Исследование данных финансовой отчетности ОАО "Сургутнефтегаз" с помощью статистических методов

Тип работы:
Дипломная
Предмет:
Экономика


Узнать стоимость

Детальная информация о работе

Выдержка из работы

Содержание

ВВЕДЕНИЕ

1. КРАТКАЯ ХАРАКТЕРИСТИКА ОАО «СУРГУТНЕФТЕГАЗ»

2. ОСНОВНЫЕ ПРОИЗВОДСТВЕННЫЕ И ФИНАНСОВЫЕ ПОКАЗАТЕЛИ ДЕЯТЕЛЬНОСТИ КОМПАНИИ

2.1 Расчет показателей динамики стоимости имущества ОАО «Сургутнефтегаз» в 2009 — 2013 годах

2.2 Построение линейного уравнения тренда роста балансовой стоимости имущества ОАО «Сургутнефтега»

2.3 Анализ точности определения оценок параметров уравнения тренда.

2.4 Прогноз роста источников формирования имущества ОАО «Сургутнефтегаз»

2.5 Статистический анализ Отчета о финансовых результатах ОАО «Сургутнефтегаз»

Исходные данные представлены в таблице 5.

2.6 Статистический анализ финансово — производственных показателей

2.7 Однофакторный дисперсионный анализ

2.8 Анализ точности определения оценок параметров уравнения тренда,

2.9 Интервальный прогноз

2. 10 Проверка гипотез относительно коэффициентов линейного уравнения тренда

2. 11 Проверка гипотезы о зависимости объемов добычи от количества среднедействующих скважин в ОАО «Сургутнефтегаз»

Корреляционный анализ. Уравнение парной регрессии.

2. 12 Оценка параметров уравнения регрессии. Анализ точности определения оценок коэффициентов регрессии.

2. 13 Доверительные интервалы для зависимой переменной.

2. 14 Проверка гипотез относительно коэффициентов линейного уравнения регрессии.

2. 15 Дисперсионный анализ

3. ПРОВЕРКА ЗАВИСИМОСТИ ДОБЫЧИ НЕФТИ ОТ ОБЪЕМА КАПИТАЛОВЛОЖЕНИЙ

3.1 Корреляционный анализ. Уравнение парной регрессии.

3.2 Коэффициент корреляции

3.3 Уравнение регрессии (оценка уравнения регрессии).

3.4 Коэффициент детерминации.

3.5 Оценка параметров уравнения регрессии. Значимость коэффициента корреляции

3.6 Интервальная оценка для коэффициента корреляции (доверительный интервал).

3.7 Анализ точности определения оценок коэффициентов регрессии.

3.9 Проверка гипотез относительно коэффициентов линейного уравнения регрессии.

ЗАКЛЮЧЕНИЕ

СПИСОК ЛИТЕРАТУРЫ

Введение

В начале 90-х годов XX века начался отсчет новейшей истории деятельности предприятий топливно-энергетического комплекса Российской Федерации — реорганизация нефтяной отрасли. Сургутнефтегаз в числе первых нефтяных компаний начал непростой переход с привычной работы в рамках государственного предприятия на новую форму хозяйствования — в качестве акционерного общества.

В состав нефтяной компании «Сургутнефтегаз» вошло нефтегазодобывающее предприятие «Сургутнефтегаз», Киришский нефтеперерабатывающий завод и ряд предприятий нефтепродуктообеспечения на Северо-Западе России.

Достаточно сложно было за короткий срок из разных и по структуре, и по техническому уровню подразделений, находящихся за сотни и тысячи километров друг от друга, создать единый технологический комплекс, который не просто обеспечивал бы объемы добычи, переработки сырья и сбыта, но работал бы эффективно и прибыльно.

Основополагающим для Компании стал ориентир на консолидацию активов на территории России, поддержание ресурсной базы и сохранение производственных мощностей и коллективов предприятий, вошедших в состав акционерного общества. Сургутнефтегаз преодолел все сложности организационного периода и стал самодостаточной, успешно управляемой, эффективно работающей и высокотехнологичной топливно-энергетической Компанией, обеспечивающей полный цикл нефтегазодобычи, переработки нефти, газа, выработки на его основе собственной электроэнергии, получения готового продукта и сырья для нефтехимии.

Технические, технологические и финансово-хозяйственные методики, применяемые в Компании в новых экономических условиях, позволяли преодолевать мировые финансово-экономические потрясения, обеспечивая при этом стабильные темпы производства, создавая и укрепляя научный и кадровый потенциал. Высокопрофессиональный коллектив акционерного общества научился максимально эффективно оперировать природными, материальными и трудовыми ресурсами во благо развития надежного материально-сырьевого потенциала, совершенствования всех бизнес-процессов, обязательного соблюдения интересов акционеров и динамичного роста капитализации Компании. В планировании и управлении деятельностью подразделений

Компания всегда придерживалась принципа устойчивого развития, комплексного подхода к решению производственных, экономических, социальных и экологических задач. В результате все направления деятельности Компании — от разведочного бурения до сбыта топлива — достигли качественно нового уровня развития.

В частности, накопленный богатый опыт работы по добыче трудноизвлекаемых запасов с использованием 40 передовых методов повышения нефтеотдачи пластов, внедрение новой техники и технологий нефтедобычи позволяют сегодня повышать эффективность эксплуатации действующих месторождений, а также включать в разработку недоступные при обычных технологиях добычи запасы углеводородов.

Реализация сбытовыми предприятиями Компании единой технической политики, соблюдение высоких требований к качеству реализуемого топлива и оказываемых услуг легли в основу формирования высокотехнологичной сети АЗС «Сургутнефтегаз», занимающей сегодня лидирующие позиции в регионах присутствия.

Цель дипломной работы — исследование данных финансовой отчетности ОАО «Сургутнефтегаз» с помощью статистических методов.

1. Краткая характеристика ОАО «Сургутнефтегаз»

Сегодня ОАО «Сургутнефтегаз» в числе лидеров отечественной нефтяной промышленности, но Компания не перестает задумываться о том, какой она войдет в следующий двадцатилетний отрезок времени, какими принципами будет руководствоваться в своей дальнейшей деятельности, какие приоритеты определит на этот период, чтобы акционеры и впредь могли рассчитывать на высокую эффективность, стабильные темпы развития бизнеса и рост конкурентоспособности. Приоритетные направления деятельности компании

1. ДОБЫЧА НЕФТИ И ГАЗА: расширенное воспроизводство и улучшение качества ресурсной базы за счет проведения геологоразведочных работ на существующих лицензионных участках и приобретения новых перспективных участков;

— разработка и применение инновационных решений, внедрение современных техник и технологий в освоении и разработке месторождений, повышающих эффективность геологоразведочных работ и процессов добычи нефти и газа;

— стабилизация объемов производства в традиционном регионе деятельности — Западной Сибири, наращивание добычи нефти в Восточной Сибири;

— комплексное развитие газового сектора — обеспечение высокого уровня утилизации и максимально эффективное использование попутного нефтяного газа;

— контроль над затратами

2. ПЕРЕРАБОТКА НЕФТИ И ГАЗА:

— улучшение качественных характеристик продукции, соответствие ее российским и мировым стандартам качества;

— повышение эффективности процессов переработки за счет реализации проектов модернизации и реконструкции производственных мощностей; расширение ассортимента продукции.

3. СБЫТ ПРОДУКЦИИ:

— диверсификация поставок продукции за счет выхода на новые рынки и развития транспортной инфраструктуры России;

— расширение рынков сбыта нефтепродуктов за счет строительства и модернизации сети автозаправочных станций;

— увеличение объемов реализации сопутствующих товаров и услуг.

