Локальные вычислительные сети

Тип работы:
Реферат
Предмет:
Коммуникации, связь, цифровые приборы и радиоэлектроника


Узнать стоимость новой

Детальная информация о работе

Выдержка из работы

Федеральное государственное бюджетное общеобразовательное учреждение высшего профессионального образования

«Чувашская государственная сельскохозяйственная академия»

Кафедра «Математики и информационных технологий»

Реферат

на тему:

ЛОКАЛЬНЫЕ ВЫЧИСЛИТЕЛЬНЫЕ СЕТИ

Выполнила:

студентка первого курса

биотехнологического факультета

2 группы 3 подгруппы

Чебоксары 2014

Содержание

1. Введение

2. Понятие ЛВС

3. Методы оценки эффективности ЛВС

3.1 Методы исследования

3.2 Аналитические методы

3.3 Имитационное исследование

3.4. Сбор данных для моделирования

4. Архитектура ЛВС

4.1 Типы сетей

4.2 Топология вычислительной сети

4.3 Типы построения сетей

5. Заключение

6. Список литературы

1. Введение

На сегодняшний день в мире существует более 130 миллионов компьютеров и более 80% из них объединены в различные информационно вычислительные сети, начиная от малых локальных сетей в офисах до глобальных сетей типа Internet. Всемирная тенденция к объединению компьютеров в сети обусловлена рядом важных причин, таких как ускорение передачи информационных сообщений, возможность быстрого обмена информацией между пользователями, получение и передача сообщений (факсов, электронной почты и т. п.), не отходя от рабочего места, возможность мгновенного получения любой информации из любой точки земного шара, а также обмен информацией между компьютерами разных производителей, работающих под управлением различного программного обеспечения. Среди существующих концепций вычислительных комплексов вышеназванным требованиям наиболее полно отвечают локальные вычислительные сети, или ЛВС (LAN — Local Area Network)

Что такое локальная вычислительная сеть (ЛВС)? Локальными сетями (ЛВС -- локальные вычислительные сети или LAN -- Local Area Network) называют сети, размещающиеся, как правило, в одном здании или на территории какой-либо организации размерами до нескольких километров.

2. Понятие ЛВС

В производственной практике ЛВС играют очень большую роль. Посредством ЛВС в систему объединяются персональные компьютеры, расположенные на многих удаленных рабочих местах, которые используют совместно оборудование, программные средства и информацию. Рабочие места сотрудников перестают быть изолированными и объединяются в единую систему.

Рассмотрим преимущества, получаемые при сетевом объединении персональных компьютеров в виде внутрипроизводственной вычислительной сети.

Разделение ресурсов.

Разделение ресурсов позволяет экономно использовать ресурсы, например, управлять периферийными устройствами, такими как лазерные печатающие устройства, со всех присоединенных рабочих станций.

Разделение данных.

Разделение данных предоставляет возможность доступа и управления базами данных с периферийных рабочих мест, нуждающихся в информации.

Разделение программных средств.

Разделение программных средств, предоставляет возможность одновременного использования централизованных, ранее установленных программных средств.

Разделение ресурсов процессора.

При разделении ресурсов процессора возможно использование вычислительных мощностей для обработки данных другими системами, входящими в сеть. Предоставляемая возможность заключается в том, что на имеющиеся ресурсы не «набрасываются» моментально, а только лишь через специальный процессор, доступный каждой рабочей станции.

Многопользовательский режим.

Многопользовательские свойства системы содействуют одновременному использованию централизованных прикладных программных средств, ранее установленных и управляемых, например, если пользователь системы работает с другим заданием, то текущая выполняемая работа отодвигается на задний план. Все ЛВС работают в одном стандарте, принятом для компьютерных сетей — в стандарте Open Systems Interconnection (OSI) — взаимодействия открытых систем.

В настоящее время в использовании ЛВС можно отметить две тенденции: создание мощных корпоративных сетей и переход на технологию клиент-сервер.

