Гидротехнические морские и речные транспортные сооружения

Тип работы:
Шпаргалка
Предмет:
Строительство


Узнать стоимость

Детальная информация о работе

Выдержка из работы

1. Степени и способы равнения подводных оснований гидротехнических сооружений

Степень ровнения — грубое (Г), тщательное (Т), весьма тщательное (ВТ) -применяют в зависимости от класса и конструкции сооружения; для берм постелей набережных, оградительных сооружений, призм под фильтры — грубое ровнение с допускаемым отклонением ровняемой поверхности в пределах 200 мм в одну и другую стороны, берм и откосов постелей для покрытия защитными массивами — тщательное ровнение с отклонениями по 80 мм, постелей под массивовую кладку, массивы-гиганты, конструкции уголкового типа и оболочки большого диаметра — весьма тщательное ровнение с допусками по 30 мм.

Небольшие объемы равнения выполняют обычно водолазы вручную: грубое — один водолаз с замером отметок футштоком, тщательное и весьма тщательное — два водолаза с помощью направляющих шаблонов и двигающейся по ним ровняющей рейки.

Для подачи щебня на выравниваемый верхний слой каменной отсыпки используют специальное устройство, состоящее из смонтированного на барже бункера для щебня и отводного шланга. Конец шланга к месту насыпки щебня направляет водолаз, который отдает команды на поверхность о подаче щебня или о ее прекращении.

При значительных объемах планировочных работ применяют механизированный способ равнения с помощью специальных планировщиков. Такой способ позволяет более чем в 3 раза повысить производительность труда и сократить сроки выполнения работ.

Уплотняют постели обычно путем их долгого выдерживания без нагрузки, способом статической отгрузки и виброуплотнением.

2. Способы подводного бетонирования

При подборе состава такого бетона его прочность по сравнению с обычными условиями назначают на 15−20% выше проектной.

Укладывание бетонной смеси непосредственно в воду не дает желаемого результата вследствие расслаивания бетонной массы и вымывания из нее вяжущего. Поэтому смесь нужно подавать непрерывно на весь объем бетонирования в заранее установленную водолазами опалубку, исключающую или значительно снижающую контакт бетонной массы с окружающей средой (водой).

Подводное бетонирование конструкций выполняют следующими основными способами: с помощью бадей и самораскрывающихся ящиков (кюбелей), укладкой в мешках, отвалом бетонной смеси от берега с ее втрамбовыванием, с помощью вертикально перемещаемой трубы (ВПТ), восходящим раствором (ВР), инъецированием.

Бетонирование с помощью 6адей и кюбелей (рис. 182) применяют практически на любой глубине; при возведении конструкций, работающих на вертикальную нагрузку и имеющих прочный, надежны" внешний контур (днищ опускных колодцев, мостовых опор, колонн оболочек, блоков основания сооружения, вырубленных в трещиноватой скальной породе и т. д.

Достоинства этого способа — относительно низкая себестоимость работ, возможность применения тех же технических средств для транспортирования и укладывания смеси, что и на поверхности Недостатки: частичное вымывание вяжущего в момент раскрытия затворов и рыхловатость поверхностного слоя, необходимость постоянного водолазного контроля при отсутствии видимости.

Укладывание бетонной смеси в мешках применяют при ремонтных работах, выравнивании скального основания сооружения, устройстве подводного ограждения (типа опалубки) для последующего бетонирования, в аварийных случаях. Глубина укладывания практически не ограничена.

Мешки шьют из прочной ткани или водонепроницаемого материала (полиэтилена, нейлона) вместимостью 20−30 и 2−7 л. Их заполняют бетонной смесью с осадкой конуса 5−7 см и подают под воду. Водолазы укладывают мешки вручную с перевязкой горизонтальных и вертикальных швов. В целях предотвращения сдвигов смежные ряды мешков прошивают металлическими стержнями диаметром 10−12 мм.

Отвал бетонной смеси с втрамбовыванием применяют при бетонировании неармированных конструкций или отдельных их элементов (подводного основания на каменистом прибрежном участке, ростверков, а также при ремонтных работах на мелководье) на защищенных от течения и волнения акваториях глубиной до 1,5 м. Бетонирование начинают либо непосредственно с берега, либо с искусственно созданного бетонного островка.

Бетонирование способом ВПТ применяют при укладывании бетонных смесей на глубине 1−50 м и толщине слоя не менее 1 м для любых конструкций.

В целях получения более плотных бетонов на трубе устанавливают вибратор, позволяющий уменьшить водоцементное отношение и получить качественный бетон с меньшим расходом цемента.

Бетонирование способом ВР выполняют в два этапа: укладывание в опалубку крупного заполнителя (камня или щебня); нагнетание в уложенный заполнитель по трубам под давлением растворной части. При использовании крупного каменного заполнителя работы могут вестись на глубине до 20 м, а щебня — до 50 м. Для получения более плотной структуры уложенного бетона на подающие раствор трубы могут быть установлены вибраторы.

Способы ВР и ВПТ имеют некоторое сходство, но первый значительно проще и позволяет полностью механизировать весь процесс.

К инъекционным способам бетонирования, созданным на основе способа ВР, относятся «Колькрет», ВНИИГ (наиболее распространены последние два).

Способ «Колькрет» заключается в заполнении пустот в ранее уложенном под воду щебеночном заполнителе приготовленной в специальных смесителях растворной смесью «Кольгру».

«Кольгру» укладывают тремя способами: нагнетанием на поверхность уложенного крупного заполнителя в блоке и омоноличиванием его при стекании раствора с постепенным вытеснением воды из блока; заполнением раствором блока бетонирования с последующим втапливанием в нее крупного заполнителя; нагнетанием способом ВР через инъекционные трубы, установленные в блоке с крупным заполнителем.

