Использование низкочастотного ультразвука для интенсификации процесса биологической очистки

Тип работы:
Курсовая
Предмет:
Экология


Узнать стоимость

Детальная информация о работе

Выдержка из работы

Использование низкочастотного ультразвука для интенсификации процесса биологической очистки

Введение

Особенность илов зрелого возраста, а именно устойчивость к изменению условий внешней среды и низкий прирост обусловливают целесообразность их применения при биоочистке токсичных сточных вод непостоянного состава, что характерно для промстоков химической промышленности. Однако многокомпонентность, наличие ксенобиотиков, токсичных примесей и существенные колебания концентраций загрязнителей в сточных водах диктуют необходимость повышения их ферментативной активности.

Глава 1. Сущность биологической очистки сточных вод

В сточных водах содержится сложная смесь твердых и растворенных веществ, которые присутствуют в очень малых концентрациях. На очистных станциях концентрации всех этих веществ снижают до приемлемого уровня или химически трансформируют вредные вещества в безопасные соединения. Схема очистной станции зависит от степени загрязненности и количества обрабатываемых стоков, а также от экономических и экологических соображений. Большая часть водоочистных станций, имеет много общего. Так в операциях первичной обработки удаляют наиболее легко отделяющиеся загрязнения, например крупные, легкоосаждающиеся частицы, масляные пленки и другие «легкие» компоненты. Суспендированные твердые частицы и растворимые компоненты отделяют в процессе вторичной обработки. Во многих случаях загрязняющие вещества имеют органическую природу; в таких случаях обычно используют биологическое окисление. Цель третичной обработки заключается в полном или частичном отделении всех оставшихся примесей. На этой стадии используются такие физико-химические методы, как электродиализ, обратный осмос, фильтрование через толстый слой и адсорбция.

В процессе первичной обработки отделяют влажные концентрированные твердые вещества, называемые илом; при вторичной обработке образуется активный клеточный ил. В этом процессе существует взаимосвязь между утилизацией субстрата и образованием биомассы. Хотя процессы вторичной биологической обработки с участием множества видов микроорганизмов очень эффективны при деградации разбавленных смесей органических отходов, при расчётах следует учитывать, что при этом образуется, и биомасса. Таким путем очень мелкие нерастворимые частицы и растворенные компоненты жидких отходов частично превращаются в ил, который легче поддается отделению, чем исходные загрязняющие вещества. Установки для переработки ила являются важной составной частью станций по очистке сточных вод. Для уменьшения объема ила, образующегося при очистке воды, широко применяется операция анаэробной переработки, при которой органические вещества подвергаются биологической деградации в анаэробных условиях.

Но на практике все три уровня очистки сточных вод и переработки ила используются не всегда. Иногда сточные воды спускают в природные водоемы (ручьи, реки, пруды, озера и океан) без обработки. В других случаях применяют только первичную обработку. Например, для большинства городских систем водоочистки в США та или иная форма вторичной обработки является обязательной, а третичная обработка в настоящее время применяется лишь изредка.

Основные характеристики сточных вод

Природа и концентрация загрязняющих веществ в сточных водах зависят от их источника. Существуют два основных вида сточных вод -- промышленные и бытовые. Последние загрязнены главным образом уличным мусором, моющими средствами и экскрементами.

Бытовые сточные воды обычно содержат более 99% воды, около 300 млн -1 (мг/л) суспендированных твердых веществ, а также около 500 мг/л летучих веществ. Большая часть суспендированных твердых веществ имеет целлюлозную природу, а другие загрязняющие органические вещества включают жирные кислоты, углеводы и белки. Неприятный запах бытовых сточных вод обусловлен разложением белков в анаэробных условиях.

Если учесть происхождение бытовых сточных вод, то не удивительно, что в них содержатся различные виды почвенных и кишечных микроорганизмов, в том числе аэробные организмы, облигатные и факультативные анаэробы, бактерии, дрожжи, плесени и грибы. Поскольку в бытовых сточных водах часто присутствуют также патогенные организмы и различные вирусы, чрезвычайно важна полная изоляция источников и трубопроводов для подачи питьевой воды от загрязнения сточными водами. Популяции микроорганизмов в сточных водах служат постоянным смешанным посевным материалом для процессов биологической очистки и, кроме того, источником метаболической активности в стандартных методах определения степени загрязнения сточных вод.