4. ЭНЕРГЕТИКА:

— развитие энергетического комплекса, который обеспечивает генерацию, транспортировку и сбыт электрической и тепловой энергии и создает дополнительные преимущества использования добываемого углеводородного сырья и вырабатываемых энергоресурсов;

— внедрение энергосберегающих и энергоэффективных решений и технологий.

4. СОЦИАЛЬНАЯ ОТВЕТСТВЕННОСТЬ:

— уменьшение негативного воздействия производства на окружающую среду, обеспечение экологической безопасности производственных объектов и рациональное использование природных ресурсов;

— обеспечение высоких стандартов промышленной безопасности и охраны труда;

— содействие гармоничному социально-экономическому развитию регионов присутствия;

— обеспечение дополнительных социальных льгот и гарантий работникам, членам их семей, пенсионерам.

Территория деятельности Компании сосредоточена в российской федерации и простирается от балтики до дальнего Востока. В секторе поиска и добычи углеводородного сырья ОАО активно осваивает З нефтегазоносные провинции россии: Западно-Сибирскую, осточно-Сибирскую, Тимано-Печорскую.

Компания уверенно расширяет географические границы бизнеса, активно развивая поиск и разведку углеводородного сырья на новых территориях в Тюменской, Иркутской, Новосибирской областях, Красноярском крае, Ненецком автономном округе, Ямало-Ненецком автономном округе, Республике Саха (Якутия), Ханты-Мансийском автономном округе — Югре.

Перерабатывающие мощности Компании сосредоточены в 2 регионах: нефтеперерабатывающий завод находится в г. Кириши Ленинградской области, газоперерабатывающий -- в Сургутском районе Тюменской области.

2. Основные производственные и финансовые показатели деятельности компании

стоимость имущество балансовый корреляция

В таблице 1 представлены основные показатели, характеризующие финансовое состояние и имущественную базу компании.

Таблица 1

Бухгалтерский баланс ОАО «Сургутнефтегаз» на 31. 12. 2013 г

Наименование показателя

2013 г

2012 г

2011 г

2010 г

2009 г

АКТИВ

1. ВНЕОБОРОТНЫЕ АКТИВЫ

Нематериальные активы

444

402

326

260

259

Результаты исследований и разработок

108

80

130

90

67

Нематериальные поисковые активы

69 142

12 797

57 724

10 684

Основные средства

587 154

564 003

517 887

490 189

470 862

Финансовые вложения

762 427

646 162

557 131

358 134

309 306

Отложенные налоговые активы

52

127

1706

43

106

Прочие внеоборотные активы

13 847

13 687

13 572

11 560

11 426

Итого по разделу'

1 433 224

1 237 312

1 090 811

918 000

802 709

II. ОБОРОТНЫЕ АКТИВЫ
Запасы

60 864

65 665

56 716

50 812

54 821

Налог на добавленную стоимость по приобретенным ценностям

3544

4035

3793

2959

3369

Дебиторская задолженность

148 953

152 254

128 316

124 355

127 110

Финансовые вложения (за исключением денежных эквивалентов)

315 277

301 388

355 909

263 211

251 616

в том числе прочие финансовые вложения, кроме инвестиций в организации и предоставленныхзаймов

313 027

301 388

355 905

261 332

251 616

денежные средства и денежные эквиваленты

23 937

35 276

16 031

19 984

29 450

Прочие оборотные активы

1217

1137

1807

1016

949

Итого по разделу II

553 791

559 754

562 571

462 336

467 314

БАЛАНС

1 987 015

1 797 066

1 653 382

1 380 337

1 270 023

ПАССИВ
III. КАПИТАЛ И РЕЗЕРВЫ
Уставный капитал (складочный капитал, уставный фонд вклады товарищей)

43 428

43 428

43 428

43 428

43 428

Переоценка внеоборотных активов

434 010

437 868

422 398

362 336

365 557

добавочный капитал (без переоценки)

192 512

192 512

192 512

192 512

192 512

Резервный капитал

6514

6514

6514

6514

6514

Нераспределенная прибыль (непокрытый убыток)

1 189 082

1 009 573

882 229

670 489

562 766

Итого по разделу III

1 865 546

1 689 895

1 547 081

1 275 279

1 170 777

IУ. ДОЛГОСРОЧНЫЕ ОБЯЗАТЕЛЬСТВА
Заемные средства

542

421

388

452

351

Отложенные налоговые обязательства

48 840

36 172

28 914

21 073

16 692

Оценочныв обязательства

2

2

Прочие обязательства

215

210

0

180

175

Итого по разделу IУ

49 599

36 382

28 914

41 408

30 373

У. КРАТКОСРОЧНЫЕ ОБЯЗАТЕЛЬСТВА
Заемные средства

140

233

140

117

194

Кредиторская задолженность

62 861

59 616

67 464

43 968

43 076

доходы будущих периодов

778

939

1159

650

784

Оценочные обязательства

7664

9484

8132

6399

7918

Прочие обязательства

427

518

494

357

432

Итого по разделу у

71 871

70 789

77 388

63 650

68 873

БАЛАНС

1 987 015

1 797 066

1 653 382

1 380 337

1 270 023

На рисунке 1 показана динамика стоимости имущества в исследуемый период

Рис. 1. Динамика стоимости имущества и источников его формирования ОАО «Сургутнефтегпз»

2.1 Расчет показателей динамики стоимости имущества ОАО «Сургутнефтегаз» в 2009 — 2013 годах

Для расчета показателей динамики на постоянной базе каждый уровень ряда сравнивается с одним и тем же базисным уровнем. Исчисляемые при этом показатели называются базисными.

Для расчета показателей динамики на переменной базе каждый последующий уровень ряда сравнивается с предыдущим. Вычисленные таким способом показатели динамики называются цепными.

Важнейшим статистическим показателем динамики является абсолютный прирост, который определяется в разностном сопоставлении двух уровней ряда динамики в единицах измерения исходной информации.

Абсолютный прирост

цепной прирост: ?yц = yi — yi-1

базисный прирост: ?yб = yi — y1

Темпы прироста характеризуют абсолютный прирост в относительных величинах. Исчисленный в процентах темп прироста показывает, на сколько процентов изменился сравниваемый уровень с уровнем, принятым за базу сравнения.

Темп прироста

цепной темп прироста: Tпрцi = ?yi / yi-1

базисный темп прироста: Tпpб = ?yбi / y1

Распространенным статистическим показателем динамики является темп роста. Он характеризует отношение двух уровней ряда и может выражаться в виде коэффициента или в процентах.

Темп роста

цепной темп роста: Tpцi = yi / yi-1

базисный темп роста: Tpб = yбi / y1

Абсолютное значение 1% прироста

цепной: 1%цi = yi-1 / 100%

базисный: 1%б = yб / 100%

Темп наращения

Важным статистическим показателем динамики социально-экономических процессов является темп наращивания, который в условиях интенсификации экономики измеряет наращивание во времени экономического потенциала

Tн = ?yцi / y1

Таблица 2

Цепные показатели ряда динамики

Период

стоимость имущества

Абсолютный прирост

Темп прироста, %

Темпы роста, %

Абсолютное содержание 1% прироста

Темп наращения, %

2009

1 270 023

-

-

100

12 700,23

0

2010

1 380 337

110 314

8,69

108,69

12 700,23

8,69

2011

1 653 382

273 045

19,78

119,78

13 803,37

21,5

2012

1 797 066

143 684

8,69

108,69

16 533,82

11,31

2013

1 987 015

189 949

10,57

110,57

17 970,66

14,96

Итого

8 087 823

В 2013 г по сравнению с 2012 стоимость имущества увеличилось на 189 949 млн. руб или на 10,57%

Максимальный прирост наблюдается в 2011 (273 045 млн. руб)

Минимальный прирост зафиксирован в 2010 (110 314 млн. руб)

Темп наращения показывает, что тенденция ряда возрастающая, что свидетельствует об ускорении стоимости имущества

Таблица 3

Базисные показатели ряда динамики

Период

Cтоимость имущества

Абсолютный прирост

Темп прироста, %

Темпы роста, %

2009

1 270 023

-

-

100

2010

1 380 337

110 314

8,69

108,69

2011

1 653 382

383 359

30,19

130,19

2012

1 797 066

527 043

41,5

141,5

2013

1 987 015

716 992

56,46

156,46

Итого

8 087 823

В 2013 по сравнению с 2009 стоимость имущества увеличилось на 716 992 млн. руб или на 56,46%

Расчет средних характеристик рядов.