Способ ВНИИГ заключается в инъецировании растворонасосом через вертикальные или горизонтальные перфорированные трубы раствора в блок бетонирования с крупным заполнителем. После окончания инъецирования на трубы устанавливают вибраторы, уплотняющие уложенную смесь.

Инъекционные способы широко применяют при ремонте подводных частей сооружений и заделке стыков между секциями, блоками, массивами строящихся сооружений.

3. Способы подводной сварки и резки металла

В связи с особенностями окружающей среды, плохой видимостью, ограниченностью движений, слабой устойчивостью водолаза технология подводных сварки и резки значительно отличается от надводной.

Подводная сварка. Сварку под водой выполняют только электродуговым способом (ручным или полуавтоматическим) с использованием плавящихся электродов.

Основной принцип подводной электросварки — способность дугового разряда устойчиво гореть в парогазовом пузыре, предохраняющем разряд от контакта с окружающей средой — водой (рис. 185). Парогазовый пузырь образуется в результате испарения и разложения воды, продуктов сгорания свариваемого металла и электрода.

Сварка возможна как в пресной, так и в морской воде. Основным недостатком подводной сварки является то, что металл в районе сварочного шва резко охлаждается под действием окружающей воды и закаляется, снижая пластичность и ударную вязкость стали, увеличивая ее пористость и хрупкость.

Широко используют так называемый «сухой», наиболее качественный способ подводной сварки. Он заключается в проведении сварочных работ в искусственной (в среде инертных газов) или естественной атмосфере, создаваемой внутри специальных кессонов или камер, из которых после их установки на месте работ и проведения соответствующих мероприятий по уплотнению прилегающих контуров откачивают или выдавливают воду. В этом случае сварку производят обычным электродом.

Подводная резка. Кроме механического и взрывного (с помощью кумулятивных зарядов) способов, резка может осуществляться тепловыми способами (бензо- и электрокислородным, электродуговым, плазменно-дуговым).

Бензокислородная резка чугуна и стали под водой мало отличается от надводной, за исключением увеличенного расхода газа и бензина (за счет охлаждающего воздействия среды) при повышенном давлении. Процесс подводной резки происходит в результате нагрева металла при сгорании распыленного бензина в газовом защитном пузыре и подаче к месту реза струи кислорода, который, вступая в химическую реакцию с расплавом металла, превращает его в газообразное вещество и твердое химическое соединение (т.е. сжигает). Окалину и шлаки удаляют из реза напором струи газа. Такой способ применяют для резки металла толщиной до 100 мм и пакетов толщиной до 90 мм за один проход на глубине до 40 м. На глубине 7−8 м для разделки металла толщиной до 500 мм можно применять газовую резку.

Электрокислородная резка (наиболее распространенная) происходит вследствие разогрева металла до температуры его плавления специальным трубчатым электродом с подачей к месту реза струи кислорода под высоким давлением, в которой металл сгорает.

Электродуговая резка малопроизводительна, ее применяют в основном для разделки чугуна, меди, алюминия и других металлов, не поддающихся электрокислородной резке.

При плазменно-дуговой резке пропускается газ (аргон, азот, водород), который увеличивает степень ионизации дуги. Благодаря узкому выходному соплу для истекания плазмы и высокой плотности тока в месте реза можно создавать очень высокие температуры, что дает возможность производить резку любых металлов с большой скоростью.

4. Состав технологической карты на выполнение отдельных видов работ

В типовых технологических картах предусматривают: характеристики элементов зданий, сооружений и видов работ, охватываемых картой, а также особенности и условия (природные, геологические, производственные), принятые в карте; требования к готовности предшествующих работ, которые обеспечивают необходимый фронт для выполнения работ, предусмотренных каргой; схемы организации строительной площадки или рабочей зоны, где должны быть указаны основные размеры здания (сооружения) или его части и размещение механизмов с определением зон их действия, оперативных складов, путей перемещения материалов, сетей тепло-, электро- и водоснабжения; описание методов и последовательности или совмещения отдельных видов работ, включая разбивку общего объема работ на захватки и ярусы, способы подачи материалов и готовых конструкций к рабочим местам, типы применяемых средств подмащивания, монтажной и технологической оснастки; число и номенклатура материалов, готовых конструкций, изделий и оборудования с определением их по физическим объемам работ; число и типы машин, специальных инструментов, производственного инвентаря; численно-квалификационный состав бригад с учетом применения метода коллективного подряда; график выполнения работ с калькуляцией трудовых затрат; указания по контролю качества работ, включая схемы операционного контроля качества и перечень необходимых актов приемки ответственных конструкций; решения по охране труда и улучшению его условий.

В типовых технологических картах, предусматривающих выполнение работ в зимних условиях, должны быть указаны особенности режимов бетонирования конструкций, способы временного обогрева или утепления частей сооружения, порядок заделки стыков в конструкциях и др.

Привязка типовой технологической карты к конкретному объекту строительства и его условиям состоит в проверке соответствия этим условиям и уточнении отдельных показателей применительно к местным условиям без нарушения принятых в карте принципиальных решений.

5. Организация геодезического контроля при выполнении основных видов гидротехнических работ

Геодезические работы в период строительства связаны с разбивкой главной или основной оси гидроузла, а также осей и ответственных точек его элементов: агрегатов, бычков, блоков и секций плотины и т. д. Геодезическая основа, созданная в период изысканий, ни по точности, ни по густоте пунктов не соответствует этим задачам. Основой для выноса осей сооружений гидроузла и массовых разбивочных работ служит вновь созданная плановая разбивочная сеть.

Одну из сторон новой сети совмещают с главной осью сооружения и принимают ее за ось абсцисс. Сеть строят как локальную геодезическую систему со своим началом координат. Для связи с плановой основой, созданной при изысканиях, вновь создаваемая сеть имеет с ней один общий пункт и ориентирное направление.

Разбивочную сеть строят методами триангуляции, полигонометрии, трилатерации или линейно-угловыми построениями.