Корпоративные ЛВС характеризуются многосегментной структурой, большим числом рабочих станций (РС), наличием нескольких серверов (файловых, баз данных, печати, модемов), маршрутизаторов, мостов и т. п. Эффективное использование технологии клиент-сервер в таких сетях ставит ряд сложных задач перед администраторами и пользователями ЛВС. Важнейший комплекс задач — обеспечение требуемой производительности, пропускной способности сети и планирование ее мощности.

Сейчас, когда ЛВС стали определяющим компонентом в информационной стратегии большинства организаций, недостаточное внимание к оценке мощности ЛВС и ее планированию привело к тому, что сегодня для поддержки современных приложений в технологии клиент-сервер многие сети необходимо заново проектировать во многих случаях и заменять.

Производительность и пропускная способность ЛВС определяется рядом факторов: выбором серверов и рабочих станций, сетевого оборудования, операционных систем рабочих станций, серверов и их конфигураций, распределением файлов базы данных по серверам сети, организацией распределенного вычислительного процесса, защиты, поддержания и восстановления работоспособности в ситуациях сбоев и отказов и т. п.

Максимальные возможности корпоративной ЛВС для конкретных приложений (банковская, офисная, проектно-конструкторская, управленческая деятельность и др.) могут быть достигнуты только на основе комплексного подхода к оптимизации ЛВС на всех этапах жизненного цикла (от технико-экономического обоснования и технического задания на разработку до эксплуатации и модернизации).

Для решения задач оптимизации производительности и пропускной способности ЛВС используются методы и средства измерения (анализа) и моделирования. Особенности трафика ЛВС делают моделирование сетей более трудным, чем моделирование систем с главной машиной. В ЛВС трафик может сильно варьироваться, что определяется природой распределенной обработки. Так как такая обработка выполняется и клиентом, и сервером, есть много способов распределения обработки информации между ними, но в первую очередь необходимо знать о производительности самих приложений и влиянии приложений на общую производительность и пропускную способность сети.

Как правило, средства моделирования позволяют определить производительность и пропускную способность ЛВС на основе показателей ее фактического оцениваемого трафика, указываемых администратором сети. Многие пакеты моделирования могут воспринимать данные и от инструментальных средств анализа сети (сетевых анализаторов), таких, например, как анализатор протокола Sniffer фирмы Network General. Для крупномасштабных моделей такая возможность имеет важное значение, поскольку в этом случае отпадает необходимость во вводе в моделирующую программу множеств данных. Установив в сети программные измерительные средства и уяснив картину полного сетевого трафика, можно использовать и данные с помощью продуктов административного управления сетью, таких, как Sun Net Manager фирмы Sun Microsystem и Open View фирмы Hewlett Packard. Другим подходом к моделированию является создание вариантов «сценариев» работы ЛВС, что позволяет программировать уровень трафика на основе действий сетевых приложений.

Средства моделирования обычно включают модули, эмулирующие все сетевые устройства. Например, пакет PlanNet фирмы Comdisco позволяет моделировать все оборудование ЛВС Token Ring и Ethernet вплоть до средств передачи речевых данных и телекоммуникаций. После того как модель сети разработана и отлажена появляется возможность проведения экспериментов, например, можно добавить в сеть пользователей сегменты, мосты, коммутаторы, концентраторы, изменить тип передающей среды или сервера и т. п. Модель покажет пропускную способность сети, уровень трафика и ошибок, время реакции.

Следует иметь в виду, что для решения задач оптимизации ЛВС необходимы точные исходные данные (например, получаемые от сетевого анализатора), правильная оценка роста трафика, генерируемого новым сетевым приложением, а также понимание возможности программы (пакета) моделирования и какие из «сценариев» жизнеспособны. Инструментальные средства не могут дать конкретных рекомендаций по поиску «узких» мест и оптимизации ЛВС, а только способны показать, как изменения могут повлиять на характеристики сети. Интерпретировать данные, полученные инструментальными средствами, разрабатывать планы устранения «узких мест» в ЛВС, сценарии для их проверки, решать оптимизационные задачи должен администратор сети.