Средний уровень ряда y динамики характеризует типическую величину абсолютных уровней.

Средний уровень интервального ряда рассчитывается по формуле:

Среднее значение стоимость имущества с 2009 по 2013 составило 1 617 564,6 млн. руб

Средний темп роста

В среднем за весь период рост анализируемого показателя составил 1,12

Средний темп прироста

В среднем с каждым периодом стоимость имущества увеличивалась на 12%.

Средний абсолютный прирост представляет собой обобщенную характеристику индивидуальных абсолютных приростов ряда динамики.

Средний абсолютный прирост

С каждым периодом стоимость имущества в среднем увеличивалось на 179 248 млн руб.

2. 2 Построение линейного уравнения тренда роста балансовой стоимости имущества ОАО «Сургутнефтега»

Линейное уравнение тренда имеет вид y = bt + a

1. Находим параметры уравнения методом наименьших квадратов.

Система уравнений МНК:

a0n + a1? t = ?y

a0?t + a1? t2 = ?y*t

Таблица 4

Исходные данные для анализа МНК

t

y

t2

y2

t y

1

1 270 023

1

1 612 958 420 529

1 270 023

2

1 380 337

4

1 905 330 233 569

2 760 674

3

1 653 382

9

2 733 672 037 924

4 960 146

4

1 797 066

16

3 229 446 208 356

7 188 264

5

1 987 015

25

3 948 228 610 225

9 935 075

15

8 087 823

55

13 429 635 510 603

26 114 182

Для наших данных система уравнений имеет вид:

5a0 + 15a1 = 8 087 823

15a0 + 55a1 = 26 114 182

Из первого уравнения выражаем а0 и подставим во второе уравнение

Получаем a0 = 185 071,3, a1 = 1 062 350,7

Уравнение тренда:

y = 185 071,3 t + 1 062 350,7

Эмпирические коэффициенты тренда a и b являются лишь оценками теоретических коэффициентов вi, а само уравнение отражает лишь общую тенденцию в поведении рассматриваемых переменных,

Коэффициент тренда b = 185 071,3 показывает среднее изменение результативного показателя (в единицах измерения у) с изменением периода времени t на единицу его измерения, В данном примере с увеличением t на 1 единицу, y изменится в среднем на 185 071,3,

Оценим качество уравнения тренда с помощью ошибки абсолютной аппроксимации,

Ошибка аппроксимации в пределах 5%-7% свидетельствует о хорошем подборе уравнения тренда к исходным данным,

Поскольку ошибка меньше 7%, то данное уравнение можно использовать в качестве тренда,

Однофакторный дисперсионный анализ

Средние значения

Дисперсия

Среднеквадратическое отклонение

Коэффициент эластичности

Коэффициент эластичности представляет собой показатель силы связи фактора t с результатом у, показывающий, на сколько процентов изменится значение у при изменении значения фактора на 1%,

Коэффициент эластичности меньше 1, Следовательно, при изменении t на 1%, Y изменится менее чем на 1%, Другими словами — влияние t на Y не существенно,

Эмпирическое корреляционное отношение

Эмпирическое корреляционное отношение вычисляется для всех форм связи и служит для измерение тесноты зависимости, Изменяется в пределах [0; 1],

где

В отличие от линейного коэффициента корреляции он характеризует тесноту нелинейной связи и не характеризует ее направление, Изменяется в пределах [0; 1],

Связи между признаками могут быть слабыми и сильными (тесными), Их критерии оцениваются по шкале Чеддока:

0,1 < з < 0,3: слабая;

0,3 < з < 0,5: умеренная;

0,5 < з < 0,7: заметная;

0,7 < з < 0,9: высокая;

0,9 < з < 1: весьма высокая;

Полученная величина свидетельствует о том, что изменение временного периода t существенно влияет на y,

Коэффициент детерминации

т, е, в 98,69% случаев влияет на изменение данных, Другими словами — точность подбора уравнения тренда — высокая,

t

y

y (t)

(y-ycp)2

(y-y (t))2

(t-tp)2

(y-y (t)): y

1

1 270 023

1 247 422

120 785 163 730,56

510 805 201

4

0,0178

2

1 380 337

1 432 493,3

56 276 934 201,76

2 720 279 629,69

1

0,0378

3

1 653 382

1 617 564,6

1 282 886 142,76

1 282 886 142,76

0

0,0217

4

1 797 066

1 802 635,9

32 220 752 601,96

31 023 786,01

1

0,0031

5

1 987 015

1 987 707,2

136 493 598 060,16

479 140,84

4

0,348

15

8 087 823

8 087 823

347 059 334 737,2

4 545 473 900,3

10

0,0807

2.3 Анализ точности определения оценок параметров уравнения тренда

где m = 1 — количество влияющих факторов в модели тренда.

По таблице Стьюдента находим Tтабл

Tтабл (n-m-1; б/2) = (3;0. 025) = 3. 182

Рассчитаем границы интервала, в котором будет сосредоточено 95% возможных значений Y при неограниченно большом числе наблюдений и t = 3

(1 062 350.7 + 185 071. 3*3 — 3. 182*135 681. 22; 1 062 350.7 + 185 071. 3*3 — 3. 182*135 681. 22)

(1 481 883. 38;1 753 245. 82)

2.4 Прогноз роста источников формирования имущества ОАО «Сургутнефтегаз»

Определим среднеквадратическую ошибку прогнозируемого показателя.

m = 1 — количество влияющих факторов в уравнении тренда.

Uy = yn+L ± K

Где

L — период упреждения; уn+L — точечный прогноз по модели на (n + L)-й момент времени; n — количество наблюдений во временном ряду; Sy — стандартная ошибка прогнозируемого показателя; Tтабл — табличное значение критерия Стьюдента для уровня значимости б и для числа степеней свободы, равного n-2.

По таблице Стьюдента находим Tтабл

Tтабл (n-m-1; б/2) = (3;0. 025) = 3. 182

Точечный прогноз, t = 6: y (6) = 185 071. 3*6 + 1 062 350.7 = 2 172 778. 5

2 172 778.5 — 155 442. 35 = 2 017 336. 15; 2 172 778.5 + 155 442. 35 = 2 328 220. 85

Интервальный прогноз:

t = 6: (2 017 336. 15;2 328 220. 85)

Точечный прогноз, t = 7: y (7) = 185 071. 3*7 + 1 062 350.7 = 2 357 849. 8

2 357 849.8 — 179 489. 36 = 2 178 360. 44; 2 357 849.8 + 179 489. 36 = 2 537 339. 16

Интервальный прогноз:

t = 7: (2 178 360. 44;2 537 339. 16)

Точечный прогноз, t = 8: y (8) = 185 071. 3*8 + 1 062 350.7 = 2 542 921. 1

2 542 921.1 — 206 329. 14 = 2 336 591. 96; 2 542 921.1 + 206 329. 14 = 2 749 250. 24

Интервальный прогноз:

t = 8: (2 336 591. 96;2 749 250. 24)

Проверка гипотез относительно коэффициентов линейного уравнения тренда

1) t-статистика. Критерий Стьюдента.