Пункты сети закрепляют трубчатыми знаками, закладываемыми в скважины и выступающими на 1,2 м над поверхностью земли. Знаки снабжены приспособлениями для быстрого центрирования.

Разбивка судоподъемных сооружений. Разбивочные работы ведут поэтапно в течение всего строительства. Поэтому геодезические работы нуждаются в постоянной разбивочной основе, которая в зависимости от обстоятельств создается в виде осевой сетки или в виде линейно-угловой сети.

Осевую сетку строят при сооружении судоподъемников (слипов), где обычно условия позволяют закрепить и сохранить большое число знаков.

Разбивка осей молов, волноломов, пирсов и причалов. Разбивочные работы при строительстве заградительных и причальных сооружений имеют особенности, обусловленные тем, что данные сооружения полностью или частично располагаются на акватории и возводятся подводным способом без применения перемычек и водоотлива. Проведение геодезических работ осложняется большими глубинами, волнением моря и течениями.

Оси сооружений переносят на дно акватории с помощью плавучих знаков (буев).

Каналы и гидротехнические тоннели. Основными задачами геодезического обеспечения строительства канала являются перенесение на местность его оси и осей связанных с ним сооружений (шлюзов, дюкеров и т. д.), определение границ бетонных и земляных работ, передача проектных отметок на точки сооружений.

Ось канала выносят в соответствии с разбивочным чертежом, в котором даны длины участков трассы, углы ее поворота, а также дополнительные углы, намечаемые на прямолинейных участках не реже. Вынесенные характерные точки оси канала закрепляют временными знаками.

Перед проходкой тоннеля на поверхности вдоль его трассы создают планово-высотное обоснование в виде сети триангуляции или полигонометрии. Для строительства гидротехнических тоннелей используют геодезическое обоснование, создаваемое на площадке гидроузла для перенесения в натуру осей сооружений.

6. Применяемое оборудование для забивки свай

Для погружения элементов применяют различное сваебойное оборудование, навешиваемое на сухопутные и плавучие копры или краны (дизель и вибромолоты, вибропогружатели различных типов), подмывные установки, завинчивающие машины (электрокабестаны), агрегаты для вдавливания.

Вибромолоты применяют для забивки металлического шпунта, стальных труб, железобетонных свай небольшой длины.

Вибропогружателями можно погружать в грунт не только сваи, но и сваи-оболочки большего диаметра. Вибропогружатели бывают высокочастотные (с частотой колебаний вибратора 700−1500 Гц) — для погружения металлического или деревянного шпунта и низкочастотные (300−500 Гц) — для погружения железобетонных свай и свай-оболочек большой массы.

Оборудование для подмыва используют для преодоления значительного сопротивления грунта забивным способом или вибропогружением. Размывающую водяную струю подают через трубы с насадками или через полость погружаемого элемента к его концу. В результате ослабления силы трения между частицами грунта, взвешивания их и частичного выноса из скважины погружение элемента в грунт под собственным весом или с применением механических либо вибрационных воздействий значительно облегчается. Погружение с помощью подмыва следует прекращать по достижении нижним концом элемента отметки на 1 -1,5 м выше проектной. Дальнейшее погружение до проектной отметки выполняют механическим или вибрационным способом.

Механизмы для завинчивания свай (кабестаны) применяют при погружении свай способом ввинчивания их в грунт, если в основании находится мощный слой слабых глинистых грунтов с малой несущей способностью или плотный гравелистый грунт и погружение обычных свай затруднительно, а также при подготовке «оснований в непосредственной близости от существующих зданий и сооружений, которые могут получить повреждения от вибрации при забивке или вибропогружении.

Сваи, оборудованные стальным винтовым башмаком, могут быть стальными или железобетонными. Завинчиванием можно погружать вертикальные и наклонные сваи с наклоном 4:1. Висячие сваи, погруженные таким способом, имеют большую несущую способность.

Вдавливание в грунт полых свай под статической нагрузкой применяют при залегании в основании сооружения слабых грунтов. Способ обеспечивает высокое качество работ при минимальных затратах.

Копры. Для подвешивания и направления забивного механизма, а также для установки, направления и поддерживания погружаемого в грунт элемента применяют специальные агрегаты — копры (башенные, крановые и плавучие, несамоходные и самоходные, универсальные и предназначенные для выполнения одного вида свайных работ), как правило, оборудованные штанговыми или трубчатыми дизель-молотами.

Плавучий копер (рис. 126, а) используют для забивки вертикальных и наклонных свай (длиной до 35 м и массой до 30 т) и шпунта на речных и морских акваториях. Копер может иметь несколько направляющих стрел (многостреловой), что позволяет вести работу несколькими молотами одновременно. Сваебойную установку монтируют на поворотной платформе. Стрела установки можете наклоняться вперед и назад до 18° (маятниковые копры).

Наголовники. При забивке сваи любым молотом в целях сохранения ее оголовка применяют специальный сварной или литой наголовник, соответствующий поперечному сечению сваи (рис. 127, а), в который закладывают амортизирующий вкладыш из прочной и вязкой древесины (дуба, вяза). Кондукторы. При свайных работах на суше в случае строительства сплошной свайной или шпунтовой стенки применяют кондукторы, обеспечивающие заданное направление стенки и прижим элементов друг к другу, а при выполнении работ с воды — навесные и плавучие кондукторы.

Плавучий кондуктор обеспечивает погружение элементов какого-либо одного вида, например свай-оболочек (рис 129, а) или кондуктор на выдвижных опорных сваях для погружения таврового железобетонного шпунта (рис. 129, б).

7. Основные виды транспорта, используемые в гидротехническом строительстве

Автомобильный транспорт

Достоинствами автотранспорта являются высокая скорость, маневренность, возможность доставки грузов непосредственно к месту складирования или монтажа без промежуточных перегрузочных операций. Недостатки: относительно небольшое количество единовременно транспортируемого груза по сравнению с железнодорожным, водным и трубопроводным транспортом, значительная удельная мощность, затрачиваемая на 1 т перевозимого груза, высокая стоимость капитального ремонта. Указанные недостатки являются первопричиной более высокой стоимости автоперевозок по сравнению с железнодорожным, водным и трубопроводным видами транспорта.

