Методика прогнозирования металлопород в земной коре

Тип работы:
Курс лекций
Предмет:
Геология


Узнать стоимость

Детальная информация о работе

Выдержка из работы

Металлогения

Под прогнозом МПИ подразумевают научное предвидение наличия МПИ определенного типа или перспективных рудоносных площадей на основе известных закономерностей развития геологических объектов.

Прогноз — научно обоснованное состояние объекта.

Прогнозирование — процесс разработки прогноза.

В основе прогноза МПИ лежат 2 базовых положения:

-знание геохимических и геофизических особенностей, хим. элементов, их содержаний и комплексов в различных физ-хим. обстановках;

-представления о закономерном образовании, размещении и разнообразном изменении МПИ в земной коре в ходе геологической эволюции данного региона.

Металлогения (греч. металлоне — руда, генезис — происхождение)

Термин «Минерагения» используется параллельно

Методики прогнозирования основаны на нескольких принципах:

1. Принцип вероятного подобия (наиболее вероятно, что в сходных геологических обстановках со сходной историей развития происходит образование сходных по типу МПИ)

2. Принцип взаимосвязи характеристик рассеяния и концентрации хим. элементов. (Масштабы накопления какого-либо элемента в промышленных концентрациях в пределах каких-то определенных рудоносных площадей будут определять его распространение в з.к.)

3. Принцип обратной зависимости частоты встречаемости рудоносных объектов от их размеров. Позволяет вывести закономерности ранжирования м/р по их размерам.

4. Принцип соответствия. Предусматривает, что этелонные и оцениваемые объекты имеют сопоставимые масштабы.

5. Принцип последовательного приближения. Определяет стадийность ГРР. Подразумевает изучение объектов от большего к меньшему.

Весь процесс геологического прогноза сводится к решению ряда геологических задач:

— установление металлогенической специализации изучаемых структур. В пределах этих структур происходит выяснение закономерностей размещения во времени и пространстве объектов, перспективных на добычу ПИ.

— оценка величины и качества минерально-сырьевых ресурсов в пределах исследуемых объектов. Это подсчет прогнозных ресурсов.

— геолого-экономический анализ каждого из выделенных объектов для разработки оптимального объекта и дальнейшей разработки.

Это составные части геологического прогноза.

Геологический прогноз осуществляется на основе анализа геологических предпосылок и признаков в рамках определенных геологических структур.

Предпосылки:

— стратиграфические;

— литологические;

— структурные (структурно-тектонические);

— магматические (петрографические и петрологические);

— геохимические;

— геоморфологические;

— минералогические;

— климатические;

— геофизические.

Признаки поискового прогнозирования представляют собой конкретные геологические факты, показывающие нахождение определенных типов п/и.

Объектом прогнозирования являются рудные МПИ или рудные тела.

Основа рудообразования — геодинамические процессы.

Участки з.к. разделены на мобильные и стабильные области (геоструктуры) и они характеризуются своей металлогенической спецификой.

Металлогенические пояса и провинции — это подвижные части з.к. со сложной геологической структурой. Отвечают крупным участкам з.к. на уровне складчатых систем в пределах платформ или участков дна мирового океана. (Средиземноморский, Тихоокеанский)

Рудные зоны — охватывают несколько рудных полей.

Рудный узел — рудоносная площадь, включающая в себя взаимосвязные рудные поля и ряд м/р определенного типа.

Рудное поле — группы однотипных по происхождению, составу и структуре м/р.

Рудные тела — локальные скопления природного минерального сырья, приуроченные к определенным структурно-геологическим элементам в пределах м/р.

Виды прогнозирования:

1. Глобальное

2. Обзорное

3. Мелко-, средне-, крупномасштабное

4. Детальное

5. Локальное

Объекты обзорного прогнозирования=: либо вся территория РФ, либо отдельные крупные регионы (Урал, Сибирь, ВЕП, Якутия)

Мелкомасштабное прогнозирование. На стадии изучения недр. Масштаб 1: 1 000 000, 1: 500 000. Используется геохимия, АФС и КС. Для некоторых участков составляются прогнозные карты 1: 200 000, 1: 50 000.

Среднемасштабное прогнозирование. Стадия регионал ьной геологии изучения недр. Составляются карты 1: 200 000, 1: 100 000. Выделение рудных регионов и узлов.

Оценка ресурсов по категории Р3. Возможность нахождения м/р на площади прогноза при среднемасштабном прогнощ=зировании должна подтверждаться наличием прямых признаков данных п.и. Оценка рес-сов производится м-дом аналогии, путем сравнения с эталонами. Исп-ся удельн. продуктивность (кол-ко п.и. на ед-цу площади и инте-ть орудинения — это предположительные параметры)

Крупномасштабное прогнозирование Стадия рег. геол. исследований тер-рии. Карты м-ба 1: 50 000, 1: 25 000. Работы ведутся по определённым видам п.и. Перспективность кот-ой была выявлена ранее. Оценка прогнозных ресурсов производится по категориям Р3 и Р2.