Статистическая значимость коэффициента b подтверждается

Статистическая значимость коэффициента a подтверждается

Доверительный интервал для коэффициентов уравнения тренда.

Определим доверительные интервалы коэффициентов тренда, которые с надежность 95% будут следующими:

(b — tнабл Sb; b + tнабл Sb)

(185 071.3 — 3. 182*12 309. 18; 185 071.3 + 3. 182*12 309. 18)

(145 903. 5;224 239. 1)

(a — tнабл Sa; a + tнабл Sa)

(1 062 350.7 — 3. 182*40 824. 92; 1 062 350.7 + 3. 182*40 824. 92)

(932 445. 82;1 192 255. 58)

2) F-статистика. Критерий Фишера.

Находим из таблицы Fkp (1; 3;0. 05) = 10. 1

где m — количество факторов в уравнении тренда (m=1).

Поскольку F > Fkp, то коэффициент детерминации (и в целом уравнение тренда) статистически значим

2.5 Статистический анализ Отчета о финансовых результатах ОАО «Сургутнефтегаз»

Исходные данные представлены в таблице 5.

Таблица 5

Отчет о финансовых результатах ОАО «Сургутнефтегаз» на 31. 12. 2013

Показатели

2009

2010

2011

2012

2013

Выручка

503 306

596 915

598 934

604 021

771 171

Себестоимость продаж

336 002

402 386

399 842

398 449

498 880

Валовая прибыль (убыток)

167 303

194 529

199 091

205 572

272 291

Коммерческие расходы

39 121

44 981

46 555

51 138

58 160

Прибыль (убыток) от продаж

128 182

149 547

152 537

154 434

214 130

Прочие доходы

549 100

660 095

653 429

867 747

1 045 726

Прочиерасходы

572 252

679 026

680 979

812 495

1 079 668

Прибыль (убыток) до налогообложения

141 727

157 986

168 655

247 653

180 188

Текущий налог на прибыль

38 266

42 656

45 537

29 652

26 535

Чистая прибыль (убыток)

103 461

115 330

123 118

204 809

148 904

На рисунке 3 показана динамика основных финансовых показателей

Рис. 3. Динамика основных финансовых показателей ОАО «Сургутнефтегаз», млн. руб

Таблица 6

Цепные показатели ряда динамики.

Период

Выручка от реализации

Абсолютный прирост

Темп прироста, %

Темпы роста, %

Абсолютное содержание 1% прироста

Темп наращения, %

1

503 306

-

-

100

5033,06

0

2

596 915

93 609

18,6

118,6

5033,06

18,6

3

598 934

2019

0,34

100,34

5969,15

0,4

4

604 021

5087

0,85

100,85

5989,34

1,01

5

771 171

167 150

27,67

127,67

6040,21

33,21

Итого

3 074 347

Максимальный прирост наблюдается в 2013 году (167 150 млн руб.)

Минимальный прирост зафиксирован в 2011 году (2019 млн руб.)

Темп наращения показывает, что тенденция ряда возрастающая, что свидетельствует об ускорении роста выручки от реализации

Таблица 7

Базисные показатели ряда динамики

Период

Выручка от реализации

Абсолютный прирост

Темп прироста, %

Темпы роста, %

1

503 306

-

-

100

2

596 915

93 609

18. 6

118. 6

3

598 934

95 628

19

119

4

604 021

100 715

20. 01

120. 01

5

771 171

267 865

53. 22

153. 22

Итого

3 074 347

В 2013 году по сравнению с 2009 выручка от реализации увеличилось на 267 865 млн руб. или на 53,22%

Расчет средних характеристик рядов

Средний уровень ряда y динамики характеризует типическую величину абсолютных уровней.

Средний уровень интервального ряда рассчитывается по формуле:

Среднее значение Выручка от реализации с 1 по 5 составило 614 869.4 млн руб.

Средний темп роста

В среднем за весь период рост анализируемого показателя составил 1. 11

Средний темп прироста

В среднем с каждым периодом выручка от реализации увеличивалась на 11%.

Средний абсолютный прирост представляет собой обобщенную характеристику индивидуальных абсолютных приростов ряда динамики.

Средний абсолютный прирост

млн. руб

С каждым периодом выручка от реализации в среднем увеличивалось на 66 966,25 млн руб.

1. Находим параметры уравнения методом наименьших квадратов.

Система уравнений МНК:

a0n + a1? t = ?y

a0?t + a1? t2 = ?y*t

t

y

t2

y2

t y

1

503 306

1

253 316 929 636

503 306

2

596 915

4

356 307 517 225

1 193 830

3

598 934

9

358 721 936 356

1 796 802

4

604 021

16

364 841 368 441

2 416 084

5

771 171

25

594 704 711 241

3 855 855

15

3 074 347

55

1 927 892 462 899

9 765 877

Система уравнений имеет вид:

5a0 + 15a1 = 3 074 347

15a0 + 55a1 = 9 765 877

Из первого уравнения выражаем а0 и подставим во второе уравнение

Получаем a0 = 54 283. 6, a1 = 452 018. 6

Уравнение тренда:

y = 54 283.6 t + 452 018. 6

Эмпирические коэффициенты тренда a и b являются лишь оценками теоретических коэффициентов вi, а само уравнение отражает лишь общую тенденцию в поведении рассматриваемых переменных.

Коэффициент тренда b = 54 283.6 показывает среднее изменение результативного показателя (в единицах измерения у) с изменением периода времени t на единицу его измерения. В данном примере с увеличением t на 1 единицу, y изменится в среднем на 54 283.6.

Оценим качество уравнения тренда с помощью ошибки абсолютной аппроксимации.

Ошибка аппроксимации в пределах 5%-7% свидетельствует о хорошем подборе уравнения тренда к исходным данным.

Поскольку ошибка меньше 7%, то данное уравнение можно использовать в качестве тренда.

Однофакторный дисперсионный анализ

Средние значения

Дисперсия

Среднеквадратическое отклонение

Коэффициент эластичности

Коэффициент эластичности представляет собой показатель силы связи фактора t с результатом у, показывающий, на сколько процентов изменится значение у при изменении значения фактора на 1%.

Коэффициент эластичности меньше 1.

Следовательно, при изменении t на 1%, Y изменится менее чем на 1%. Другими словами — влияние t на Y не существенно.

Эмпирическое корреляционное отношение

Эмпирическое корреляционное отношение вычисляется для всех форм связи и служит для измерение тесноты зависимости. Изменяется в пределах [0; 1].

где

В отличие от линейного коэффициента корреляции он характеризует тесноту нелинейной связи и не характеризует ее направление. Изменяется в пределах [0; 1].

Связи между признаками могут быть слабыми и сильными (тесными). Их критерии оцениваются по шкале Чеддока:

0.1 < з < 0. 3: слабая;

0.3 < з < 0. 5: умеренная;

0.5 < з < 0. 7: заметная;

0.7 < з < 0. 9: высокая;

0.9 < з < 1: весьма высокая;

Полученная величина свидетельствует о том, что изменение временного периода t существенно влияет на y.

Коэффициент детерминации.