3. Методы оценки эффективности ЛВС

3.1 Методы исследования

На различных стадиях жизненного цикла ЛВС могут использоваться различные методы оценки ее эффективности и оптимизации.

В процессе проектирования ЛВС с использованием современной методологии проектирования и технологических комплексов (САПР) могут применяться экспериментальные методы исследования, аналитическое и имитационное моделирование.

На стадиях опытной и рабочей эксплуатации ЛВС основным методом оценки их качества следует считать экспериментальное исследование. Оно позволяет собрать статистическую информацию о действительном ходе вычислительного, процесса, использовании оборудования, степени удовлетворения требований пользователей системы и т. п. и затем по результатам ее обработки сделать заключение о качестве проектных решений, заложенных при создании системы, а также принять решение по модернизации системы.

Моделирование — один из наиболее распространенных методов исследования. Модель ЛВС — это такое ее представление, которое состоит из определенного количества организованной информации о ней и построено с целью ее изучения. Другими словами, модель — физическая или абстрактная система, представляющая объект исследования. При исследовании ЛВС, как правило, используются абстрактные модели, представляющие собой описания ЛВС на некотором языке. Абстрактная модель, представленная на языке математических отношений, называется математической моделью.

3.2 Аналитическое моделирование

Использование аналитических методов связано с необходимостью построения математических моделей ЛВС в строгих математических терминах. Аналитические модели ВС носят обычно вероятностный характер и строятся на основе понятий аппарата теорий массового обслуживания, вероятностей и марковских процессов, а также методов диффузной аппроксимации. Могут также применяться дифференциальные и алгебраические уравнения.

При использовании этого математического аппарата часто удается быстро получить аналитические модели для решения достаточно широкого круга задач исследования ЛВС.

Но аналитические модели имеют ряд существенных недостатков:

-значительные упрощения, свойственные большинству аналитических моделей. Подобные упрощения ставят иногда под сомнение результаты аналитического моделирования;

-громоздкость вычислений для сложных моделей;

-сложность аналитического описания вычислительных процессов ЛВС. Большинство известных аналитических моделей можно рассматривать лишь как попытку подхода к описанию процессов функционирования ЛВС;

-недостаточная развитость аналитического аппарата в ряде случаев не позволяет в аналитических моделях выбирать для исследования наиболее важные характеристики ЛВС.

Указанные особенности позволяют заключить, что аналитические методы имеют самостоятельное значение лишь при исследовании процессов функционирования ЛВС в первом приближении и в частных, достаточно специфичных задачах. В этих случаях возможности исследования аналитических моделей ЛВС существенно расширяют приближенные методы.

3.3 Имитационное моделирование

В отличие от аналитического, имитационное моделирование снимает большинство ограничений, связанных с возможностью отражения в моделях реального процесса функционирования исследуемой ЛВС, динамической взаимной обусловленности текущих и последующих событий, комплексной взаимосвязи между параметрами и показателями эффективности системы и т. п. Хотя имитационные модели во многих случаях более трудоемки, менее лаконичны, чем аналитические, они могут быть сколь угодно близки к моделируемой системе и просты в использовании.

Имитационные модели представляют собой описание объекта исследования на некотором языке, которое имитирует элементарные явления, составляющие функционирование исследуемой системы, с сохранением их логической структуры, последовательности протекания во времени, особенностей и состава информации о состоянии процесса.

Основными недостатками имитационного моделирования, несмотря на появившиеся в последнее время различные системы моделирования, остаются сложность, высокая трудоемкость и стоимость разработки моделей, а иногда и большая ресурсоемкость моделей при реализации на ЭВМ.