Наиболее распространенным критерием концентрации загрязняющих веществ в бытовых сточных водах является показатель биохимической потребности в кислороде (ВПК), равный количеству растворенного кислорода, поглощаемого единицей объема сточных вод за определенное время при 20 °C. Продолжительность периода инкубации обычно указывают в виде подстрочного индекса; так, если ВПК определяют по результатам инкубирования в течение 5 суток (один из принятых периодов), то соответствующий показатель обозначают символом БПК 5.

Количество растворенного кислорода, поглощаемого в ходе инкубации вплоть до полного прекращения биологического окисления органических веществ, называют предельной (или полной) ВПК (БПКп), Этот тест, разработанный еще в 1898 г. Британской Королевской комиссией по ликвидации отходов, должен был моделировать условия в водных потоках и обеспечивать относительно прямое определение одного из наиболее вредных и опасных последствий сброса сточных вод -- истощения растворенного кислорода в водных бассейнах, куда сбрасываются отходы. Снижение концентрации растворенного кислорода быстро приводит к гибели множества аэробных организмов, а также животных; конечным результатом истощения растворенного кислорода будет грязная, неприятно пахнущая река, зараженная патогенными микроорганизмами.

Другим критерием потенциального снижения общей концентрации растворенного кислорода в водоемах, в которые поступают сточные воды, служит химическая потребность в кислороде (ХПК), равная числу миллиграммов кислорода, поглощаемого 1 литром пробы (сточных вод) из горячего подкисленного раствора бихромата калия. В общем случае химическому окислению подвергается больше веществ, чем биологической деградации, и, следовательно, величина ХПК должна быть больше величины БПК для одного и того же образца. Измерение ХПК связано с возможной степенью загрязнения естественных водоемов сточными водами не столь непосредственно, как определение БПК; с другой стороны, ХПК можно определить с помощью доступной простой аппаратуры за 2 ч, а с помощью сложных приборов -- за несколько минут. БПК и ХПК являются общими и самыми грубыми индикаторами состава сточных вод. Тем не менее они дают полезную информацию о степени опасности, которую представляют сточные воды для окружающей среды. Другим преимуществом показателей БПК и ХПК является возможность их определения с минимальным количеством несложной аппаратуры, причем выполнение соответствующих анализов требует лишь кратковременного обучения персонала.

Чтобы охарактеризовать качество воды, часто применяют и другие параметры, в том числе концентрации фосфорсодержащих веществ (общего фосфора), азотсодержащих веществ (общего азота) и суспензированных нерастворимых веществ. В таблице 1 приведены характерные параметры потоков, поступающих на станцию очистки бытовых сточных вод, и очищенной воды. В этой таблице не указаны некоторые важные загрязняющие вещества, в первую очередь соли тяжелых металлов и токсичные органические вещества, например пестициды, которые часто присутствуют в очень малых, но способных принести большой вред концентрациях.

Некоторые параметры, характеризующие качество воды (содержание азота и фосфора в воде после очистки проверяется не всегда)

Таблица 1

Требования к воде. Параметр Сточные воды после очистки

ВПК, мг/л

100--250

5--15

ХПК, мг/л

200--700

15−75

Общий фосфор, мг/л

6--10

0,2--0,6

Азот, мг/л

20--30

2--5

Суспендированные нерастворимые вещества, мг/л

100--400

10--25

Таблица 2

Состав промышленных сточных вод определяется их происхождением (таблица 2). Стоки промышленных предприятий часто загрязнены в гораздо большей степени, чем бытовые сточные воды. В стоках промышленных предприятий, связанных с переработкой материалов углеводородной природы, часто содержатся и ядовитые вещества, например формальдегид, аммиак или цианиды. Здесь возникают две взаимосвязанные проблемы: во-первых, эти стоки чрезвычайно опасны для живых организмов в водоемах, куда они сбрасываются, во-вторых, они могут убивать микроорганизмы, участвующие в аэробных и анаэробных процессах переработки отходов. Эффективные и достаточно экономичные методы обезвреживания подобных токсичных веществ пока еще не разработаны.

Процессы с участием активного ила

В процессах с участием активного ила основным типом оборудования является проточный аэрируемый биологический реактор. Как показано на рис. 1, этот аэробный реактор (аэротенк) связан с отстойником, в котором вода осветляется. Часть ила, собирающегося в отстойнике, обычно вновь поступает в биологический реактор, в результате чего обеспечивается постоянная инокуляция илом. Рециркуляция увеличивает среднее время пребывания ила в системе, давая возможность присутствующим в нем микроорганизмам адаптироваться к имеющимся питательным веществам. Ил должен оставаться в аэробном биореакторе достаточно долго и для того, чтобы окислились все адсорбированные органические вещества.

