще подключиться к ДПРВ и привязаться к нему. Однако привязка к ДПРВ не несет практического смысла. Самым простым способом было бы выбрать внешнюю синхронизацию, но, руководствуясь целью придать осциллограмме максимум информативности, сняли напряжение форсунок, воспользовавшись синхронизацией по ДПКВ:

Рассмотрим ее внимательнее. Во-первых, установив измерительные линейки программы соответствующим образом, можно померить время впрыска. Во-вторых, нужно обратить внимание на выбросы напряжения в момент закрытия форсунок. Они возникают потому, что обмотка форсунки представляет собой индуктивность. В нашем примере все выбросы примерно одного уровня — около 53 вольт. Если же обмотка форсунки имеет короткозамкнутые витки, то скачок напряжения будет намного ниже. Во всяком случае, будет отличаться от остальных. Ну, и в-третьих, растянем картинку до такой степени, чтобы было видно форму спадающего напряжения после всплеска:

Горб на осциллограмме возникает из-за движения клапана форсунки. Он обязательно должен быть. Отсутствие горба говорит о заклинившем или подвисающем клапане.

Так же интересна и осциллограмма тока форсунок:

Наличие тока говорит как минимум об отсутствии внутреннего обрыва обмотки форсунки. Выбросы тока на заднем фронте обусловлены конструкцией аппаратной части прибора и смысловой нагрузки не несут.

Посмотрим форму осциллограммы поближе:

Видно, что ток нарастает плавно, как и в любой индуктивной катушке. Но есть впадина, обусловленная опять-таки движением клапана форсунки. И по наличию или отсутствию этой впадины тоже можно сделать вывод о подвижности клапана.

Анализ осциллограммы давления в цилиндре

Выкручиваем свечу, устанавливаем вместо нее датчик давления, подключаем его к прибору и выполняем коррекцию нуля. В качестве временной привязки разумнее всего выбрать внешнюю синхронизацию от высоковольтного провода этого же цилиндра, установленного на разрядник. Чуть позже мы так и сделаем, а пока привяжемся к датчику положения коленвала. На экране возникнет такая картинка:

Она интересна чисто с теоретической точки зрения. Видно, как соотносятся ВМТ цилиндра и сигнал с ДПКВ. Если рассмотреть растянутую осциллограмму, то можно разглядеть девятнадцатый зуб, который соответствует верхней мертвой точке первого цилиндра:

Можно установить измерительные линейки и получить те самые 114 градусов, которые составляют разницу между ВМТ и пропущенными зубьями на задающем диске. Таким образом, смещение венца задающего диска или разбитая шпонка последнего «вычисляются».

ПоказатьСвернуть
Заполнить форму текущей работой