Наиболее целесообразно использование автотранспорта для перевозки грузов на расстояние до 200 км, а при строительстве в труднодоступных районах и перевозке негабаритных грузов — на большие расстояния.

Автомобильный подвижной состав делят на грузовой, пассажирский и специальный.

Железнодорожный транспорт

Использование и показатели работы железнодорожного транспорта. Материалы, полуфабрикаты, сырье и другие грузы, необходимые для гидротехнического строительства, по возможности перевозят железнодорожным транспортом. Это экономически целесообразно лишь при дальности перевозок более 200 км и значительном грузообороте, несмотря на то, что такой вид транспорта практически не зависит от метеорологических условий и наиболее производителен.

Водный транспорт

Практически любое строительство гидротехнических сооружений (на море, реке, озере, водохранилище), за исключением строительства на несудоходных реках, протоках, не может обойтись без использования водного транспорта. В нашей стране имеется огромная, хорошо развитая сеть внутренних водных путей общей протяженностью более 2,3 млн. км (из них свыше 500 тыс. км судоходны), более 2 тыс. крупных озер. Таким образом, речной транспорт является важным звеном в единой транспортной системе страны.

Речной флот, несмотря на сезонность работы, имеет преимущества по сравнению с другими видами транспорта. Он экономичен: себестоимость перевозок I т груза в 2−2,5 раза ниже, чем по железным дорогам, идущим параллельно водным путям; производитель

Воздушный транспорт

При строительстве крупных гидротехнических комплексов в качестве вспомогательного и иногда транспортно-монтажного средства используют воздушный транспорт. Его преимущество перед другими видами транспорта — высокая скорость доставки грузов и людей (в 10−15 раз быстрее, чем железнодорожным транспортом). К основным недостаткам можно отнести зависимость от метеорологических условий, необходимость устройства для самолетов специальных взлетно-посадочных полос, высокую стоимость перевозок 1 т груза, относительно небольшую грузоподъемность.

Трубопроводный транспорт

Гидравлический транспорт. В современном гидротехническом строительстве в качестве внешнего, внутрипостроечного и технологического транспорта широко применяют трубопроводный гидравлический транспорт для перемещения сыпучих строительных материалов — песка, ПГС, песчано-глинистых пород и грунта в потоке воды под напором. Чаще всего его применяют для подачи средствами гидромеханизации.

8. Ремонт и реконструкция гидротехнических сооружений, виды и состав ремонтов

Виды и состав ремонтов

Техническое обслуживание является одним из важнейших профилактических мероприятий в системе планово-предупредительного ремонта и выполняется силами эксплуатационного персонала сооружения. По результатам технического обслуживания определяют состояние сооружения или отдельных его конструкций и необходимость проведения их ремонта. Система ППР предусматривает два вида ремонта текущий и капитальный.

Текущий ремонт позволяет восстановить или обеспечить требуемое техническое состояние сооружения и увеличить периоды между I очередными капитальными ремонтами. При этом устраняют незначительные повреждения конструкций, начальные деформации, не влекущие за собой снижение основных эксплуатационных характеристик сооружения. Выполняют профилактические мероприятия по обеспечению сохранности элементов конструкций (побелку, местную покраску, оштукатуривание, шпаклевку и т. д.)

Текущий ремонт проводят в течение всего года, но наибольший 1 его объем приходится на межнавигационный период. Выполнение текущего ремонта возлагается на персонал, обслуживающий сооружение, а его финансирование осуществляется за счет средств основной эксплуатационной деятельности.

Капитальный ремонт — это восстановление поврежденных или изношенных важнейших элементов и частей сооружения, неисправность которых существенно ограничивает его эксплуатационные возможности. Задача капитального ремонта — доведение всех параметров и частей сооружения до номинальных паспортных данных с обеспечением требуемой работоспособности до очередного капитального ремонта.

Основные работы следует планировать на межнавигационный период. Во время навигации можно ремонтировать объекты, не влияющие на нормальную эксплуатацию сооружения и не ухудшающие его внешний вид.

К капитальному ремонту относятся следующие работы:

восстановление или полная замена отдельных элементов, конструкций и частей сооружения, поврежденных вследствие естественных факторов (фильтрации и агрессивных свойств воды, атмосферных воздействий, колебаний температуры) и механического воздействия;

повышение прочности и изменение размеров отдельных частей и конструкций, приведение их в соответствие с изменившимися расчетными нагрузками;

полная замена или частичное восстановление деревянного сооружения (либо отдельных частей) с применением металлических, железобетонных и бетонных конструкций;

исправление и замена элементов и конструкций с осушением подводных частей сооружения (камер шлюзов, отсасывающих труб гидроэлектростанции и т. п.) с использованием ремонтных заграждений и временных перемычек; исправление и замена отдельных элементов и частей сооружения под водой (водолазные работы);

восстановление нарушенных профилей земляного напорного сооружения (плотины, дамбы), ликвидация повреждений дренажей, креплений откосов, полотна проезжей части и других элементов; устройство и восстановление подпорных стенок, навалозащитных и других ограждающих сооружений;

исправление тела и креплений откосов и гребня оградительной дамбы с доведением их технических характеристик до норм, соответствующих условиям эксплуатации (уширение, повышение отметок, улаживание откосов, замена материала креплений более прочным и долговечным);

частичный ремонт или полная замена конструкций судоподъемного и судоремонтного сооружений (слипов, стапелей) с целью повышения их грузоподъемности и обеспечения ремонта судов новых современных серий;

устройство, восстановление и усиление асфальтовых и бетонных покрытий территории сооружения с модернизацией крановых и железнодорожных путей и подъездных дорог.