Рис. 1 Схема очистки воды с участием активного ила

Чтобы понять основные механизмы утилизации субстрата в этом биореакторе, необходимо сначала изучить природу и морфологию смешанной культуры микроорганизмов, живущих в аэрируемом реакторе. Одним из наиболее типичных для активного ила организмов является бактерия Zoogloea ramigera. Возможно, наиболее важной характеристикой как этого организма, так и многих других видов, существующих в активном иле, является способность синтезировать и секретировать в среду полисахаридный гель. Именно наличие геля обусловливает агрегацию микроорганизмов и образование хлопьевидных скоплений (флокул), называемых активным илом (рис. 2).

Активный ил характеризуется высоким сродством к суспендированным твердым веществам, включая коллоидальные частицы. Именно это обстоятельство служит причиной того, что первой стадией разрушения суспендированных твердых частиц в сточных водах является их присоединение к флокулам. Затем, способные к биодеградации компоненты адсорбированных частиц претерпевают окисление организмами флокулы (рис. 3).

Рис. 2. Микрофотография некоторых микроорганизмов активного ила. Из работы Unz R. P., Dondero N. С., Water Research, 4, 575 (1970)

Рис. 3

Предполагается, что первой быстрой стадией разрушения органических веществ в аэрируемом реакторе периодического действия с активным илом является физический процесс -- адсорбция органических веществ флокулами ила, затем следует более медленная стадия биологического окисления.

Для того чтобы выгоднее использовать высокую адсорбционную способность активного ила, разработан вариант обычного процесса, называемый контактной стабилизацией. Как показано на схеме (рис. 4), в этом процессе рециркулирующий осажденный ил подвергается повторной аэрации прежде, чем он вступит в контакт с отходами, поступающими в аэрируемый резервуар. В последнем органические вещества связываются с флокулами практически исключительно за счет физических сил. Биологическая утилизация связанных органических веществ происходит в основном в процессе повторной аэрации рециркулирующего ила; одновременно восстанавливается адсорбционная способность флокул ила.

Другие модификации процесса с участием активного ила отличаются от базового варианта главным образом способом осуществления контакта сточных вод, ила и воздуха в аэрируемом реакторе. Как показано на приведенной схеме, в процессе со ступенчатой подачей стоков поступающий поток после разделения вводят в аэрируемый резервуар в различных точках. Эффект разделения потока можно оценить, воспользовавшись рассмотренными ранее методами анализа реакторов.

Обычный аэротенк с активным илом представляет собой узкий длинный канал (коридор), который по своим характеристикам приближается к трубчатому реактору с незначительной дисперсией. Распределение поступающего потока по длине реактора изменяет характеристики системы таким образом, что коридорный реактор по своему поведению приближается к емкостному реактору с полным перемешиванием.

Еще ближе к реактору с полным перемешиванием бассейн круглой формы, содержимое которого интенсивно аэрируется с целью обеспечения массопереноса и перемешивания. В такой системе градиенты концентраций растворенного кислорода и питательных веществ минимальны, а развивающаяся популяция организмов активного ила часто лучше переносит флуктуации нагрузки или резкие повышения концентраций токсичных веществ.

сточный биологический очистка ультразвук

Рис. 4. Схемы двух процессов биологического окисления

Системы аэрации могут быть самыми разными. Помимо барботажа с перемешиванием, обычно используемого в микробиологических процессах, здесь возможно барботирование воздуха через диффузоры, расположенные на дне или в стенках резервуара. В другом варианте на поверхности бассейна вращается мешалка с лопастями, создающая турбулентные течения и способствующая поглощению газа. Третий вариант предусматривает перемешивание и аэрацию с помощью конуса, который забирает жидкость со дна бассейна и разбрызгивает ее на стенки резервуара. Во всех случаях основной задачей системы аэрации и перемешивания является снабжение кислородом микроорганизмов, суспендирование и перемешивание ила и других нерастворимых компонентов системы, а также удаление летучих продуктов метаболизма организмов ила, например диоксида углерода.

Помимо высокой адсорбционной и метаболической активности хороший ил должен также быстро оседать. Например, в цилиндре через 30 мин объем осевшего активного ила должен быть примерно в 40 раз больше объема суспендированных твердых компонентов. Если этот показатель намного выше и объем осевшего ила превышает объем суспендированных твердых частиц, например, в 200 раз, то такой ил не удовлетворяет предъявляемым к нему требованиям, поскольку он будет вытекать из отстойника вместе с очищенными сточными водами. Такое состояние называют объемной перегрузкой; в этом случае обработанные сточные воды не будут отвечать соответствующим стандартам.