Детальное прогнозирование Стадия поисковых работ. Провод-ся в пределах бассейнов рудных узлов и полей, которые были выявлены при металлогенических исследованиях. Работы произв-ся в масс-бе 1: 10 000. Произв-ся выделение геохим. и геофиз. аномалий на исследованной площади, участков проявлений п.и. Оценка ресурсов по категориям Р2 и Р1. Наиб. Перспективные объекты вкл-ся в фонд объектов для постановки оценочных работ.

Прогнозирование на стадии оценочных работ

Проводится на ранее обнаруженных проявлениях п/и, которые были выявлены при работах 1: 50 000, 1: 10 000. Для сложных по геологическому строению территорий работы могут вестись 1: 5000/1:1000. Ведутся горные, буровые работы. По результатам вскрытия тел п/и, приблизительно оконтуриваются, устанавливается положение тел в пространстве. Подсчет по категории С2.

Прогнозирование на стадии разведки

Проводятся на м/р с уже выполненным технико-экономическим обоснованием промышленной ценности м/р.

Ведется:

— оценка ресурсов м/р на горизонтах, которые лежат ниже глубин, затронутых работами, если есть геохимические и геофизические предпосылки на продолжение тела п/и;

— оценка ресурсов новых ранее неизвестных тел п/и, вскрытых единичными скважинами и горными выработками, не разведанных ранее;

— переоценка ресурсов известных ранее, но не вовлеченных в разведку тел п/и.

Оценка ресурсов по категории Р1.

Теоретические основы прогноза

1. Рудообразующие процессы.

Рудообразование — накопление или металлов в определенных участках з.к.

Процесс рудообразования является частным явлением, которое сопровождает процессы формирования, становления и развития данного участка з.к.

Рудообразующие процессы можно рассматриваться как частные случаи породообразования.

Рудообразованиерудогенезрудонакоплениерудообразующий процесс.

Рудообразующий процесс в обобщенном виде состоит из 3 главных компонентов (циклов)

1. Отделение руд вещества от источника.

2. Перенос рудного вещества транспортирующими агентами.

3. Отложение рудного вещества в местах рудолокализации.

Еще необходим источник энергии.

Источники рудного вещ-ва:

— ювенильные

-подкоровые (связаны с базальтовой магмой)

-ассимиляционные (внутрикоровые)

-внемагматическая инфильтрация

Транспортирующие агенты:

-магм. расплавы

-газово-жидкие водные растворы глубинного происхождения

-поверхностные воды глубокой циркуляции

-воды морей и океанов

-атмосферные воды

Пути миграции транспортирующих агентов отвечают зонам повышенной ослабленности ЗК (тектонические разломы, зоны пересечения разломов, породы с повышенными коллекторскими свойствами, каналы миграции вод — реки, ручьи).

Области рудонакопления — участки ЗК, которые находятся на пути движения транспортирующих агентов, где происходит резкое изменение физ-хим состояния агентов, которое приводит к отделению рудообразующих компонентов, их осаждение и накопление. Это могут быть различные геохимические барьеры.

Источник энергии — глубинное тепло Земли.

Модели рудообразования

-Эндотермальная модель (если источники энергии имеют глубинное происхождение, транспортирующие агенты и рудное вещество тоже глубинные).

— Экзотермальная модель (источник энергии глубинные, в рудообразующий процесс вовлекаются экзогенные воды, которые приводятся в движение теплом Земли).

— Смешанная модель (наиболее распространенная, источник тепла имеет глубинное происхождение, минеральные растворы могут иметь эндо- и экзогенную природу).

Типы рудообразования

1. Магматогенные

— плутогенные

— вулканогенные

2. Седиментогенные (осадочные)

3. Метаморфогенные

Магматогенное рудообразование

1. Плутогенные рудообразующие процессы.

Процесс становление магматических тел является фактором миграции и накопления рудного вещества.

В зависимости от источников энергообеспечения и механизмов функционирования, плутогенные рудообразующие процессы делятся на разновидности:

— собственно магматогенное рудообразующие процессы. Предполагало изначально вхождение рудного вещества в материнские расплавы и его разделение и перераспределение вместе с разделением самих магматических расплавов.

В этих моделях большое значение имеет наличие летучих компонентов, а причина распределения руд и силикатных компонентов в расплавах обусловленная различием термодинамических процессов в областях зарождения магматических расплавов и в местах их кристаллизации.

Такие рудообразующие модели приводят к образованию крупных месторождений сульфизно-медно-никелевых руд, скоплений платиноидов в расслоенных базит-гипербазитовых комплексах — массив Бушвельд. Массив состоит из норитов и габбро (общ. мощн. 9000м). Верхняя часть лополита сложена красным гранитом (мощн. 2500м), габброидная часть массива разделена на 5 зон:

1зона сложена однообразными габбро и норитами (1700м)

2 зона (главная, мощн 4500м) сложена почти такими же габбро и норитами, но ее верхняя часть отделена от 1 зоны железорудным слоем (мощн 3м).

3 зона (критическая, мощн 750−900м). Характерна псевдостратификация. Сложена зона чередованием прослоев пироксенитов, анортозитов, перидотитов, хромитов. В основании зоны хромитовый горизонт, в верхней части которого — прослой норитов, которые содержат сульфидную руду с платиной.

4 зона (базальтовая) сложена норитов, габбро с тонкими прослоями пироксенитов.