Аварийный ремонт осуществляют вне очереди с выводом или без вывода сооружения из эксплуатации при обнаружении угрожающих деформаций конструкций или частей сооружения в результате воздействия стихийных сил, катастрофических нагрузок или аварий.

Реконструкция гидротехнических сооружений

Реконструкцию постоянных гидротехнических сооружений выполняют для повышения их эксплуатационных и технико-экономических показателей, а именно — для увеличения выработки электроэнергии, повышения водообеспеченности оросительных систем, улучшения режима грунтовых вод на орошаемых или осушаемых массивах и прилегающих к ним территориях; вдоль трасс каналов, увеличения грузо- и судопропускной способности портов и судоходных сооружений, интенсификации работ на стапельных и подъемно-спускных сооружениях, улучшения экологических условий зоны влияния гидроузла, замены оборудования.

Реконструкцию проводят, как правило, без прекращения основных эксплуатационных функций сооружения, каналы, шлюзы, некоторые виды плотин реконструируют обычно с разбивкой на этапы. Продолжительность каждого этапа — межнавигационный период. Таким образом достигается непрерывность транспортного процесса. Реконструкцию грузовых причалов в портах, слиповых путей и стапельных мест можно проводить очередями непрерывно, с выводом части сооружения из эксплуатации при повышении интенсивности переработки грузов, судостроения или судоремонта на кутавшихся участках.

При реконструкции следует предусматривать максимальное использование действующих сооружений, качественных их частей или отдельных конструктивных элементов, а также транспортных коммуникаций, инженерных сетей, грузоподъемного оборудований строительным и эксплуатационным персоналом.

9. Технология сооружения опускных колодцев

При опускном способе сооружение предварительно возводят полностью или частично на поверхности (или в неглубоком котловане), а затем погружают в грунт на проектную глубину.

Сущность способа опускного колодца состоит в следующем. Сооружение возводят на поверхности земли в соответствии с планом его расположения на отведенной площадке. Внутри такого сооружения послойно разрабатывают грунт, в результате чего оно под собственной массой опускается в грунт. Технология возведения опускного колодца: сначала под будущее сооружение отрывают котлован глубиной 1,2… 1,5 м, не доходя до неустойчивых водоносных грунтов на 0,5 м; затем по контуру стен колодца возводят железобетонное звено на высоту 1…1.2 м, которое в нижней части имеет скос — ножевую часть. Иногда, для лучшего погружения колодца в грунт, ножевую часть обрамляют стальным уголком или листом. Для уменьшения трения опускаемого сооружения о грунт стенки его делают с одним или несколькими уступами. (Стены сооружения выполняют из монолитного железобетона! или сборных железобетонных панелей. В зависимости от назначения сооружения и его заглубления стены возводят на всю высоту или (постепенно наращивают (ярусами) по мере погружения сооружения в грунт.

При работе во влажных грунтах для стоянки экскаватора в котловане создают земляные островки или устраивают деревянный настил.

Bo избежание неравномерной осадки сооружения грунт по периметру ножевой части разрабатывают вручную, затем с помощью экскаватора грузят в бадьи и также поднимают краном на поверхность.

В процессе опускания колодца необходимо организовать постоянное геодезическое наблюдение за его вертикальностью и скоростью погружения. Когда в колодце обнаружено зависание в его верхней части, необходимо выбирать грунт у ножа отстающей стороны или размывать водой, подаваемой по трубам, установленным с внешней стороны стены.

Иногда для увеличения массы колодца зависшую его сторону утяжеляют пригрузами из железобетонных блоков. В исключительных случаях для опускания зависшего колодца создают искусственные динамические колебания почвы путем направленного взрыва в стороне от сооружения.

После достижения ножом колодца проектной отметки бетонируют днище, изолирующее подземное помещение от грунтовых вод.

10. Способы погружения стальных свай и шпунта

Основные способы погружения: забивка молотами (при небольшом объеме работ и грунтах средней плотности) вибропогружение (при водонасыщенных и песчаных грунтах), погружение с подмывом и последующей добивкой (в песчаных и илистых грунтах), завинчивание, вибровдавливание.

Вибромолоты применяют для забивки металлического шпунта, стальных труб, железобетонных свай небольшой длины.

Вибропогружателями можно погружать в грунт не только сваи, но и сваи-оболочки большего диаметра. Вибропогружатели бывают высокочастотные (с частотой колебаний вибратора 700−1500 Гц) — для" погружения металлического или деревянного шпунта и низкочастотные (300−500 Гц) — для погружения железобетонных свай и свай-оболочек большой массы.

Оборудование для подмыва используют для преодоления значительного сопротивления грунта забивным способом или вибропогружением. Размывающую водяную струю подают через трубы с насадками или через полость погружаемого элемента к его концу. В результате ослабления силы трения между частицами грунта, взвешивания их и частичного выноса из скважины погружение элемента в грунт под собственным весом или с применением механических либо вибрационных воздействий значительно облегчается. Погружение с помощью подмыва следует прекращать по достижении нижним концом элемента отметки на 1 -1,5 м выше проектной. Дальнейшее погружение до проектной отметки выполняют механическим или вибрационным способом.

Погружение свай способом ввинчивания применяется, если в основании находится мощный слой слабых глинистых грунтов с малой несущей способностью или плотный гравелистый грунт и погружение обычных свай затруднительно, а также при подготовке «оснований в непосредственной близости от существующих зданий и сооружений, которые могут получить повреждения от вибрации при забивке или вибропогружении.

Сваи, оборудованные стальным винтовым башмаком, могут быть стальными или железобетонными. Завинчиванием можно погружать вертикальные и наклонные сваи с наклоном 4:1. Висячие сваи, погруженные таким способом, имеют большую несущую способность.