3.4 Сбор данных для моделирования

Как правило, средства моделирования сети вычисляют ее производительность на основе показателей ее фактического и оцениваемого трафика, указываемых администратором сети. Многие программы моделирования воспринимают данные и от инструментальных средств анализа сети, таких, как анализатор протокола Sniffer фирмы Network General. Для крупномасштабных моделей такая возможность имеет важное значение: без нее пришлось бы подсчитывать передаваемые пакеты и вводить множество данных. Установив программные датчики, позволяющие получить картину полного сетевого трафика, можно использовать и данные, получаемые с помощью продуктов административного управления сетью, таких, как SunNet Manager фирмы Microsystems и Open View фирмы Hewlett Packard.

Другим подходом к моделированию сети является создание вариантов сценария работы ЛВС, что позволяет программировать уровень трафика на основе действий сетевых приложений. Разница между этими подходами состоит в том, что в первом случае просто используется экстраполяция на основе измеренного трафика, а второй позволяет управлять масштабом операций. Он будет срабатывать тем эффективнее, чем больше сценарии приближены к реальности.

локальный вычислительный сеть

4. Архитектура ЛВС

Сетевая архитектура сродни архитектуре строений. Архитектура здания отражает стиль конструкций и материалы, используемые для постройки. Архитектура сети описывает не только физическое расположение сетевых устройств, но и тип используемых адаптеров и кабелей. Кроме того, сетевая архитектура определяет методы передачи данных по кабелю.

4.1 Типы сетей

Одноранговая сеть.

В одноранговой сети, все компьютеры равноправны: нет иерархии среди компьютеров и нет выделенного сервера, и, как правило, каждый компьютер функционирует и как клиент и как сервер. Все пользователи самостоятельно решают, какие данные на своем компьютере сделать доступными для всех. Одноранговую сеть называют так же рабочей группой. Рабочая группа — это небольшой коллектив, поэтому в одноранговой сети не более 10 компьютеров.

Одноранговые сети относительно просты. Поскольку каждый компьютер является и клиентом, и сервером, нет необходимости в мощном центральном сервере или в других компонентах, обязательных для более сложных сетей. Одноранговые сети обычно дешевле сетей на основе сервера, но требуют более мощных и дорогих компьютеров.

Одноранговая компьютерная сеть выглядит так:

1. Компьютеры расположены на рабочих столах пользователей.

2. Пользователи сами выступают в роли администраторов, и сами обеспечивают защиту информации.

3. Для объединения компьютеров в сеть применяется простая кабельная система.

Сети на основе сервера.

Если к сети подключено более 10 пользователей, то одноранговая сеть, где компьютеры выступают в роли клиентов, и серверов, может оказаться недостаточно производительной. Поэтому большинство сетей используют выделенные серверы. Выделенным называется такой сервер, который функционирует только как сервер. Они специально оптимизированы для быстрой обработки запросов от сетевых клиентов и для управления защитой файлов и каталогов. Сети на основе сервера стали промышленным стандартом.

С увеличением размеров сети и объемов сетевого трафика необходимо увеличивать количество серверов. Распределение задач среди нескольких серверов гарантирует, что каждая задача будет выполняться самым эффективным способом из всех возможных.

Круг задач, которые должны выполнять серверы, многообразен и сложен. Чтобы приспособиться возрастающим потребностям пользователей, серверы в больших сетях стали специализированными. Например, в сети Windows NT существуют различные типы серверов:

-Файл-серверы и принт-серверы управляют доступом соответственно к файлам и принтерам;

-На серверах приложений выполняются прикладные части клиент-серверных приложений, а так же находятся данные доступные клиентам.

Например, чтобы упростить извлечение данных, серверы хранят большие объемы информации в структурированном виде. Эти серверы отличаются от файл-серверов и принт-серверов. В принт-серверах, файл или данные целиком копируются на запрашиваемый компьютер. А в сервере приложений на запрашиваемый компьютер посылаются только результаты запроса. Приложение-клиент на удаленном компьютере получает доступ к данным, хранимым на сервере приложений. Однако вместо всей базы данных на ваш компьютер с сервера загружаются только результаты запроса.