5 зона — тонкозернистые закаленные нориты, диабазы, гибридные породы в основании лополита.

Предполагается, что Бушвельдский массив образовался из одной магмы, которая в результате дифференциации разделилась на гранитную и габброидную части. При кристаллизации габброидной части происходила псевдостратификация массива.

На основе этого массива разработана модель магматогенного рудообразования.

Для составления модели используются принципы:

1. Должно наблюдаться постоянство пространственно-временных ассоциаций рудных тел и интрузивных образований определенного состава и строения.

2. Рудные тела должны располагаться в однотипных частях разреза магматических тел.

3. Должна выдерживаться определенная зависимость геохимических характеристик руд от петрологических и петрохимических свойств соответствующих магматических пород.

4. Должны наблюдаться рудно-силикатные образования, состоящие из определенных минеральных ассоциаций, которые возникают в определенные периоды формирования массива.

Источником рудного вещества и его носителем являются соответствующие магматические расплавы. Пути и механизмы отделения рудного вещества и рудонакопления могут иметь свою специфику в зависимости от особенностей каждого конкретного массива.

В целом, модели объединены в 2 группы:

1. Допускается, что разделение магмы на рудную и силикатную части происходит на пути продвижения расплава к месту кристаллизации или в каких-то промежуточных магматических очагах. Поступление рудного и силикатного расплавов в место рудонакопления происходит в разное время.

2. Допускается, что поступление рудного вещества в зону рудонакопления происходит непосредственно из магматических камер, заполненных однородным рудно-силикатным расплавом. Разделение на рудную и силикатную части происходит в месте кристаллизации.

Большую роль играет проблема баланса/дисбаланса рудной и силикатной составляющих.

Преобладание рудного вещества в источнике может превышать рудное вещество в месте накопления в 1000 раз.

Рисунок с кучей стрелочек

В магматогенных моделях магматические расплавы выступают одновременно как источник вещества и транспортирующий агент.

Плутогенные гидротермальные модели

1. Ортогенные. Носители рудного вещества — сами магматические расплавы. Они же и источник и транспорт рудного вещества.

Такие модели допускают вынос вещества магматических тел их флюидными составляющими с реализацией процесса рудонакопления в периферийных участках самого интрузивного тела или породах, вмещающих его.

2. Рециклинговая модель. Формирование оруденения происходит с участиемвод различного происхождения. Источник рудного вещества — магматический расплав, и в процессе оруденения участвует рудное вещество, мобилизованное из вмещающих пород.

Транспортный агент — воды различного происхождения. Главный источник энергии — магматический очаг и расплав.

Формирование руд происходит в 3 этапа:

1. При кристаллизации расплава происходит уменьшение объема тела, что приводит к образованию трещин в над-интрузивной зоне > образование пустотного пространства > в поры втягивается воды.

2. Пустоты

3. Под влиянием тепла магматического тела в движение приходят подземные воды с образованием конвективных потоков.

При циркуляции подземных вод происходит мобилизация рудного вещества вмещающих пород, которые вовлекаются в рудообразование. На 3 стадии процесс затухает.

Руды имеют ярко выраженную зональность.

Для функционирования рециклинговых систем главное значение имеет водонасыщенность окружающих пород и их проницаемость.

Большое значение для формирования оруденения имеет длительность процесса, скорость циркуляции вод и размах конвективных ячеек, которые обеспечивают циркулирующие подземные воды окружающих пород.

Транспортирующие агенты: магматогенные флюиды, вовлеченные в циркуляцию, воды вмещающих пород.

Продукты этих моделей: скопления рудного вещества, которые связаны с вулканическими комплексами пород.

Роль вулканизма в процессе рудообразования заключается в образовании различных по своей природе источников энергообеспечения и в участии большого количества жидких транспортирующих агентов.

Вулканогенно-гидротермальные модели

Ортогенная модель. Оруденение при реализации этой модели очень тесно связано с вулканическими и субвулканическими (дайки) телами.

В некоторых случаях не удается уверенно отнести рудные тела к продуктам вулканизма.

Источник энергии — сами вулканические тела, источник рудного вещества — вулканический расплав, транспорт — вулканический расплав и его флюидная компонента.

Рецикинговая модель.

Рисунок, где много стрелочек снизу с разных сторон поднимаются в одном месте на морском дне.

1. зона возникновения пирита и магнетита в результате восстановления сульфат-иона.

2. выщелачивание металлов из породообразующих минералов и их транспортировка в виде металл-хлоридных соединений.

3. реакции с железосодержащими силикатами с высвобождением железа, высвобождение водорода.

4. зона возникновения восстановленного флюида за счет водорода и углерода.

5. Углерод-водородные обменные реакции. Образование растворов высокой солености.

6. Образование металломагнетитов и прожилковых сульфидных руд.

7. Обр-ние сплошных сульфидных руд.

Необходима повышенная проницаемость придонных осадков, тепловой поток, большой объем воды, кот. обеспечивает питание всей рудообраз-щей системы.

Ист. руд. вещ-ва: донные осадки.

Транспорт: воды придонных осадков.

Место рудоотложения: граница донных осадков и морской воды.

Вулканогенно-сублимационное рудообразование.