Вдавливание в грунт полых свай под статической нагрузкой применяют при залегании в основании сооружения слабых грунтов. Способ обеспечивает высокое качество работ при минимальных затратах. Разновидностью способа вдавливания свай является вибровдавливание специальными вибровдавливающими агрегатами, облегчающими погружение элементов в грунт под статической нагрузкой.

11. Кессонный способ устройства фундаментных конструкций

Способ кессона применяют в сильнообводненных, крупнообломочных или скальных грунтах, когда нежелательны осадки расположенных вблизи сооружений или имеется опасность наплыва грунта в колодец. Последовательность производства кессонных работ заключается в том, что сначала сооружают кессонную камеру (рис VIII. 28) на потолке которой монтируют шахтную трубу и шлюзовой аппарат. От компрессорной станции в камеру нагнетают сжатый воздух, вытесняющий из нее воду. Грунт в кессоне разрабатывают гидромеханическим способом или вручную. По мере погружения на потолочной части камеры возводят надкессонное строение.

Когда грунт из колодца удаляют без водоотлива и его нижняя часть находится под слоем воды, бетонную смесь укладывают в плиту днища колодца методом подводного бетонирования. После достижения бетоном достаточной прочности воду из колодца откачивают, плиту покрывают водоизолирующей пленкой и пригружают ее слоем бетона.

12. Технология возведения причалов из массивов кладки

Такие стенки возводят на реках со скальными, валунно-гравийными или плотными глинистыми подстилающими дно грунтами. Сооружение состоит из каменной постели, кладки из бетонных массивов, надводной надстройки (сборной или монолитной), разгрузочной каменной призмы с обратным фильтром и засыпки пазух.

Как правило, кладку выполняют из бетонных массивов марки 200 массой 5−50 т, иногда до 100 т. Массивы устанавливают без заполнения швов раствором, удерживаются они за счет собственной силы тяжести и силы трения.

Для уменьшения просадочных деформаций сооружение из массивовой кладки разбивают по длине на секции протяженностью до 45 м в плотных грунтах и до 25 м в остальных случаях.

Обычно кладку массивов выполняют с перевязкой швов в границах каждой секции для увеличения устойчивости стенки (рис. 201). Массивы устанавливают на подготовленную каменную постель плавучими кранами большой грузоподъемности. Наиболее ответственные операции выполняются водолазами.

При устройстве сооружения на скальном основании в целях экономии средств допускается выравнивать площадки для монтажа массивов укладыванием подводного слоя бетона на очищенную поверхность скалы с устройством опалубки и соблюдением необходимых мер для предотвращения вымывания цементного молока, утечки раствора из опалубки, размывания поверхностного слоя. Подводное бетонирование производят по трубам, установленным в наиболее глубоких выемках скальной основы. Поверхность бетонной подушки выравнивают водолазы с помощью специальных реек.

Кордонную («боевую») линию установки первого курса массивов закрепляют на постели проволокой, натянутой между специально забитыми и выверенными инструментально штырями. Установку первого (углового) массива секции тщательно контролируют водолазы и проверяют с помощью визиров на поверхности геодезическими инструментами, после чего дают разрешение на установку всего курса при непосредственном участии и под контролем водолаза. Точность установки каждого курса секции и размеры швов между массивами фиксируют на основании водолазных обследований и измерений с поверхности в специальном журнале работ и исполнительном чертеже с указанием заводского номера каждого массива, дат его изготовления и установки.

После окончания монтажа подводной части секции и выхода последнего курса выше строительного уровня воды производят статическую отгрузку секции путем укладывания на поверхность стенки бетонных блоков определенной суммарной равномерно распределенной массы. После окончания срока отгрузки (установленного проектом) стенку разгружают и производят повторный тщательный водолазный осмотр, фиксируя размеры швов и результаты геодезических измерений. Записи утверждает авторский надзор. Затем дается разрешение на выполнение работ по устройству призмы и верхней надстройки.

13. Технология возведения причалов из массивов-гигантов

Перед спуском на воду каждый массив-гигант испытывают на водонепроницаемость путем заполнения его водой на высоту не менее 2 м с соответствующей выдержкой или погружением его на косяковых тележках в воду до минимальной отрицательной плавучести. После испытания воду откачивают, и массив спускают на воду по пусковому устройству. Перед транспортированием массива-гиганта к месту установки необходимо исходя из фактических данных проверить его плавучесть и остойчивость.

Если массив-гигант не обладает необходимой остойчивостью, его балластируют водой или грунтом засыпки. При недостаточной глубине на пути транспортирования массив проводят на понтонах. Отбуксированный к месту установки массив-гигант раскрепляют в створе сооружения четырьмя оттяжками с якорями или подвешивают на стрелу крана большой грузоподъемности. После этого начинают заполнение массива водой (до момента касания днищем постели) под постоянным контролем за его осадкой. В случае неправильной посадки на постель воду из массива частично откачивают до его всплытия, производят переориентацию и вновь затапливают. После водолазного обследования и актирования правильности посадки массива-гиганта дается разрешение на его загрузку камнем, песчано-гравийной смесью или бетоном. Затем начинают устройство верхнего строения и обратную засыпку пазухи.

Следующий массив-гигант устанавливают в створе с предыдущим, и операции повторяют. Допускаемые отклонения массива-гиганта от створной линии 8 см, а зазор между смежными массивами до 10 см.

14. Технология возведения причалов в виде заанкерованной тонкой стенки из металлического шпунта

Заанкерованные стенки из металлического шпунта. Применение стального шпунта позволяет возводить причальные сооружения в короткие сроки при относительно небольших затратах труда и невысокой стоимости. Сооружения из стального шпунта могут быть возведены в тяжелых грунтовых условиях (плотные глины, прослойки гравия, гальки и т. п.), когда забивка железобетонных, а тем более деревянных свай невозможна.