Хотя причины, вызывающие объемную перегрузку и механизм этого явления пока еще не выяснены, изучение ила часто показывает, что в нем содержатся филаментозные бактерии и жгутиковые простейшие. Напротив, хороший ил обычно не содержит сколько-нибудь многочисленные популяции филаментозных организмов, а из простейших в нем присутствуют главным образом стебельчатые ресничные виды. В процессе очистки воды эти простейшие выполняют полезную функцию, захватывая свободные, т. е. не включенные в флокулы, бактерии и таким образом осветляя обработанные сточные воды.

В нормальных условиях эксплуатации очистных станций филаментозные бактерии и грибы не могут конкурировать с гетеротрофными бактериями, присутствующими в хорошем иле. Резкие изменения концентраций загрязняющих веществ в поступающих сточных водах или грубое нарушение режима эксплуатации системы водоочистки могут привести к условиям, неблагоприятным для роста полезных популяций, что в свою очередь позволит другим видам микроорганизмов занять доминирующее положение в системе. Отсюда следует, что результаты как объемной перегрузки, так и нормального режима работы системы водоочистки представляют собой проявления принципов конкуренции видов в смешанных популяциях.

Глава 2. Области практического применения ультразвука для очистки сточных вод

1. Применение волн малой интенсивности (низкоэнергетические колебания, не приводящие к необратимым изменениям в материалах и телах, через которые они распространяются) для контроля, измерений, исследований внутренней структуры материалов и изделий (уровнемеры, расходометры, анализаторы состава газов, жидкости и твердых веществ, дефектоскопы) [1].

2. Применение высокоэнергетических колебаний — волн высокой интенсивности для активного воздействия на вещества и изменения их структуры и свойств [4].

Рис. 5 Практическое применение низкоэнергетических ультразвуковых колебаний

Область применение УЗ колебаний низкой интенсивности (условно до 1 Вт/см2) очень обширна и мы поочередно рассмотрим несколько основных применений УЗ колебаний малой интенсивности.

1. УЗ приборы для контроля химических характеристик различных материалов и сред. Все они основаны на изменении скорости УЗ колебаний в среде и позволяют:

— определять концентрацию бинарных смесей;- плотности растворов;- степень полимеризации полимеров;- наличие в растворах примесей, газовых пузырьков;- определять скорости протекания химических реакций;- жирность молока, сливок, сметаны;- дисперсность в гетерогенных системах и др.

Разрешающая способность современных УЗ приборов 0,05%, точность измерений скорости распространения на образцах длиной 1 м составляет 0,5 -1 м/с (скорость в металле более 5000 м/с). Практически все измерения проводятся методом сравнения с эталоном.

2. Приборы для контроля физико-химических характеристик, основанные на измерении затухания ультразвука. Такие приборы позволяют осуществлять измерение вязкости, измерение плотности, состав, содержание примесей, газов и т. п. Используемые методики также основаны на методах сравнения с эталоном.

3. УЗ расходомеры жидкостей в трубопроводах. Их действие также основано на измерении скорости распространения УЗ колебаний вдоль потока жидкости и против потока. Сравнение двух скоростей позволяет определить скорость потока, а при известном сечении трубопровода расход. Пример одного из расходомеров (№ 15 183 в Госреестре Средств Измерений) представлен на рисунке 6.

Рисунок 6 — Стационарный ультразвуковой расходомер «АКРОН»

Такой расходомер обеспечивает измерение объемного расхода и суммарного объема (количества) жидкостей, протекающих в напорных трубопроводах систем водоснабжения, канализации и нефтепродуктоснабжения без врезки в действующий трубопровод. Принцип действия расходомера заключается в измерении разности времени прохождения ультразвуковой волны по потоку и против потока контролируемой жидкости, пересчете ее в мгновенное значение расхода с последующим интегрированием.

Погрешность прибора составляет 2% от верхнего предела измерения. Верхний и нижний пределы измерения устанавливает оператор. Расходомер включает в себя блок датчиков (состоит из двух ультразвуковых датчиков и устройства для их крепления на трубе) и электронный блок, соединенные радиочастотным кабелем длиной до 50 м (стандартно — 10 м.). Датчики устанавливаются на прямолинейном участке трубопровода на наружной поверхности, очищенной от грязи, краски и ржавчины. Условие правильной установки датчиков — наличие прямого участка трубы не менее 10 диаметров трубы — перед, и 5 диаметров — после датчиков.