В кратерных зонах соврем. вулканов. Сопровождается обр-нием серы. Объем формиующихся руд оч мал.

Вулканогенно-седиментационное рудообразование

Связано с экстракцией продуктов излияний и извержений в прилегающие бассейны.

Седиментогенные рудообразующие процессы.

Оч большое разнообразие механизмов переноса и отложения руд. вещ-ва.

Седиментогенные осадочные рудонакопления.

Перенос: механич., химич., биохимич.

Источник руд. в-ва: породы разного происхождения. Иногда руд. в-во в них наход-ся в рассеянном состоянии. Накопление большого объема руд. тела связано с масщтабами процесса, длительным временем рудообр-я.

Модель форм-ния руд типа Мансфельд. Оруд-е гидротермального типа на примере м/р медистых песчаников.

Ист. руд. в-ва:красноцв. отложения. Сu здесь в рассеян. состоянии. Сбор Сu происх. за счет подз. вод.

Способы проникновения и осаждения

1. путем фильтрации (Например, м/р Джесказган)

2. диффузионный путь

Путем фильтрации формир-ние гидротерм. оруд-ния может происх-ть на аллохтонных и автохтонных барьерах.

Ист. руд. в-ва: красноцв. терриг. отл-я.

Транспорт: подз. воды м/р.

Место рудоотл-я — участки З.к., где происх. Смена красноцв. отл-ний на др. отл-ния.

2 типа м/р (гипергенных)

-коры выветривания (образ-ся когда идет вынос неруд. компоненты)

-россыпные (идет вынос обломков рудн. компонентов)

Метаморфогенные рудообразующие процессы

1)рудообразующие

2)рудопреобразующие

1-те процессы, кот-ые сопровожд-ся возникновением новых скоплений руд. в-ва.

2-те процессы, кот-ые харак-ся превращением ранее возникших скоплений руд. в-ва в иные формы с преобразованием ими новых качеств.

По механизму метаморфогенные проц-ы дел-ся на неск. видов, из кот. наиб. Значимые:

I. Метаморфогенно-гидротермально-плутоногенные м/р.

Реализуются в усл-ях палингенеза при ультраметаморфизме, когда возникают вторичные расплавы. Накопление вещ-ва происх. по принципу плутоногенных моделей.

Ист. руд. в-ва: вторич. расплавы.

Агенты переноса: чаще всего флюидные компоненты расплавов.

Место рудоотложения: граница расплава и вмещающих порд.

II. Метаморфогенно-гидротермальные м/р

Активное участие вод. Ист. руд. в-ва: рассеянные конц-ции руд. в-ва в геол. образ-ях, кот-ые подвержены метаморфизму. Транспортные агенты: метаморфогенные воды. Место рудолокации: участки термодинамических изменений. Энергообеспеение осущ-ся тепловыми потоками. Источник тепловых полей: глубинный магм. очаг, внедряющаяся интрузия, тект. деформации.

Могут образовываться достаточно крупные м/р Au, At, Pt в черносланцевых породах.

Напр, в м/р Au в PR-их толщах, из каждого км3 углеродистых толщ в рез-те их метам-ма и гранитизации, может высвобождаться до 7 тонн Au, и 1 300 000 тонн серы. В рез-те метам-ма конц-ция Au может увелич-ся в отдельных уч-ках высокоуглеродистых толщах до 30−130г/т.

Гидротермальная модель

Идут процессы выщелачивания и переноса минералов. Ист. энергии: глубинный магм. очаг, кот. приводит в действие рудообразование. Транспорт: воды различного происхожд-я (погребенные, метеорные (осадки), м.б. частично магматогенные, морские (если магм. очаг под дном моря)

Циркуляция вод по рециклинговой схеме: восход. движение-> выщелачивание-> восходящее движ. со сбросом в-ва на барьерах.

Характер скопления руд. в-ва: эпигенетический (рудоотл-я в уже сформированных толщах г. п.) и синтетический (на дне водоемов в ещё не литифицированных осадках)

Диагенетическая модель рудообразования

В рез-те: форм-ние глубинных рудопроявлений и мпи.

Энергообеспечение за счет увеличения гидростатич. давления при погружении -> разогрев подз. вод, кот-ые выступ. транспортными агентами. Берётся из осад.г.п., кот-ые подвержены уплотнению. Миграция в восходящ. направлении., опред-ся гидравлич. градиентом. Отложение рудного в-ва происх-т в литологич. или стр-ных эл-х в связи с изменением физ-хим. усл-й среды (на барьерах). нпр, согласные или секущие тела п.и. (по тект-им трещинам)

Из всех моделей рудообразования наиб-шей иненсивностью и масштабами накопления облад. рециклинговые и гидротерм. модели. Для их функционирования необх. высокий уровень водонасыщ-ти рудных форм, либо возм-ть притока вод из соседних уч-ков З.к.

Металлогенические обстановки

Гл. структуры: платформы, дно океана, подвижные пояса.

Металлогенические обстановки могут одновременно находиться в разных частях З.к.

Стадии развития З.к. :

1. предварительная (рифтовая) — происходит форм-ние конт-ой рифтовой сис-мы с грабеном в центр. части (Байкальский, Рейдский). Магнетизм осн. состава (с форм-нием г. п. УО и щелочного ряда) — связано образ-е карбонатитовых м/р.