Вариант стенки из стального шпунта Ларсен, заанкерованной за железобетонные ребристые анкерные плиты, показан на рис. 17. 5, а. Анкерный пояс из двух швеллеров установлен с внутренней стороны стенки, а анкерная тяга выполнена по бесшарнирной схеме. Поверху шпунтовые сваи омоноличены железобетонной надстройкой, имеющей температурные швы через 25… 30 м. Надстройка облицована сборными железобетонными плитами, которые в процессе бетонирования играют роль опалубки.

Железобетонные надстройки возводят в тех случаях, когда необходимо нарастить шпунт или защитить его от коррозии в зоне переменного уровня воды и выше. Если такой необходимости нет, шпунт доводят до верха причала, оформляя оголовок стенки в бетоне или в металле. Оголовок шпунтовой стенки увеличивает сопротивление возможному взаимному сдвигу шпунтин.

15. Строительство причалов из оболочек большого диаметра. Виды. Технология возведения

Сооружения из оболочек большого диаметра (рис. 16. 9) состоят из двух основных элементов — оболочки и надстройки. Оболочки устанавливают либо на каменную постель, либо непосредственно на грунт с заглублением подошвы на 1,5… 2,5 м ниже проектной отметки дна путем монтажа в заранее подготовленные прорези или погружением с помощью подмыва, огрузки или иными методами. Заглубление исключает возможность выпирания грунта, находящегося внутри оболочки, и ее подмыва.

Основным недостатком конструкций из оболочек большого диаметра является большая масса монтажных элементов, в связи с чем для транспортирования и монтажа сооружений требуется тяжелое грузоподъемное оборудование. Снижение массы сборных элементов может быть достигнуто разрезкой оболочек вертикальными (рис. 16. 10, а) или горизонтальными (рис. 16. 10, б) монтажными швами (см. гл., 12), а также путем устройства разгрузочных консолей и разгрузочных анкерных плит (рис. 16. 10, в, г).

Для причальных набережных дополнительно приходится обеспечивать их грунтонепроницаемость в целом, используя различные конструкции перекрытия швов. Кроме того, криволинейность лицевой поверхности причальных сооружений из оболочек большого диаметра вызывает определенные трудности при устройстве отбойных приспособлений, особенно в тех случаях, когда при больших колебаниях уровня воды суда швартуются не только к поверхности надстройки, но и непосредственно к самим оболочкам.

Пример погружения колодцев-оболочек до проектной отметки. Для этого использовали отверстия в стенках, через которые производились рыхление и выемка грунтов с помощью многочисленных грейферов. При такой технологии погружения плотность грунта основания внутри оболочки не нарушалась. После установки в проектное положение полость оболочки заполняли песчаным грунтом, отверстия в стенках со стороны акватории заделывали тощим бетоном и песком.

16. Строительство причалов в виде уголковых набережных. Технология возведения

Такие сооружения возводят при небольшой глубине на грунтах, не допускающих забивку свай или шпунта. Обычно элементы конструкций стенок изготовляют из железобетона на специализированных промышленных предприятиях.

Различают три основных вида конструкций уголковых стенок: с внутренней анкеровкой, с автономной анкерной плитой, контрфорсного типа. В первых двух случаях элементы стенки изготовляют отдельно, в третьем — на заводе готовят полностью установочный блок.

При строительстве стенки с внутренней анкеровкой может быть применен способ раздельного монтажа, когда каждый элемент (фундаментная плита, вертикальный элемент, анкер) устанавливают под водой раздельно, или способ монтажа готовыми блоками, собранными на берегу или на плавсредствах. Раздельный монтаж более трудоемок и требует больших затрат водолазного труда. После установки по натянутому над постелью тросу нескольких фундаментных плит заподлицо с лицевой гранью стенки забивают две маячные сваи с пролетом между ними 6 м, на которые устанавливают направляющую металлическую балку, определяющую положение вертикального элемента. Вертикальный элемент опускают торцом на фундаментную плиту, где его устанавливает и фиксирует водолаз, а верхняя команда фиксирует верх элемента, закрепляя его к продольной балке. Следующий вертикальный элемент устанавливают в замок предыдущего и т. д. Анкерные тяги могут быть установлены отдельно или закреплены одним своим концом к фундаментной плите, опускаясь вместе с ней, а после установки вертикального элемента их второй конец фиксируют в его закладной детали с помощью стального пальца.

После установки всей секции во избежание вымыва грунта засыпки в местах примыкания горизонтальных и вертикальных элементов устраивают обратный фильтр и производят частичную засыпку пазухи стенки, маячную сваю переносят еще на расстояние 6 м, а в качестве начальной используют последний вертикальный элемент, и все операции повторяют. Во избежание опрокидывания последнего блока фундаментную плиту пригружают специальным грузом, который удаляют перед засыпкой пазухи.

Монтаж уголковой стенки с автономной анкерной плитой ведут в той же последовательности, только анкер и анкерную плиту крепят к вертикальному элементу и устанавливают в проектное положение вместе с ним.

Строительство стенок готовыми блоками (с внутренним анкером контрфорсного типа) позволяет значительно сократить объем водолазного труда, повысить качество работ, сократить сроки строительства причальных сооружений.

17. Устройство свай 3-й группы с неизвлекаемыми обсадными трубами

Сваи с неизвлекаемой оболочкой применяют, когда отсутствует возможность качественного изготовления свай с извлекаемой оболочкой. Такие условия создаются на площадках, сложенных водонасыщенными глинистыми грунтами текучей консистенции с прослойками песков и супесей, где под напором подземных вод ствол сваи на отдельных участках может быть разрушен во время твердения бетонной смеси.

Сваи с неизвлекаемой оболочкой стоят дорого и используются в основном в гидротехническом и транспортном строительстве.

Сваи, изготовленные в грунте, обладают такими важными преимуществами, как возможность их устройства практически в любых грунтовых условиях, большая несущая способность, возможность вывода головы сваи строго на заданную проектную отметку независимо от колебаний кровли несущего слоя грунта под их нижними концами, что значительно упрощает возведение на них ростверков, исключая такую трудоемкую операцию, как срубка голов свай (см. § 11. 6). Кроме того, армирование таких свай производится только на эксплуатационные нагрузки, а их изготовление по безударной технологии позволяет производить работы вблизи существующих построек.