4. Сигнализаторы уровней

Принцип действия основан на локации уровня жидких или сыпучих материалов ультразвуковыми импульсами, проходящими через газовую среду, и на явлении отражения этих импульсов от границы раздела «газ — контролируемая среда». Мерой уровня при этом является время распространения звуковых колебаний от излучателя до контролируемой границы раздела сред и обратно до приемника. Результат измерения выводится на персональный компьютер, где все измерения запоминаются, с последующей возможностью их просмотра и анализа, а также подключения к системе автоматизированного сбора и обработки данных. Уровнемер в составе системы может включать конечные автоматы, насосы и др. устройства при уровне выше максимального и ниже минимального значения, что позволяет автоматизировать технологический процесс. Дополнительно формируется токовый выход (0,5 мА, 0−20 мА) для самопишущих приборов. Сигнализатор уровня позволяет контролировать температуру среды в резервуарах. Основным форматом выводимых данных является расстояние от вершины резервуара до поверхности, содержащегося в нем вещества. По желанию заказчика, при предоставлении необходимой информации возможна доработка устройства для вывода высоты, массы либо объема вещества в резервуаре.

5. УЗ анализаторы состава газов основаны на использовании зависимости скорости УЗ в смеси газов от скоростей в каждом из составляющих эту смесь газов.

6. Охранные УЗ устройства основаны на измерении различных параметров УЗ полей (амплитуды колебаний при перекрытии пространства между излучателем и приемником, изменении частоты при отражении от движущегося объекта и т. п.).

7. Измерители температуры газов и пожарные сигнализаторы, основанные на изменении скорости распространения при изменении температуры среды или появления дыма.

8. Приборы ультразвукового неразрушающего контроля. Неразрушающий контроль является одним из основных технологических приёмов обеспечения качества материалов и изделий. Не одно изделие не должно эксплуатироваться без проверки. Можно проверку осуществить путем испытаний, но так можно испытать 1- 10 изделий, но нельзя проверить 100% всех изделий, т.к. проверить — это значит испортить всё изделия. Поэтому, проверять необходимо, не разрушая.

Одни из наиболее дешевых, простых и чувствительных является УЗ метод неразрушающего контроля. Главными достоинствами по сравнению с другими методами неразрушающих испытаний являются:

— обнаружение дефектов, находящихся глубоко внутри материала, что стало возможным благодаря улучшенной проникающей способности. Ультразвуковое обследование проводится до глубины нескольких метров. Контролю подвергаются различные изделия, например: длинные стальные стержни, роторные штамповки и т. д. ;

— высокая чувствительность при обнаружении чрезвычайно малых дефектов длиной несколько миллиметров;

— точное определение местоположения внутренних дефектов, оценка их размера, характеристика направления, формы и природы;- достаточность доступа только к одной из сторон изделия;

— контроль процесса электронными средствами, что обеспечивает почти мгновенное выявление дефектов;

— объемное сканирование, что позволяет обследовать объем материала;- отсутствие требований по мерам предосторожности, связанным со здоровьем;- портативность оборудования.

Практическое применение высокоинтенсивных ультразвуковых колебаний

На сегодняшний день основные процессы, реализуемые и интенсифицируемые при помощи высокоэнергетических ультразвуковых колебаний, принято разделять на три основные подгруппы, в зависимости от вида среды, в которой они реализуются (рисунок 7).

Рисунок 7 — Применение высокоэнергетических ультразвуковых колебаний

В зависимости от вида среды процессы условно делятся на процессы в жидких, твердых и термопластичных материалах и газообразных (воздушных) средах. В последующих разделах будут более подробно рассмотрены процессы и аппараты для интенсификации процессов в жидких, твердых и термопластичных материалах, газообразных средах. Далее рассмотрим примеры основных технологий, реализуемых с использованием высокоэнергетических ультразвуковых колебаний.

Размерная обработка

Ультразвуковые колебания применяются для обработки хрупких и особо твердых материалов и металлов.

Основные технологические процессы, интенсифицируемые ультразвуковыми колебаниями это сверление, зенкование, нарезание резьб, волочение проволоки, полировка, шлифовка, сверление отверстий сложной формы. Интенсификация этих технологических процессов происходит благодаря наложению на инструмент ультразвуковых колебаний.

УЗ очистка

Сегодня существует множество способов очистки поверхностей от различных загрязнений. УЗ очистка более быстрая, обеспечивает высокое качество и отмывает труднодоступные участки. При этом обеспечивается замена высокотоксичных, огнеопасных и дорогих растворителей обычной водой.