т.е. в 78. 43% случаев влияет на изменение данных. Точность подбора уравнения тренда — высокая.

t

y

y (t)

(y-ycp)2

(y-y (t))2

(t-tp)2

(y-y (t)): y

1

503 306

506 302. 2

12 446 392 219. 56

8 977 214. 44

4

0. 595

2

596 915

560 585. 8

322 360 479. 36

1 319 810 772. 64

1

0. 0609

3

598 934

614 869. 4

253 936 973. 16

253 936 973. 16

0

0. 0266

4

604 021

669 153

117 687 782. 56

4 242 177 424

1

0. 11

5

771 171

723 436. 6

24 430 190 162. 56

2 278 572 943. 36

4

0. 0619

15

3 074 347

3 074 347

37 570 567 617. 2

8 103 475 327. 6

10

0. 26

2. Анализ точности определения оценок параметров уравнения тренда.

где m = 1 — количество влияющих факторов в модели тренда.

По таблице Стьюдента находим Tтабл

Tтабл (n-m-1; б/2) = (3;0. 025) = 3. 182

Рассчитаем границы интервала, в котором будет сосредоточено 95% возможных значений Y при неограниченно большом числе наблюдений при прогнозе в 2016 году:

(452 018,6 + 54 283,6*3 — 3,182*181 161,47; 452 018,6 + 54 283,6*3 — 3,182*181 161,47)

Следовательно, ожидаемая выручка в 2016 году составит от (433 707,93; 796 030,87) млн. руб

Интервальный прогноз

Определим среднеквадратическую ошибку прогнозируемого показателя.

m = 1 — количество влияющих факторов в уравнении тренда.

Uy = yn+L ± K

Где

L — период упреждения; уn+L — точечный прогноз по модели на (n + L)-й момент времени; n — количество наблюдений во временном ряду; Sy — стандартная ошибка прогнозируемого показателя; Tтабл — табличное значение критерия Стьюдента для уровня значимости б и для числа степеней свободы, равного n-2.

По таблице Стьюдента находим Tтабл

Tтабл (n-m-1; б/2) = (3; 0,025) = 3,182

Точечный прогноз, t = 6: (2014 год)

y (6) = 54 283,6*6 + 452 018,6 = 777 720,2

777 720,2 — 207 546,52 = 570 173,68; 777 720,2 + 207 546,52 = 985 266,72

Интервальный прогноз:

t = 6 (2014 год): ВР= (570 173,68; 985 266,72) млн. руб

Точечный прогноз,

t = 7 (2015 год): ВР = 54 283,6*7 + 452 018,6 = 832 003,8

832 003,8 — 239 654,08 = 592 349,72; 832 003,8 + 239 654,08 = 1 071 657,88

Интервальный прогноз:

t = 7 (2016 год) (592 349,72; 1 071 657,88) млн. руб

3. Проверка гипотез относительно коэффициентов линейного уравнения тренда.

1) t-статистика. Критерий Стьюдента.

Статистическая значимость коэффициента b подтверждается

Статистическая значимость коэффициента a подтверждается

Доверительный интервал для коэффициентов уравнения тренда.

Определим доверительные интервалы коэффициентов тренда, которые с надежность 95% будут следующими:

(b — tнабл Sb; b + tнабл Sb)

(54 283.6 — 3. 182*16 435. 2; 54 283.6 + 3. 182*16 435. 2)

(1986. 79;106 580. 41)

(a — tнабл Sa; a + tнабл Sa)

(452 018.6 — 3. 182*54 509. 4; 452 018.6 + 3. 182*54 509. 4)

(278 569. 7;625 467. 5) млн. руб

2) F-статистика. Критерий Фишера.

Находим из таблицы Fkp (1; 3;0. 05) = 10. 1

где m — количество факторов в уравнении тренда (m=1).

Поскольку F > Fkp, то коэффициент детерминации (и в целом уравнение тренда) статистически значим

2.6 Статистический анализ финансово — производственных показателей

Нефтегазодобывающая компания «Сургутнефтегаз» — одно из крупнейших предприятий нефтяной отрасли России. На его долю приходится около 13% объемов добычи нефти в стране и 25% газа, добываемого нефтяными компаниями России.

На протяжении многих лет предприятие является лидером отрасли по разведочному, эксплуатационному бурению и вводу в эксплуатацию новых добывающих скважин.

На предприятии создан первый в России полный цикл производства, переработки газа, выработки на его основе собственной электроэнергии, получения готового продукта и сырья для нефтехимии. 59 структурных подразделений предприятия осуществляют весь комплекс работ по разведке и разработке месторождений, по строительству производственных объектов и трубопроводов, по обеспечению экологической безопасности производства и по автоматизации производственных процессов. Одним из значимых конкурентных преимуществ предприятия является наличие в его составе мощных сервисных подразделений, которые обеспечивают высокую эффективность внедрения передовых технологий нефтегазодобычи. Нефть поставляется как на российские нефтеперерабатывающие заводы, так и за рубеж — в страны СНГ и Западной Европы

«Сургутнефтегаз» — одна из крупнейших нефтяных компаний России, активно развивающая секторы разведки и добычи нефти и газа, переработку газа и производство электроэнергии, производство и маркетинг нефтепродуктов, продуктов нефте- и газохимии

В таблице 7 представлены основные производственные показатели за десятилетний период.

Таблица 7

Основные производственные показатели деятельности ОАО СНГ в 2003 — 2012 годах

Показатели

Ед. изм.

2003год

2004год

2005год

2006год

2007год

2008год

2009год

2010год

2011год

2012год

1

Добыча нефти

млн. т

54,0

59,6

63,9

65,6

64,5

61,7

59,6

59,5

60,8

61,4

2

Производство газа

млрд. мі

13,9

14,3

14,4

14,6

14,1

14,1

13,6

13,4

13,0

12,3

3

Первичная переработка углеводородного сырья

млн. т.

15,2

16,1

18,5

20,2

19,9

20,6

20,4

21,3

21,1

20,5

4

Объём инвестиций

млн. руб.

40 275

45 960

56 613

74 911

96 761

106 975

141 859

159 364

175 190

185 738

нефтедобыча

37 211

42 268

52 361

68 516

88 133

96 333

128 903

137 861

146 258

165 585

нефтепереработка

2 811

3452

3916

6024

8075

9799

12 262

20 791

27 845

18 974

сбыт

252

241

336

372

553

842

693

712

1086

1179

5

Среднедействующий фонд добывающих скважин

скв.

15 387

15 325

15 340

15 813

16 308

16 727

17 262

17 950

18 668

19 490

6

Среднесписочная численность персонала

чел.

95 885

93 083

92 867

96 557

101 834

104 043

106 197

108 995

111 497

113 700

нефтедобыча

85 723

82 717

82 340

85 930

90 996

92 935

94 863

97 481

99 842

101 765

нефтепереработка

6 403

6369

6535

6596

6723

6973

7232

7410

7522

7746

сбыт

3 759

3997

3992

4031

4115

4135

4102

4104

4133

4189

7

Выручка от продажи
продукции, работ, услуг

млн. руб.

213 335

288 064

428 741

500 510

595 882

546 695

503 306

591 649

754 431

815 574

Рис. 4. Динамика основных производственных показателей ОАО «Сургутнефтегаз» в 2003 — 2012 годах

Расчет показателей динамики добычи нефти в период с 2003 по 2012 годы

Для расчета показателей динамики на постоянной базе каждый уровень ряда сравнивается с одним и тем же базисным уровнем. Исчисляемые при этом показатели называются базисными.

Для расчета показателей динамики на переменной базе каждый последующий уровень ряда сравнивается с предыдущим. Вычисленные таким способом показатели динамики называются цепными.

Важнейшим статистическим показателем динамики является абсолютный прирост, который определяется в разностном сопоставлении двух уровней ряда динамики в единицах измерения исходной информации.

Абсолютный прирост

цепной прирост: ?yц = yi — yi-1

базисный прирост: ?yб = yi — y1

Темпы прироста характеризуют абсолютный прирост в относительных величинах. Исчисленный в процентах темп прироста показывает, на сколько процентов изменился сравниваемый уровень с уровнем, принятым за базу сравнения.