2. молодая (тип Красного моря) Происх. раздвиг с миграцией плит в противоположные стороны от рифтовой зоны (спрединг). Появл-ся молодая океанич. кора.

3. зрелая стадия (нпр, Атлантический океан). Расширение океан. коры от зон спрединга. Конт. окраины. Процессы магм-ма крайне редки. В области шельфа и на материковом склоне идет накопление обломочного мат-ла.

Пассивн окр: вост. побережье Америки, зап. побережьн Африки, юж. побережье Индостана, сев ч-ть Автралии. Угленосн., нефтегазоносн. бас-ны, россыпные м/р.

В засушливых регионах на пассивн. окраинах возможно обр-ние эвапаритовых бассейнов (Зап. Сахара)

4. стадия поглащения (тихоокеанская ст). нпр, Тихий океан. Хар-ся обратным движением литосф. плит -> образ-ние зон субдукции, где происх-т поглащ-е океанич. коры. Это активные окраины. Здесь много магм. очагов, широкое развитие магм-ма (осн. и кисл. состава, за счет ассимиляции магмы). Широкое развитие рудопроявлений и м/р магматогенного типа. (нпр, Филлипины, Курильские, Японские о-ва, Индонезия, от Аляски до Анд)

5. Заключит. стадия (средиземноморский тип). Активность зон спрединга затухает, формирование океанич коры прекращается, продолжается субдукция, кот. приводит к смыканию литосф. плит. океанич. кора покрывается осад. отложениями -> много осад. м/р. Продолжается активный магм-зм на акт-ных окраинах.

6. Заключительная стадия (Гималаи) Столкновение 2ух плит и возникновение межконт. орогена. Активный орогенез. Образование метаморфогенных комплексов. Магматизм затухает -> почти нет магматогенного ородинения. Нахождение магматоген. м/р возможно, но они были образованы на более ранних стадиях. Смешение и наложение геодинамических обстановок. нпр, Урал (где огромный спектр п.и.)

3 типа Металлогенических обстановок.

1. дна океанов

2. складчатых систем (подвижных поясов)

3. платформ

Геодинамическая обстановка дна океанов:

1. сох

2. окраинные моря

3. глубоководные желоба

4. островные дуги

5. абиссальные впадины

6. цепи вулканических островов ит.д.

Образование различных типов рельефа. По геоморфологич. хар-кам:

-конт. шельф

-конт. склон

-конт. возвышенности (5%)

-абиссальные равнины (41−42%)

-окенанич. хребты и поднятия (32−33%)

-отдельные вулк. сооружения (3%)

-глубоководные желоба и хребты (4%)

Геодинамические обстановки и металлогения СОХ

Массивы ультраосновных пород, образования хромитовых руд, платиноиды. Магматизм основного состава (габбро, базальты). Медно-колчеданное оруденение в базальтах.

Геодинамические обстановки, металлогения окраинных и задуговых морей.

Охотское, Китайское, Желтое моря. В пределах этих морей широко распространены осадочные комплексы терригенного и карбонатно-терригенного состава. Месторождения газа, нефти, угля, морские россыпи алмазов, золота, янтаря, платиноидов, хромита, магнетита.

Геодинамические обсановки ложа океанов и абиссальных долин

Ложе океана ровным слоем усеяно ЖМК и корками. Их происхождение связывают с зонами спрединга. Запасы от 350 млн. до 1,7 трлн.

Все ПИ на дне Мирового океана делятся на (по способу их образования и преобразования):

1 группа. ПИ, образованные в континентальной и прибрежно-морской обстановке и оказавшиеся под водой в результате трансгрессии. Месторождения на шельфе.

2 группа. ПИ образованы в прибрежно-морской зоне за счет волно-прибойной деятельности, которая частично либо полностью заполнена.

3 группа. ПИ, образованные на дне океана. Это продукты тех рудообразованных процессов, которые характерны для дна океана.

Наиболее значимые ПИ 1 и 2 группы.

1 группа — континентальная металлогения.

2 группа — промежуточные положения. Это россыпи в прибрежно-морской полосе.

3 группа — фосфориты, ЖМК.

Для образования прибрежных россыпей играет баланс между скоростью наступления моря и скорость поступления обломочного материала.

В ЖМК:

Fe 17*1010 тонн, Mn примерно столько же, Ni 2,5*109 тонн, Cu 1,5*109 тонн, Co 1*109 тонн, могут быть Au Pt Rb.

Обнаружены на большой площади дна Мирового океана. Две полосы ЖМК симметричны относительно экватора. ЖМ корки кобольтоносны. Приурочены к подводным возвышенностям и их склонам. Содержат более 1% Co.

Зоны окраинно-континентальных прогибов

2 морфологических типа скопления сульфидов:

1) Конусообразные тела (h=1−25 м). Приурочены к гидротермальным источникам.

2) Выходят за пределы прогибов.

Конусообразные тела — «черные курильщики».

3) Сульфидоносные илы. В пределах красного моря.