С помощью высокочастотных ультразвуковых колебаний производится очистка автомобильных карбюраторов и инжекторов за несколько минут.

Причина ускорения очистки в кавитации, особым явлением при котором в жидкости образуются мельчайшие газовые пузырьки. Эти пузырьки лопаются (взрываются) и создают мощные гидропотоки, которые вымывают всю грязь. На этом принципе существуют сегодня стиральные машины и малые установки мойки. Особенности реализации кавитационного процесса и его потенциальные возможности будут рассмотрены отдельно. УЗ очищает металлы от полировочных паст, прокат от окалины, драгоценные камни от полировочных мест. Очистка печатных форм, стирка тканей, мойка ампул. Очистка трубопроводов сложной формы. Кроме очистки, ультразвук способен производить удаление мелких заусенец, полировку.

Ультразвуковое воздействие в жидких средах уничтожает микроорганизмы и поэтому широко используется в медицине и микробиологии.

Возможна и другая реализация УЗ очистки.

— очистка дыма от твердых частиц в воздухе. Для этого также используется ультразвуковое воздействие на туманы и дым. Частицы в УЗ поле начинают активно двигаться, соударяются и слипаются, осаждаются на стенки. Это явление называется ультразвуковой коагуляцией и используется для борьбы с туманом на аэродромах, на дорогах и в морских портах.

УЗ сварка

В настоящее время, с помощью ультразвуковых колебаний высокой интенсивности, производится сварка полимерных термопластичных материалов. Сварка полиэтиленовых тюбиков, коробок, банок обеспечивает отличную герметичность. В отличие от других способов, с помощью ультразвука можно варить загрязненные пластмассы, трубки с жидкостью и т. д. При этом содержимое стерилизуется.

С помощью ультразвуковой сварки производится сварка тончайшей фольги или проволоки к металлической детали. Причем У З сварка — является холодной сваркой, поскольку шов формируется при температуре ниже температуры плавления. Таким образом, соединяются сваркой алюминий, тантал, цирконий, ниобий, молибден и т. п.

В настоящее время ультразвуковая сварка нашла наибольшее применение для высокоскоростных процессов упаковки и производства полимерных упаковочных материалов.

Пайка и лужение

С помощью высокочастотных ультразвуковых колебаний производится пайка алюминия. С помощью УЗ можно лудить, а затем паять керамику, стекло, что ранее было невозможно. Ферриты, припайка полупроводниковых кристаллов к позолоченным корпусам реализуются сегодня с применением ультразвуковой технологии.

Ультразвук в современной химии

В настоящее время, как следует из литературных источников сформировано новое направление в химии — УЗ химия. Изучая химические превращения, происходящие под действием УЗ, ученые установили, что УЗ не только ускоряет окисление, но в некоторых случаях обеспечивают восстанавливающее действие. Таким образом, восстанавливается железо из окислов и солей.

Получены хорошие положительные результаты по интенсификации УЗ следующих химико-технологических процессов:

— электроосаждение, полимеризация, деполимеризация, окисление, восстановление, диспергирование, эмульгирование, коагуляция аэрозолей, гомогенизация, пропитка, растворение, распыление, сушка, горение, дубление и др.

Электроосаждение — осаждающийся металл приобретает мелкокристаллическую структуру, уменьшается пористость. Таким образом, осуществляемо меднение, лужение, серебрение. Процесс идет быстрее и качество покрытия выше, чем в обычных технологиях.

Получение эмульсий: вода и жир, вода и эфирные масла, вода и ртуть. Барьер несмешиваемости преодолевается благодаря УЗ.

Полимеризация (соединение молекул в одну) — степень полимеризации регулируется частотой УЗ.

Диспергирование — получение сверхтонких пигментов для получения красителей.

Сушка — без нагревания биологически активные вещества. В пищевой, фармакологической промышленности.

Распыление жидкостей и расплавов. Интенсификация процессов в распылительных сушках. Получение металлического порошка из расплавов. Эти распылительные устройства исключают вращающие и трущиеся детали. УЗ усиливает эффективность горения в 20 раз жидких и твердых топлив. Пропитка. В сотни раз быстрее проходит жидкость через капилляры пропитываемого материала. Используется при производстве рубероида, шпал, цементных плит, текстолита, гетинакса, пропитке древесины модифицированными смолами.

Глава 3. Использование низкочастотного ультразвука для интенсификации процесса биологической очистки

Особенность илов зрелого возраста, а именно устойчивость к изменению условий внешней среды и низкий прирост обусловливают целесообразность их применения при биоочистке токсичных сточных вод непостоянного состава, что характерно для промстоков химической промышленности. Однако многокомпонентность, наличие ксенобиотиков, токсичных примесей и существенные колебания концентраций загрязнителей в сточных водах диктуют необходимость повышения их ферментативной активности.