Темп прироста

цепной темп прироста: Tпрцi = ?yi / yi-1

базисный темп прироста: Tпpб = ?yбi / y1

Распространенным статистическим показателем динамики является темп роста. Он характеризует отношение двух уровней ряда и может выражаться в виде коэффициента или в процентах.

Темп роста

цепной темп роста: Tpцi = yi / yi-1

базисный темп роста: Tpб = yбi / y1

Абсолютное значение 1% прироста

цепной: 1%цi = yi-1 / 100%

базисный: 1%б = yб / 100%

Темп наращения

Важным статистическим показателем динамики социально-экономических процессов является темп наращивания, который в условиях интенсификации экономики измеряет наращивание во времени экономического потенциала

Tн = ?yцi / y1

Цепные показатели ряда динамики

Период

Добыча нефти

Абсолютный прирост

Темп прироста, %

Темпы роста, %

Абсолютное содержание 1% прироста

Темп наращения, %

1

54

-

-

100

0,54

0

2

59,5

5,5

10,19

110,19

0,54

10,19

3

63,9

4,4

7,39

107,39

0,6

8,15

4

65,6

1,7

2,66

102,66

0,64

3,15

5

64,5

-1,1

-1,68

98,32

0,66

-2,04

6

61,7

-2,8

-4,34

95,66

0,65

-5,19

7

59,6

-2,1

-3,4

96,6

0,62

-3,89

8

59,5

-0,1

-0,17

99,83

0,6

-0,19

9

60,8

1,3

2,18

102,18

0,6

2,41

10

61,4

0,6

0,99

100,99

0,61

1,11

В 2012 году по сравнению с 2011 добыча нефти увеличилось на 0.6 тыс. т или на 0. 99%

Максимальный прирост наблюдается в 2004 году (5.5 тыс. т)

Минимальный прирост зафиксирован в 2008 году (-2.8 тыс. т)

Темп наращения показывает, что тенденция ряда убывающая, что свидетельствует о замедлении добычи нефти

Таблица 8

Базисные показатели ряда динамики

Период

добыча нефти, тыс. т

Абсолютный прирост

Темп прироста, %

Темпы роста, %

1

54

-

-

100

2

59,5

5,5

10,19

110,19

3

63,9

9,9

18,33

118,33

4

65,6

11,6

21,48

121,48

5

64,5

10,5

19,44

119,44

6

61,7

7,7

14,26

114,26

7

59,6

5,6

10,37

110,37

8

59,5

5,5

10,19

110,19

9

60,8

6,8

12,59

112,59

10

61,4

7,4

13,7

113,7

В 2012 году по сравнению с 2003 годом добыча нефти увеличилось на 7.4 тыс. т или на 13. 7%

Расчет средних характеристик рядов

Средний уровень ряда y динамики характеризует типическую величину абсолютных уровней.

Для нахождения среднего уровня моментного ряда используют среднюю хронологическую:

Среднее значение добыча нефти за анализируемый период составило 61. 42 тыс. т

Средний темп роста

В среднем за весь период рост анализируемого показателя составил 1. 01

Средний темп прироста

В среднем с каждым периодом добыча нефти увеличивалась на 1%.

Средний абсолютный прирост представляет собой обобщенную характеристику индивидуальных абсолютных приростов ряда динамики.

Средний абсолютный прирост

С каждым периодом добыча нефти в среднем увеличивалось на 0. 82 тыс.т.

Расчет параметров уравнения тренда

При выборе вида функции тренда можно воспользоваться методом конечных разностей (обязательным условием применения данного подхода является равенство интервалов между уровнями ряда).

Конечными разностями первого порядка являются разности между последовательными уровнями ряда:

Д1t = Yt — Yt-1

Конечными разностями второго порядка являются разности между последовательными конечными разностями 1-го порядка:

Д2t = Д1t — Д1t-1

Конечными разностями j-го порядка являются разности между последовательными конечными разностями (j-1)-го порядка:

Дjt = Дj-1t — Дj-1t-1

Если общая тенденция выражается линейным уравнением Y = a + bt, тогда конечные разности первого порядка постоянны: Д12 = Д13 = … = Д1n, а разности второго порядка равны нулю.

Если общая тенденция выражается параболой второго порядка: Y = a+ bt + ct2, то получим постоянными конечные разности второго порядка: Д23 = Д24 = … = Д2n, нулевыми — разности третьего порядка.

Если примерно постоянными оказываются темпы роста, то для выравнивания применяется показательная функция.

При выборе формы уравнения следует исходить из объема имеющейся информации. Чем больше параметров содержит уравнение, тем больше должно быть наблюдений при одной и той же степени надежности оценивания.

Выбор формы кривой может осуществляться и на основе принятого критерия качества уравнения регрессии, в качестве которого может служить сумма квадратов отклонений фактических значений уровня ряда от значений уровней, рассчитанных по уравнению тренда.

Из совокупности кривых выбирается та, которой соответствует минимальное значение критерия. Другим статистическим критерием является коэффициент множественной детерминации R2.

Таблица 9

Исходные данные для расчета коэффициента детерминации

yi

Д1t

Д2t

Темп роста

54

-

-

-

59. 5

5. 5

-

1. 1

63. 9

4. 4

-1. 1

1. 07

65. 6

1. 7

-2. 7

1. 03

64. 5

-1. 1

-2. 8

0. 98

61. 7

-2. 8

-1. 7

0. 96

59. 6

-2. 1

0. 7

0. 97

59. 5

-0. 1

2

1

60. 8

1. 3

1. 4

1. 02

61. 4

0. 6

-0. 7

1. 01

Линейное уравнение тренда имеет вид y = bt + a

1. Находим параметры уравнения методом наименьших квадратов.

Система уравнений МНК:

a0n + a1? t = ?y

a0?t + a1? t2 = ?y*t

t

y

t2

y2

t y

1

54

1

2916

54

2

59. 5

4

3540. 25

119

3

63. 9

9

4083. 21

191. 7

4

65. 6

16

4303. 36

262. 4

5

64. 5

25

4160. 25

322. 5

6

61. 7

36

3806. 89

370. 2

7

59. 6

49

3552. 16

417. 2

8

59. 5

64

3540. 25

476

9

60. 8

81

3696. 64

547. 2

10

61. 4

100

3769. 96

614

55

610. 5

385

37 368. 97

3374. 2

Для наших данных система уравнений имеет вид:

10a0 + 55a1 = 610,5

55a0 + 385a1 = 3374,2

Из первого уравнения выражаем а0 и подставим во второе уравнение

Получаем a0 = 0,199, a1 = 59,953

Уравнение тренда:

y = 0,199 t + 59,953

Аналитический вывод почти совпадает с графическим,

Рис. 5. График динамики добычи нефти ОАО «Сургутнефтегаз» в 2003 — 2012 годах

Эмпирические коэффициенты тренда a и b являются лишь оценками теоретических коэффициентов вi, а само уравнение отражает лишь общую тенденцию в поведении рассматриваемых переменных,

Коэффициент тренда b = 0,199 показывает среднее изменение результативного показателя (в единицах измерения у) с изменением периода времени t на единицу его измерения, В данном примере с увеличением t на 1 единицу, y изменится в среднем на 0,199,

2. 7 Однофакторный дисперсионный анализ

Средние значения

Дисперсия

Среднеквадратическое отклонение

2. 8 Анализ точности определения оценок параметров уравнения тренда

где m = 1 — количество влияющих факторов в модели тренда,

По таблице Стьюдента находим Tтабл

Tтабл (n-m-1; б/2) = (8; 0,025) = 2,306

Рассчитаем границы интервала, в котором будет сосредоточено 95% возможных значений Y при неограниченно большом числе наблюдений и t = 6