Характеризуются высоким содержанием элементов. В 10 м слое илов в Атлантис-2 (впадина) содержится 29% Fe, 3,5% Zn, 1−1,5% Cu, 0,1% Pb, 54г/т Ag, 0,05 г/т Au.

Металлогения платформ

Платформы имеют двухъярусное строение:

— осадочный чехол

— кристаллический фундамент

Фундамент платформ

Обстановки:

1. гранито-гнейсовых ядер

2. зеленокаменных поясов

3. протогеосинклинали

4. чехлы протоплатформ

5. зоны протоактивизации

1. гранито-гнейсовые ядра

Предположительно, это участки формирования древней континентальной коры. Породы гранитоидного состава. Проявлены продукты метасоматоза (гранитизации) ультраметаморфизма.

Основные ПИ: рутил-кианитовые и андалузитовые месторождения, магнетитовые месторождения, флагопит, скарноподобные образования, месторождения ПШ, мусковита.

2. зеленокаменные пояса

Древнейшие линейные прогибы. С вулканическим и магматогенным заполнением. Сложены породами базит., ультрабазит. Состава, базальт-коматитовой серии.

ПИ: медно-никелевые, никелевые месторождения, столеитовые месторождения (базальты, кислые вулканиты), сульфидные месторождения, Zn-Сu — сульфидные руды (вулканиты основного состава), месторождения железистых кварцитов, редкие и специфические, жильные проявления, золоторудные месторождения (метам. -гидротерм. происхождения).

3. протогеосинклинали

Мобильные зоны между выступами гранито-гнейсового состава. Возраст: PR. По строению и вещественному составу являются аналогами зеленокаменных поясов AR. Их рассматривают как древние внутриконтинентальные рифтогенные прогибы.

ПИ: сульфидные Zn-Сu, сульфидные — полиметаллические месторождения, Ti b Ti- магнетитовые руды, хромитовые руды, железистые кварциты, сидеритовые и гематитовые руды, золоторудные метаморфогенно-гидротермальные месторождения.

4. чехлы протоплатформ

ПИ: золотоносные ураноносные конгломераты, медистые песчаники с Co, Zn, Pb; Au-U и U-V месторождения.

5. зоны протоактивизации

Там, где после консолидации геоструктур в конце AR -начале PR стали переходить принципиально иные тектоно-магматические процессы. Представляют собой прогибы и интенс. базальтоидным вулканизмом.

ПИ: Cu-Ni руды, Pt-ды, Ti-магнетитовые руды, хромиты, карбонатитовые месторождения с Fe, апатитом, Сu, пегматитом, грейзеном, месторождения самородной Cu.

Металлогения осадочного чехла платформ

Характеризуется своими закономерностями размещения ПИ, связанными с преобладанием рудообразующих процессов определенного типа.

Закономерности размещения ПИ в пределах платформ зависит от периодической смены условий осадконакопления, проявлений магматизма и тектонической перестройки структурных планов платформы. Образование синеклиз, антеклиз, краевых и предгорных прогибов. В пределах платформ: тектонические авлакогены, различные кряжи. В пределах каждой из этих структур происходит смена условий осадконакопления, формирование определенного состава геологических формаций и связанных с ними скоплений ПИ.

Развитие осадочного чехла происходит циклично. В рамках цикла различают такие стадии, как:

1. трансгрессивная (начальная)

2. иннудационная (средняя)

3. регрессивная (поздняя)

4. эмерсивная (конечная)

1 — характеризуется наступлением моря. Накопление кластогенного и глинистого материала. Для этих формаций характерно образование ПИ: месторождений Fe (кремнисто-гематитов), Mn (в виде скопления оксидов пиролюзит-псиломелан), россыпи Ti-Zr-вые, фосфориты, янтарь.

2 — накопление глубоководных фаций (море стоит высоко). Образование карбонатных формаций, карб. -глин. Месторождения Pb и Zn, фосфориты, флюорит.

3 — отступление моря. Формирование месторождений Fe (оолитово-гетит-шамозитовые руды), U (в песчано-алевритовых отложениях).

С эвапоритовыми бассейнами месторождения калийной и каменной соли, месторождения Sr (в виде целестина SrSo4), месторождения каменного угля.

В условиях регрессивной стадии происходит образование каменных углей паралического типа (прибрежные).

4 — море уходит, происходит развитие континентальных фаций линейного типа, речн. отлож., КВ.

Латеритные КВ — на Fe, Al (бокситы)

Скопления Al, россыпи Ti и Zr. Месторождения Mo, U (гидрогенный тип, в углях, торфах). Месторождения алмазов, угля (лимнического и патолического циклов (речная).

В эту стадию усиливается роль магматогенных процессов и развивается эндогенная металлогения, связанная с проявлением вулканизма и интрузивного магматизма.

Формирование базальт-долеритовой (трапповой) формации — сульфидно -Cu-Ni руды, проявления Au или Pt.

На контакте субвулканических тел с угленосными отложениями могут формироваться месторождения графита. В туфах возможно скопление исландского шпата, образование цеолита. В жилах Q-Ca-вого состава Zn-оруденение с Ag. В базальтах — самородная медь. Скопления фосфора в виде апатита.

Металлогения отдельных осадочных бассейнов

Изучение закономерности формирования осад. ПИ в пределах осадочных бассейнов в ходе их развития от начала седиментации до возникновения региональной складчатости и локализации бассейна.