Проведенные ранее исследования [1,2] показали, что дегидрогеназная активность илов (ДАИ), сформированных на водах производств органического синтеза, 0,9 -- 2,8 мг/г, поэтому следует ожидать низкого качества очищенных стоков, особенно при залповых сбросах поллютан-тов различной природы.

Низкочастотное ультразвуковое воздействие (УЗ В) различной интенсивности на иловую суспензию в стационарных условиях оказывает значительное влияние на дегидрогеназную активность низконагружаемых промышленных илов (рис. 8) [1].

Экспериментально полученные закономерности позволяют отдать предпочтение двум режимам УЗВ с интенсивностью 6 и 8 Вт/см2 при продолжительности обработки 2 и 0,5 мин соответственно.

Однако при выборе эффективного режима с целью его реализации в производственных условиях должны быть учтены деструкционные процессы, наблюдаемые в иловой суспензии, приводящие к частичному разрушению флокул активного ила и бактериальных клеток и обогащению среды ростовыми веществами (см. таблицу).

Приведенные результаты показывают целесообразность обработки активного ила в поле ультразвуковых волн при интенсивности 6 Вт/см2 в течение 0,5 -- 1 мин, обеспечивающей двух-трехкратное повышение ДАИ при минимально возможной деструкции микробиальных клеток. Следует также отметить дополнительное обогащение среды биологически активными веществами, что очень важно для практического применения, потому что снижаются затраты на биогенные элементы, необходимые для эффективного протекания биохимических процессов.

Совокупность экономических и биотехнологических факторов (ожидаемый рост энергозатрат при внедрении УЗВ иловой суспензии, снижение эффективной дозы биоагента вследствие деструкционных процессов при кавитации, повышение ферментативной активности илов и концентрации ростовых веществ, а, следовательно, необходимость существенного повышения окислительной мощности очистных сооружений (особенно в случае залповых сбросов) ксенобиотиков и экотоксикантов) свидетельствует о перспективности УЗВ на часть циркулирующего ила в стационарных условиях, как одного из вариантов реализации предлагаемого приема интенсификации процесса биологической очистки вод в условиях продленной аэрации.

Рис. 8 Закономерности изменения ДЛИ после УЗВ

Необходимость изучения динамики изменения ДАИ после УЗВ в процессе ассимиляции трудноокисляемых поллютантов многокомпонентных сточных вод диктуется отсутствием информации в этой области и, как следствие, невозможностью прогнозирования эффективности биохимических процессов, протекающих в аэротенке.

Рис. 9

Была проведена серия испытаний пилотной установки проточного типа с аэротенком объемом Юл (рис. 9) в условиях, максимально приближенных к производственным: использование промышленных стоков и иловых суспензий, параметры процесса биологической очистки соответствовали реальным (доза ила, концентрация растворенного кислорода, продолжительность аэрации и др.).

В экспериментах УЗВ подвергалась часть активного ила иловой суспензии т = 2 10 об %. В качестве контроля использовали необработанный ил, что позволило оценить влияние доли обработанного ила на интенсивность процессов в биоокислителях. УЗВ осуществлялась на ультразвуковом диспергаторе УЗДН-А при частоте 22 кГц с интенсивностью 6 Вт/см2 в течение 0,5 мин.

Учитывая непостоянство состава сточных вод и колебание дозы ила в реальных условиях, для корректной и достоверной оценки полученных данных изменение ДАИ в процессе биологической очистки промстоков определялось в относительных единицах.

Экстремальный характер полученных кривых для контроля и суспензий с обработаным ультразвуком илом (2 и 5%) можно объяснить повышением ДАИ в первые 2 ч, обусловленным наличием легкоокисляемого субстрата в очищаемой воде с последующим спадом по мере его исчезновения.

Данное предположение подтверждается проведенными расчетами необходимого времени аэрации согласно СНиП с учетом ВПК химически загрязненного и очищенного стоков, дозы активного ила в каждом аэротенке. Расчетное время аэрации составляет 1,4 -- 1,8 ч для контроля и 1,7 -- 2,1 ч для суспензий с частью обработанного ила.

Некоторое смещение максимума ДАИ для суспензий с обработанным илом по сравнению с контролем, очевидно, связано с обогащением среды биохимически окисляемым субстратом вследствие появления в ней после обработки новых компонентов -- продуктов деструкции клеточного материала (см. таблицу).