(59,95 + 0,2*6 — 2,306*8,33; 59,95 + 0,2*6 — 2,306*8,33)

(52,82; 69,48)

2. 9 Интервальный прогноз

Определим среднеквадратическую ошибку прогнозируемого показателя,

m = 1 — количество влияющих факторов в уравнении тренда,

Uy = yn+L ± K

Где

L — период упреждения; уn+L — точечный прогноз по модели на (n + L)-й момент времени; n — количество наблюдений во временном ряду; Sy — стандартная ошибка прогнозируемого показателя; Tтабл — табличное значение критерия Стьюдента для уровня значимости б и для числа степеней свободы, равного n-2,

По таблице Стьюдента находим Tтабл

Tтабл (n-m-1; б/2) = (8; 0,025) = 2,306

Точечный прогноз, t = 11: y (11) = 0,2*11 + 59,95 = 62,15

62,15 — 9,05 = 53,1; 62,15 + 9,05 = 71,2

Интервальный прогноз:

t = 11: (53,1; 71,2)

Точечный прогноз, t = 12: y (12) = 0,2*12 + 59,95 = 62,35

62,35 — 9,49 = 52,86; 62,35 + 9,49 = 71,84

Интервальный прогноз:

t = 12: (52,86; 71,84)

Точечный прогноз, t = 13: y (13) = 0,2*13 + 59,95 = 62,55

62,55 — 9,97 = 52,58; 62,55 + 9,97 = 72,52

Интервальный прогноз:

t = 13: (52,58; 72,52)

Точечный прогноз, t = 14: y (14) = 0,2*14 + 59,95 = 62,74

62,74 — 10,5 = 52,24; 62,74 + 10,5 = 73,24

Интервальный прогноз:

t = 14: (52,24; 73,24)

Точечный прогноз, t = 15: y (15) = 0,2*15 + 59,95 = 62,94

62,94 — 11,07 = 51,87; 62,94 + 11,07 = 74,01

Интервальный прогноз:

t = 15: (51,87; 74,01)

ВЫВОД: Можно ожидать, что в 2013 — 2015 годах добыча нефти в ОАО «Сургутнефтегаз» будет находиться в пределах

2013 год: (52,58; 72,52) тыс. тонн

2014 год: (52,24; 73,24) тыс. тонн

2015 год: (51,87; 74,01) тыс. тонн

2. 10 Проверка гипотез относительно коэффициентов линейного уравнения тренда

1) t-статистика, Критерий Стьюдента,

Статистическая значимость коэффициента b не подтверждается

Статистическая значимость коэффициента a подтверждается

Доверительный интервал для коэффициентов уравнения тренда,

Определим доверительные интервалы коэффициентов тренда, которые с надежность 95% будут следующими:

(b — tнабл Sb; b + tнабл Sb)

(0,199 — 2,306*0,38; 0,199 + 2,306*0,38)

(-0,67; 1,07)

Так как точка 0 (ноль) лежит внутри доверительного интервала, то интервальная оценка коэффициента b статистически незначима,

(a — tнабл Sa; a + tнабл Sa)

(59,953 — 2,306*2,35; 59,953 + 2,306*2,35)

(54,53; 65,37)

2) F-статистика, Критерий Фишера,

Находим из таблицы Fkp (1; 8;0,05) = 5,32

где m — количество факторов в уравнении тренда (m=1),

Поскольку F < Fkp, то коэффициент детерминации (и в целом уравнение тренда) статистически не значим

2. 11 Проверка гипотезы о зависимости объемов добычи (тыс. тонн) от количества среднедействующих скважин в ОАО «Сургутнефтегаз»

Корреляционный анализ. Уравнение парной регрессии.

Использование графического метода.

Этот метод применяют для наглядного изображения формы связи между изучаемыми экономическими показателями. Для этого в прямоугольной системе координат строят график, по оси ординат откладывают индивидуальные значения результативного признака Y, а по оси абсцисс — индивидуальные значения факторного признака X.

Совокупность точек результативного и факторного признаков называется полем корреляции.

Поле корреляции

На основании поля корреляции можно выдвинуть гипотезу (для генеральной совокупности) о том, что связь между всеми возможными значениями X и Y носит линейный характер.

Линейное уравнение регрессии имеет вид y = bx + a + е

Здесь е — случайная ошибка (отклонение, возмущение).

Причины существования случайной ошибки:

1. Невключение в регрессионную модель значимых объясняющих переменных;

2. Агрегирование переменных. Например, функция суммарного потребления — это попытка общего выражения совокупности решений отдельных индивидов о расходах. Это лишь аппроксимация отдельных соотношений, которые имеют разные параметры.

3. Неправильное описание структуры модели;

4. Неправильная функциональная спецификация;

5. Ошибки измерения.

Так как отклонения еi для каждого конкретного наблюдения i — случайны и их значения в выборке неизвестны, то:

1) по наблюдениям xi и yi можно получить только оценки параметров б и в

2) Оценками параметров б и в регрессионной модели являются соответственно величины, а и b, которые носят случайный характер, т.к. соответствуют случайной выборке;

Оценочное уравнение регрессии (построенное по выборочным данным) будет иметь вид y = bx + a + е, где ei — наблюдаемые значения (оценки) ошибок еi, а и b соответственно оценки параметров б и в регрессионной модели, которые следует найти.

Для оценки параметров б и в — используют МНК (метод наименьших квадратов).

Метод наименьших квадратов дает наилучшие (состоятельные, эффективные и несмещенные) оценки параметров уравнения регрессии. Но только в том случае, если выполняются определенные предпосылки относительно случайного члена (е) и независимой переменной (x).

Формально критерий МНК можно записать так:

S = ?(yi — y*i)2 > min

Система нормальных уравнений.

a*n + b? x = ?y

a?x + b? x2 = ?y*x

Для наших данных система уравнений имеет вид

10a + 168 571 b = 610. 5

168 571 a + 2 862 587 561 b = 10 291 057. 6

Из первого уравнения выражаем, а и подставим во второе уравнение:

Получаем эмпирические коэффициенты регрессии:

b = -1 -5, a = 61. 2123

Уравнение регрессии (эмпирическое уравнение регрессии):

y = -1. 0E-5 x + 61. 2123

Эмпирические коэффициенты регрессии a и b являются лишь оценками теоретических коэффициентов вi, а само уравнение отражает лишь общую тенденцию в поведении рассматриваемых переменных.

Для расчета параметров регрессии построим расчетную таблицу (табл. 1)

x

y

x2

y2

x * y

15 387

54

236 759 769

2916

830 898

15 325

59. 5

234 855 625

3540. 25

911 837. 5

15 340

63. 9

235 315 600

4083. 21

980 226

15 813

65. 6

250 050 969

4303. 36

1 037 332. 8

16 308

64. 5

265 950 864

4160. 25

1 051 866

16 727

61. 7

279 792 529

3806. 89

1 032 055. 9

17 262

59. 6

297 976 644

3552. 16

1 028 815. 2

17 950

59. 5

322 202 500

3540. 25

1 068 025

18 969

60. 8

359 822 961

3696. 64

1 153 315. 2

19 490

61. 4

379 860 100

3769. 96

1 196 686

168 571

610. 5

2 862 587 561

37 368. 97

10 291 057. 6

1. Параметры уравнения регрессии.

Выборочные средние.

Выборочные дисперсии:

Среднеквадратическое отклонение

1.1. Коэффициент корреляции

Ковариация.

Рассчитываем показатель тесноты связи. Таким показателем является выборочный линейный коэффициент корреляции, который рассчитывается по формуле:

Линейный коэффициент корреляции принимает значения от -1 до +1.