В пределах осадочных бассейнов состав, строение формационных компонентов осадочных пород обусловлено геодинамической позиции осадочного бассейна.

Осадочные бассейны

1. внутриконтинентальный рифтогенез (внутриплитные)

2. пассивно-окраинные

3. субдукционные

4. коллизионные

5. океанические

1 — образование на ранней стадии геотектонического цикла литосферы. Связаны крупные и уникальные месторождения U и Au, конгломератов с Ag и Pt-дами. Месторождения медистых песчаников с Ag, Co, Cu, Au, Pt-ды.

В процессе последующих процессов формируются надрифтовые депрессии, в их пределах могут происходить накопление крупных запасов цв. сырья. Формирование месторождений солей и месторождений Fe осадочного типа.

2 — стратиформные месторождения Pb-Zn с баритом, Ag, Hg, Pb, Zn, Au. Месторождения фосфоритов, U в кремнисто-карбонатно-терригенных формациях — месторождения Cu-Pb-Zn-ых.

3,4 — более широкое развитие получили магматогенные и вулканогенное рудообразующие процессы. Формирование межгорных бассейнов. С бассейнами (предгорные бассейны) Форланда связаны крупные месторождения УВ.

Металлогения и ПИ складчатых областей

Базировались на геосинклинальной теории. Два типа складчатых областей:

— базальтофильные (преобладание магматических комплексов основного и ультраосновного состава). Н-р, Урал.

— гранитофильные. Н-р, Кавказ. Продукты кислого магматизма.

По тектоническому режиму развития и времени формирования в пределах складчатых областей было принято различать:

1) геосинклинальные образования (ранние и поздние)

2) орогенные образования (ранние и поздние)

3) зоны ТМА (повторного орогенеза)

1) Выделяют зоны:

а. ранние геосинклинальные стадии

б. поздние геосинклинальные стадии

В а. выделяются две зоны:

1) зона эвгеосинклиналей (центр, внутренние зоны геосинклиналей). Характеризуются развитием офиолитовых комплексов. с ними связаны пи: хромиты с платиноидами, титано-магнетиты, медно-титано-ванадиевая минерализация, медно-сульфидная минерализация. Это есть фрагменты океанской коры, которые в результате субдукции вынесло на дневную поверхность. Пи, характерные для у/о пород: м/р талька, хризотил-асбестовая минерализация, золоторудная, лиственитовая форма оруденения — образование ртутной минерализации.

2) миогеосинклинальная зона (краевые, внешние участки геосинклиналей). Руд. формации: железорудная, кремнистая (жеезистые кварциты), марганцевая кремнистая, формация ванадиносных сланцев, фосфоритовая кремнистая, терригенно-карбонатная. Это сто различные краевые бассейны с широки развитием осадочных процессов, подвержены метаморфизму.

В б) накладываются процессы основного, кислого, среднего магматизма. ПИ: титано-магнетитовое оруденение, связанное с породами осн. состава (г-анартозиты).

За счет внедрения магмы кислого состава, возникает железорудное оруденение.

С измененными гранитами связано молибденовое оруденение, золото-кварцевые формы оруденения. Формирование медного и свинцово-цинкового полиметаллического сульфидного типа оруденения.

Скопления бокситов.

Карб. и терриг. формации, характерные для этой стадии синцово-цинковое и железо-марганцевое оруденение.

(2) Привоит к интесивному развитию складчатости и формированию метаморфических коплексов.

М/р: преобразованные кремнистые (марганцевые, железные м/р), карновый тип: железо, медно, золоторудные (контактовый метаморфизм). Разрушение пород (катаклаз, меланитизация с динамометаморфизмом).

(3) Оруденение связано с вулканизмом основного состава. Это медно-никелево-сульфидное, медно-сульфидное, титано-магнетитовое, магнетитовое оруденение.

В эту стадию происходит формирование локальных эвапоритовых, угленосных бассейнов и молассоидных комплексов (м/р стройматериалов), стратиформные типы (медистые песчаники, сланцы), проявления гипсов для засушливых областей.

Металлогеническое развитие ЗК

3 основные металлогенических периода:

— AR

— PR

— FR

AR период.

Самый продолжительный.

Характеризуется преобладанием 2 металлогенических обстановок, приуроченных к гранито-гнейсовым ядрам (участки континентальной коры) и зеленокаменным поясам (участки океанической коры).

В пределах развития конинентальной коры ведущая роль принадлежала метаморфогенному рудообразованию.

В зеленокаменных поясах были магматические процессы => магматогенные и вулканогенные м/р (хромиты, титано-магнетиты, сульфидно-медно-никелевые руды, железистые кварциты).

Металлогения AR в целом характеризуется накоплением железа (плутоног., вулканог. процессы), титана (плутоног., магматог.), хрома (плутоног.), меди и никеля (плутоног.).

PR период.

4 осн. типа металлог. обстановок:

— древние гранито-гейсовые ядра (1)

— зеленокаменные пояса (2)

— протогеосинклинали (3)

— чехлы протоплатформ (4)

(1) по ведущим рудообазующим процессам аналогичны архейским.