В расширенной сети использование серверов различных типов становится наиболее актуальным. Необходимо поэтому учитывать всевозможные нюансы, которые могут проявиться при разрастании сети, с тем чтобы изменение роли определенного сервера в дальнейшем не отразилось на работе всей сети.

Основным аргументом при работе в сети на основе выделенного сервера является, как правило, защита данных. В таких сетях, например как Windows NT Server, проблемами безопасности может заниматься один администратор.

Поскольку жизненно важная информация расположена централизованно, то есть, сосредоточена на одном или нескольких серверах, нетрудно обеспечить ее регулярное резервное копирование. Благодаря избыточным системам, данные на любом сервере могут дублироваться в реальном времени, поэтому в случае повреждения основной области хранения данных информация не будет потеряна — легко воспользоваться резервной копией. Сети на основе сервера могут поддерживать тысячи пользователей. Сетью такого размера, будь она одноранговой, невозможно было бы управлять. Так как компьютер пользователя не выполняет функции сервера, требования к его характеристикам зависят от самого пользователя.

4.2 Топологии вычислительной сети

Топология типа звезда.

Концепция топологии сети в виде звезды пришла из области больших ЭВМ, в которой головная машина получает и обрабатывает все данные с периферийных устройств как активный узел обработки данных. Этот принцип применяется в системах передачи данных, например, в электронной почте RELCOM. Вся информация между двумя периферийными рабочими местами проходит через центральный узел вычислительной сети.

Пропускная способность сети определяется вычислительной мощностью узла и гарантируется для каждой рабочей станции. Столкновений данных не возникает.

Топология в виде звезды является наиболее быстродействующей из всех топологий вычислительных сетей, поскольку передача данных между рабочими станциями проходит через центральный узел по отдельным линиям, используемым только этими рабочими станциями. Частота запросов передачи информации от одной станции к другой невысокая, по сравнению с достигаемой в других топологиях.

Производительность вычислительной сети в первую очередь зависит от мощности центрального файлового сервера.

Кольцевая топология.

При кольцевой топологии сети рабочие станции связаны одна с другой по кругу, т. е. рабочая станция 1 с рабочей станцией 2, рабочая станция 3 с рабочей станцией 4 и т. д. Последняя рабочая станция связана с первой. Коммуникационная связь замыкается в кольцо.

Сообщения циркулируют регулярно по кругу. Рабочая станция посылает по определенному конечному адресу информацию, предварительно получив из кольца запрос. Пересылка сообщений является очень эффективной. Очень просто можно сделать кольцевой запрос на все станции. Продолжительность передачи информации увеличивается пропорционально количеству рабочих станций, входящих в вычислительную сеть.

Основная проблема при кольцевой топологии заключается в том, что каждая рабочая станция должна активно участвовать в пересылке информации, и в случае выхода из строя хотя бы одной из них вся сеть парализуется.

Шинная топология.

При шинной топологии среда передачи информации представляется в форме коммуникационного пути, доступного дня всех рабочих станций, к которому они все должны быть подключены. Все рабочие станции могут непосредственно вступать в контакт с любой рабочей станцией, имеющейся в сети.

Рабочие станции в любое время, без прерывания работы всей вычислительной сети, могут быть подключены к ней или отключены. Функционирование вычислительной сети не зависит от состояния отдельной рабочей станции.

Древовидная структура ЛВС.

Наряду с известными топологиями вычислительных сетей кольцо, звезда и шина, на практике применяется и комбинированная, на пример древовидная структура. Она образуется в основном в виде комбинаций вышеназванных топологий вычислительных сетей. Основание дерева вычислительной сети располагается в точке (корень), в которой собираются коммуникационные линии информации (ветви дерева).