Связи между признаками могут быть слабыми и сильными (тесными). Их критерии оцениваются по шкале Чеддока:

0.1 < rxy < 0. 3: слабая;

0.3 < rxy < 0. 5: умеренная;

0.5 < rxy < 0. 7: заметная;

0.7 < rxy < 0. 9: высокая;

0.9 < rxy < 1: весьма высокая;

В нашем примере связь между признаком Y фактором X слабая и обратная.

ВЫВОД: Из проведенного анализа следует, что в ОАО «Сургутнефтегаз» добыча нефти не зависит от количества среднедействующих скважин, а зависит от других факторов.

Уравнение регрессии (оценка уравнения регрессии). Коэффициент эластичности

Линейное уравнение регрессии имеет вид y = -1. 0E-5 x + 61. 21

Коэффициентам уравнения линейной регрессии можно придать экономический смысл.

Коэффициент регрессии b = -1. 0E-5 показывает среднее изменение результативного показателя (в единицах измерения у) с повышением или понижением величины фактора х на единицу его измерения. В данном примере с увеличением на 1 единицу y понижается в среднем на -1. 0E-5.

Коэффициент a = 61. 21 формально показывает прогнозируемый уровень у, но только в том случае, если х=0 находится близко с выборочными значениями.

Но если х=0 находится далеко от выборочных значений х, то буквальная интерпретация может привести к неверным результатам, и даже если линия регрессии довольно точно описывает значения наблюдаемой выборки, нет гарантий, что также будет при экстраполяции влево или вправо.

Подставив в уравнение регрессии соответствующие значения х, можно определить выровненные (предсказанные) значения результативного показателя y (x) для каждого наблюдения.

Связь между у и х определяет знак коэффициента регрессии b (если > 0 — прямая связь, иначе — обратная). В нашем примере связь обратная, что дополнительно подтверждает вывод об отсутствии связи.

Коэффициент эластичности.

Коэффициенты регрессии (в примере b) нежелательно использовать для непосредственной оценки влияния факторов на результативный признак в том случае, если существует различие единиц измерения результативного показателя у и факторного признака х.

Для этих целей вычисляются коэффициенты эластичности и бета — коэффициенты.

Средний коэффициент эластичности E показывает, на сколько процентов в среднем по совокупности изменится результат у от своей средней величины при изменении фактора x на 1% от своего среднего значения.

Коэффициент эластичности находится по формуле:

Коэффициент эластичности меньше 1. Следовательно, при изменении Х на 1%, Y изменится менее чем на 1%. Другими словами — влияние Х на Y не существенно.

Бета — коэффициент

Бета — коэффициент показывает, на какую часть величины своего среднего квадратичного отклонения изменится в среднем значение результативного признака при изменении факторного признака на величину его среднеквадратического отклонения при фиксированном на постоянном уровне значении остальных независимых переменных:

Т.е. увеличение x на величину среднеквадратического отклонения Sx приведет к уменьшению среднего значения Y на 0. 446 среднеквадратичного отклонения Sy.

Оценим качество уравнения регрессии с помощью ошибки абсолютной аппроксимации. Средняя ошибка аппроксимации — среднее отклонение расчетных значений от фактических:

Ошибка аппроксимации в пределах 5%-7% свидетельствует о хорошем подборе уравнения регрессии к исходным данным.

Поскольку ошибка меньше 7%, то данное уравнение можно использовать в качестве регрессии.

Эмпирическое корреляционное отношение.

Эмпирическое корреляционное отношение вычисляется для всех форм связи и служит для измерение тесноты зависимости. Изменяется в пределах [0; 1].

где

Индекс корреляции.

Для линейной регрессии индекс корреляции равен коэффициенту корреляции rxy = -0. 446.

Полученная величина свидетельствует о том, что фактор количества среднействующего фонда скважин не существенно влияет на объем добычи.

Для любой формы зависимости теснота связи определяется с помощью множественного коэффициента корреляции:

Данный коэффициент является универсальным, так как отражает тесноту связи и точность модели, а также может использоваться при любой форме связи переменных. При построении однофакторной корреляционной модели коэффициент множественной корреляции равен коэффициенту парной корреляции rxy.

В отличие от линейного коэффициента корреляции он характеризует тесноту нелинейной связи и не характеризует ее направление. Изменяется в пределах [0; 1].

Теоретическое корреляционное отношение для линейной связи равно коэффициенту корреляции rxy.

Коэффициент детерминации.

Квадрат (множественного) коэффициента корреляции называется коэффициентом детерминации, который показывает долю вариации результативного признака, объясненную вариацией факторного признака.

Чаще всего, давая интерпретацию коэффициента детерминации, его выражают в процентах.

R2= -0. 4 462 = 2. 0E-5

т.е. в 0% случаев изменения х приводят к изменению y. Другими словами — точность подбора уравнения регрессии — низкая. Остальные 100% изменения Y объясняются факторами, не учтенными в модели (а также ошибками спецификации).

Для оценки качества параметров регрессии построим расчетную таблицу (табл. 2)

x

y

y (x)

(yi-ycp)2

(y-y (x))2

(xi-xcp)2

|y — yx|: y

15 387

54

61. 06

49. 7

49. 9

2 161 194. 01

0. 13

15 325

59. 5

61. 06

2. 4

2. 45

2 347 330. 41

0. 0263

15 340

63. 9

61. 06

8. 12

8. 04

2 301 592. 41

0. 0444

15 813

65. 6

61. 06

20. 7

20. 61

1 090 144. 81

0. 0692

16 308

64. 5

61. 06

11. 9

11. 87

301 510. 81

0. 0534

16 727

61. 7

61. 05

0. 42

0. 42

16 926. 01

0. 0105

17 262

59. 6

61. 05

2. 1

2. 09

163 944. 01

0. 0243

17 950

59. 5

61. 04

2. 4

2. 37

1 194 430. 41

0. 0259

18 969

60. 8

61. 03

0. 0625

0. 0527

4 460 121. 61

0. 378

19 490

61. 4

61. 02

0. 12

0. 14

6 932 162. 41

0. 611

168 571

610. 5

610. 5

97. 95

97. 94

20 969 356. 9

0. 39

2. 12 Оценка параметров уравнения регрессии. Анализ точности определения оценок коэффициентов регрессии

Несмещенной оценкой дисперсии возмущений является величина:

S2y = 12. 24 — необъясненная дисперсия (мера разброса зависимой переменной вокруг линии регрессии).

Sy = 3.5 — стандартная ошибка оценки (стандартная ошибка регрессии).

Sa — стандартное отклонение случайной величины a.

Sb — стандартное отклонение случайной величины b.

2. 13 Доверительные интервалы для зависимой переменной

Экономическое прогнозирование на основе построенной модели предполагает, что сохраняются ранее существовавшие взаимосвязи переменных и на период упреждения. Для прогнозирования зависимой переменной результативного признака необходимо знать прогнозные значения всех входящих в модель факторов.

Прогнозные значения факторов подставляют в модель и получают точечные прогнозные оценки изучаемого показателя.

(a + bxp ± е)

Где

tкрит (n-m-1; б/2) = (8;0. 025) = 2. 306

Рассчитаем границы интервала, в котором будет сосредоточено 95% возможных значений Y при неограниченно большом числе наблюдений и Xp = 5

(61. 21 -1. 0E-5*5 ± 29. 8)

(31. 41;91. 02)

С вероятностью 95% можно гарантировать, что значения Y при неограниченно большом числе наблюдений не выйдет за пределы найденных интервалов.

2. 14 Проверка гипотез относительно коэффициентов линейного уравнения регрессии

ПоказатьСвернуть
Заполнить форму текущей работой