Основным недостатком таких свай является необходимость их бетонирования в полевых условиях и прогрева бетонной смеси в зимнее время. Существует также проблема контроля качества выполнения работ, так как некачественная зачистка забоя скважины и возможность образования каверн и сужений при изготовлении ствола сваи могут существенно снизить ее несущую способность.

18. Основные нормативно-технические документы, используемые в гидротехническом строительстве

Действующие нормативные документы, обязательные при проектировании и строительстве, подразделяются на три вида:

общие — СНиП, ОНТП, нормативные документы органов государственного надзора и нормативы отдельных министерств, комитетов и ведомств;

ведомственные — ВСН, ВНТП, отдельные сметные нормативы, учитывающие специфику строительства данной отрасли;

республиканские — РСН и отдельные нормативы, учитывающие специфику строительства в той или иной республике.

Строительные нормы и правила регламентируют требования к организации и управлению в области проектирования и строительства объектов, производства и приемки работ, методы определения стоимости строительства и сметные нормы. В связи с тем что развитие строительного производства несколько опережает СНиПы, в период их разработки и согласований действуют ранее принятые нормы — ЕНиР и ВНиР, а при их отсутствии на те или иные виды работ — МНиР, действующие только для данного района.

Помимо указанных нормативных документов, в строительстве используют и другие, обязательные к исполнению (например, государственные стандарты на строительные материалы, детали, конструкции, изделия и полуфабрикаты).

Соблюдение строительных норм и правил, других нормативных документов при выполнении строительно-монтажных работ должно обеспечиваться созданием эффективных мер контроля на всех стадиях строительной продукции.

19. Безопасность труда при выполнении водолазных работ, в том числе в экстремальных условиях

Особого внимания и умения требует работа водолазов в необычных условиях: на сильном течении, при отрицательной температуре наружного воздуха, со льда и подо льдом, в темное время суток.

Работы на сильном течении (более 1 м/с) могут выполнять только опытные и специально подготовленные водолазы. В случае значительных перерывов в практической работе водолазы, которым предстоит работать на быстром течении, должны предварительно пройти соответствующую тренировку под руководством более опытных водолазов. Работа водолазов на течении, большем 2 м/с, за исключением случаев, связанных со спасением людей, запрещается. При скорости течения более 1 м/с водолазы работают с применением специальных приспособлений и устройств, обеспечивающих безопасность и облегчающих условия работы (щитов, водолазных беседок затапливаемых емкостей и т. д.).

Для страховки водолаза при работе на течении должна быть готова спасательная шлюпка с гребцами.

Работы при отрицательной температуре наружного воздуха, со льда и подо льдом требуют особых мер предосторожности. Наличие прочного ледяного покрова и отсутствие движения судов позволяют производить любые подводно-технические работы без использования плавсредств, т. е. непосредственно со льда. Перед тем как разрешать передвижение по льду и работу со льда, руководитель работ должен предварительно обследовать толщину ледового покрова, определить его несущую способность исходя из толщины наименьшего слоя только кристаллинескош льда. Толщину льда измеряют систематически в соответствии с Едиными правилами безопасности труда на водолазных работах, а при появлении на поверхности льда трещин и воды водолазные спуски в данном месте прекращают.

Водолазная и приданная ей техника должна располагаться на льду с учетом допустимого времени их пребывания при данной толщине льда.

Спуски водолазов не допускаются при температуре наружного воздуха: ниже -10 °С и ветре более 7 баллов (14 м/с); ниже -20 °С непосредственно у места спуска. В случае необходимости водолазных работ при температуре воздуха ниже -20°С обычно непосредственно над майной устанавливают обогреваемое помещение (будку).

Во время водолазных спусков при отрицательной температуре принимают меры против замерзания шлангов и шланговых соединений, образования в них ледяных пробок, а также по сохранности водолазного и обеспечивающего снаряжения и оборудования.

При работе в вентилируемом снаряжении водолаз должен прислушиваться к шуму поступающего в шлем воздуха. В случае нарушения подачи работа должна быть прекращена, о чем он сообщает по телефону и затем выходит на поверхность. При работе в легководолазном снаряжении шлангового типа в случае увеличения сопротивления на вдохе (закупорке шлангов) водолаз должен прекратить работу, перейти на дыхание из аварийного запаса воздуха и выйти на поверхность.

20. Улучшение качества грунтовых оснований

В зависимости от физико-механических свойств грунта, его состояния, требуемой степени и назначения закрепления существуют следующие способы искусственного закрепления грунтов: замораживание, цементация, битумизация, химический, электрохимический и др.

Замораживание грунтов применяют в сильноводонасыщенных грунтах (плывунах) при разработке глубоких выемок.

Цементация и битумизация заключаются в инъецировании соответственно цементного раствора или разогретых битумов в пористые грунты с высоким коэффициентом фильтрации, а также в трещиноватые скальные породы.

Химическим способом закрепляют песчаные и лессовые грунты нагнетанием в них через инъекторы химических растворов.

Электрическим способом закрепляют влажные глинистые грунты. Заключается он в пропуске через грунт постоянного электрического тока с напряженностью поля 0,5… 1 В/см и плотностью тока 1 … 5 А/м2. При этом глина осушается, сильно уплотняется и теряет способность к пучению.

Электрохимический способ отличается от предыдущего тем, что одновременно с электрическим током в грунт вводят через трубу, являющуюся катодом и служащую инъектором, растворы химических добавок, увеличивающие проводимость тока (силикат атрия, хлористый кальций, хлористое железо и др.). Благодаря этому интенсивность процесса закрепления грунта возрастает.

ПоказатьСвернуть
Заполнить форму текущей работой