Вычислительные сети с древовидной структурой применяются там, где невозможно непосредственное применение базовых сетевых структур в чистом виде.

4.3 Типы построения сетей по методам передачи информации

Локальная сеть Token Ring.

Этот стандарт разработан фирмой IBM. В качестве передающей среды применяется неэкранированная или экранированная витая пара (UPT или SPT) или оптоволокно. Скорость передачи данных 4 Мбит/с или 16Мбит/с. В качестве метода управления доступом станций к передающей среде используется метод — маркерное кольцо (Тоken Ring).

Основные положения этого метода:

ь устройства подключаются к сети по топологии кольцо;

ь все устройства, подключенные к сети, могут передавать данные, только получив разрешение на передачу (маркер);

ь в любой момент времени только одна станция в сети обладает таким правом.

В IВМ Тоkеn Ring используются три основных типа пакетов:

ь пакет управление/данные (Data/Соmmand Frame);

ь маркер (Token);

пакет сброса (Аbort).

Пакет Управление/Данные. С помощью такого пакета выполняется передача данных или команд управления работой сети.

Маркер. Станция может начать передачу данных только после получения такого пакета, В одном кольце может быть только один маркер и, соответственно, только одна станция с правом передачи данных.

Пакет Сброса. Посылка такого пакета называет прекращение любых передач.

В сети можно подключать компьютеры по топологии звезда или кольцо.

Локальная сеть Ethernet.

Спецификацию Ethernet в конце семидесятых годов предложила компания Xerox Corporation. Позднее к этому проекту присоединились компании Digital Equipment Corporation (DEC) и Intel Corporation. В 1982 году была опубликована спецификация на Ethernet версии 2.0. На базе Ethernet и нститутом IEEE был разработан стандарт IEEE 802.3. Различия между ними незначительные.

Основные принципы работы.

На логическом уровне в Ethernet применяется топология шина:

ь все устройства, подключенные к сети, равноправны, т. е. любая станция может начать передачу в любой момент времени (если передающая среда свободна);

ь данные, передаваемые одной станцией, доступны всем станциям сети.

5. Заключение

Понятие локальная вычислительная сеть относится к географически ограниченным (территориально или производственно) аппаратно-программным реализациям, в которых несколько компьютерных систем друг с другом с помощью соответствующих средств коммуникаций. Благодаря такому соединению пользователь может взаимодействовать с другими рабочими станциями, подключенными к этой ЛВС.

Основное отличие ЛВС от глобальных систем заключается в том, что для всех абонентов имеется единый высокоскоростной канал передачи данных, к которому ЭВМ и другое периферийное оборудование подключаются через специальные блоки сопряжения. Поэтому схемы соединения ЭВМ по линиям связи, а также системы телеобработки различных конфигураций не могут считаться ЛВС, даже если они обслуживают такую же по размерам территорию.

В производственной практике ЛВС играют очень большую роль. Посредством ЛВС в систему объединяются персональные компьютеры, расположенные на многих удаленных рабочих местах, которые совместно используют оборудование, программные средства и информацию. Рабочие места сотрудников перестают быть изолированными и объединяются в единую систему.

6. Список использованной литературы:

1. Соболь Б. В., Информатика: учебник/ Б. В. Соболь. — Ростов н/Д: Феникс, 2007. -- 446 с.

2. Олифер В. Г., Компьютерные сети. Принципы, технологии, протоколы: учебник/ В. Г Олифер, Олифер Н. А. — СПб.: 2006. -- 958 с.

3. Бэрри Нанс., Компьютерные сети: учебник/ Бэрри Нанс — Пер. с англ.- М.: Восточная Книжная Компания, 1996. — 400 с.

4. Чаппел Л., Анализ локальных сетей NetWare: Руководство Novell: пер. с англ. / Л. Чаппел, Д. Хейкс. — М.: ЛОРИ, 1995 — 596 с.

5. Электронные источники.

Показать Свернуть
Заполнить форму текущей работой