Дополнительно проведенные исследования показали повышение биохимического показателя (БП = БПК5/ХПК) суспензий с частью обработанного ила. Например, если БП контроля был 0,19, то после обработки 2% ила в иловой суспензии он повысился до 0,2, после обработки 5% -- до 0,22, после обработки 10% -- до 0,24.

Что касается повышения ДАИ суспензий с частью обработанного ила, то максимальная ДАИ0ТН составляла ПО, 117 и 138% соответственно.

Более значительный рост ДАИ суспензий с обработанным илом, очевидно, связан с дополнительным выделением в иловую смесь ферментов, биогенных элементов и ростовых веществ вследствие разрушения бактериальных клеток, что подтверждается данными других исследователей [3, 4]. В результате УЗВ также возможно повышение клеточной проницаемости и усиление активности ферментов и ряда поверхностно расположенных рецепторов клетки неразрушенных микроорганизмов (Пат. 2 130 899 РФ).

Наблюдаемое снижение ДАИ суспензии с 10% обработанного ила нельзя объяснить однозначно. Однако одним из основных факторов можно считать более существенную несбалансированность состава стоков по субстрату и биогенным элементам.

Эксплуатация очистных сооружений в условиях дисбаланса соотношения субстрата и биогенных элементов приводит к низкой эффективности очистки сточных вод. При избытке соединений азота активность бактерий ила снижается, что обусловлено блокадой лежащих на поверхности зооглейных структур электрических зарядов. Это влияет на обменные процессы и вызывает поражение клеточных оболочек.

Положительным результатом УЗВ также следует считать диа-кустический рост ДАИ суспензии с частью обработанного ила. Во всех экспериментах зрелые илы были способны утилизировать в основном легкоусвояемый субстрат, что соответствует появлению максимума ДАИ после 1,5 -- 2 ч аэрирования смеси активного ила и сточных вод (см. рис. 10).

Полученные данные могут служить косвенным подтверждением усиления активности оксиредуктаз в результате УЗВ, когда повышается способность илов зрелого возраста к деструкции специфических поллютантов, что свидетельствует о перспективности внедрения данного приема в практику водоочистки.

Проведенные экспериментальные исследования показали еще одно преимущество УЗВ зрелого ила, было выявлено пролонгирующее действие низкочастотного ультразвука. На рис. 11 видно, что даже через 24 ч ДАИ суспензии с частью обработанного ила снижалась в гораздо меньшей степени, чем контроля.

При проведении экспериментальных исследований также изучалось влияние УЗВ на эффективность биологической очистки сточных вод. Эффективность УЗВ оценивалась по ХПК, концентрации СПАВ, фенола, аммонийного азота в очищенных сточных водах [2].

Рис. 10

Рис. 11 Влияние УЗВ на эффективность биологической очистки

Результаты исследований, приведенные на рис. 11, согласуются с данными изменения ДАИ в зависимости от доли обработанного ила. Наибольшая эффективность очистки наблюдалась при использовании 5% обработанного промышленного ила. При использовании 10% такого ила качество очищенных стоков заметно ухудшалось по сравнению с контролем (за исключением неионогенных СПАВ). Что касается фенолов, то во всех экспериментах наблюдалось его 100%-ное изъятие. Это, вероятно, связано с низкой начальной концентрацией экотоксиканта в сточных водах (0,8 -- 1,5 мг/л).

В заключение можно сказать, что полученные результаты служат достаточно убедительным аргументом перспективности использования низкочастотного ультразвука для интенсификации биологической очистки сложных по составу сточных вод химических производств.

Литература

1. Закиров Р. К. Интенсификация процесса биологической очистки сточных вод с применением методов реагентной и ультразвуковой обработки: Дис. … канд. техн. наук. Казань, 2001.

2. Пронина Е. В., Ахмадуллина Ф. Ю., Закиров Р. К., Хузаянов Р. Х. Влияние ультразвука низкой частоты на дегидрогеназную активность ила // Химическая промышленность. 2006. № 1.

3. Ткачук Н. Г. Применение ультразвука для интенсификации биологической очистки сточных вод // Водоснабжение и санитарная техника. 1994. № 7.

4. Пронина Е. В., Ахмадуллина Ф. Ю., Закиров Р. К., Победимский Д. Г. Применение низкочастотного ультразвука для повышения ферментативной активности промышленных илов в условиях протока // Химическая промышленность. 2006. Т. 83. № 8.

ПоказатьСвернуть
Заполнить форму текущей работой