(4) впервые получили развитие осадочные рудообразующие процессы => образование ранее не встречавшихся м/р (золото-, ураноносные конгломераты; черносланцевые толщи), стратиформные м/р, рудообразование гидрогенного типа.

Снижается роль метамофогенного рудообразования. Появляется рудообразование связанное с метасоматизмом.

ПИ: Fe, Mn, Ti, Cu, Ni. U, Au, Pt-ды, Sn, W, Be.

М/р: хромиты, золоторудное с U, Fe.

Фанерозойский период

Характеризуется образованием мощного осадочного чехла, более широким развитием рудообразующих процессов осадочного типа, большим разнообразием ПИ. С наличием осадочного чехла и сохранившимися геодин. обстановками более ранних периодов развития Земли. Fz период удобнее рассматривать в соответствии с тектоническими циклами.

Выделяются комплексы пород связанные с байкальским, каледонским, герцинским, киммерийским и альпийским этапами.

Выделяют до 18 различных пространственно-временных ассоциаций.

В ходе геол развития Земли наблюдается закономерность в образовании ПИ. Для всех периодов уст. однотипность продуктов рудогенеза, кот связаны с мантийным магматизмом базальтоидного состава. Во все времена с у/о магамтизмом ассоциирует хромитовое оруденение.

Расслоенные базит-ульрабазитовые интрузии явл носителями сульфидно-медно-никелевых руд.

С породами осн состава (габбро-анартозиты) связано титан-магнетитовое оруденение.

С вулканог формациями базитового состава ассоциируют медно-колчеданные и полимеаллические руды.

Эта закономерность является качественной. С Fz базальтоидный магматизм будет уступать гранитоидному.

Развитие гранитоидного магматизма привело к образованию более широкого набоа м/р, широкое развитие гидроерм. проессов.

С гранитоидным магматизмом связано образование тех руд, кот не накапливаются в больших масштабах в AR и PR.

FZ период развития Земли характеризуется образованием мощных толщ осадочных пород, кот обеспечили возникновение коровых источником в-ва.

С появлением осадочного чехла появились механизмы вовлечения в процессы рудообразования различных подземных вод.

FZ рудогенез подраделяется на несколько групп обстановок:

1. обстановки складчатых систем

2. обстановки платформенного развития

а) обстановки платформенноо образования

б) обстановки осадочного чехла

Обстановки складчатых систем

1. Складчатые системы байкальского цикла развития продолжают металлогению PR. Набор П И близок к PR обстановкам.

В рифейском этапе накопление Fe (вулканог образования), м/р Fe и Ti (плутоног), м/р Cu, Pb, Zn (c вулканог образоваиями базальтоидного типа), Au (плутоног и метаморфог комплексы пород), более широкое развитие, чем в PR ПИ Be, Sn, W (c гранитоидами).

2. Каледонский цикл.

Орогенные процессы особо не развиты.

Fe, Ti, Va, Ag, Cu, Zn, Pb (вулканог образования), Mo, Hg, Sb.

Осн. черты металлогения Fz.

3. Герцинский цикл

Большое разнообразие рудообразующих процессов.

Образ м/р Cr (дуниты), Pt (у/о породы), Fe, Ti, Va (плутоног процессы), Fe, Mn, Cu, Pb, Zn, W, Be, As, Sb, U, Au, Sn, Li.

4. Киммерийский цикл. Сходен с герциским циклом. Металлы: Mo, Cu, Pb, Sn, W, Au, Ag, Hg, As, U.

5. Альпийский этап. Металлы: Mo, Cu, Fe, Mn, Pb, Zn, Ag, Sn, Ag, Co.

Платформенные режимы FZ.

Fe, Ti, Cu, Zn, Pb, Pt-ды, U, Ag.

Технология прогнозирования МПИ

1 ЭТАП Предварительный

1 стадия: геодин. модель исследуемого района. Составляется геодин. карта территории

2 стадия: региональный прогноз методом актуализма. Изучаются геодин. комплексы геол. прошлого, кот. потенциально перспективы в опред. типах ПИ и сравнении их с эталонными объектами. На основе работ дается общая металлогеническая оценка территории на основании изучения рудообразующих процессов, факторов локализации рудного вещества. Металогеническая оценка — основа для дальнейших прогнозных разработок.

3 стадия: а) анализ структуры, литолого-петрогр., геоморф. и др. предпосылок, физ. св-в пород и геофиз. параметров.

б) осуществляется палеогеодин. реконструкция района.

в) моделирование палеогеодин. рудообразования и сост. обзорн. геодин. схема по району.

4 стадия: разработка моделей формирования и локализации МПИ. Модели дожны быть многовариантными.

Параметры модели:

— глубинность зарождения геол. процессов

— тип геодин. процесса

— источник рудного вещества

— источник рудообразующего процесса

— источник энергии для рудобразующего процесса

— транспортирующий агент

— среда рудоотложения

— механизм отложения

— зональность, возникающая в результате рудоотложения

— взаимодействие рудных тел и вмещающих пород

— термодин. обстановка рудооложения

5 стадия: крупномасштабный прогноз на основе разработанной модели формирования МПИ. Выделение перспективных участков

2 ЭТАП. Проверочный

6 стадия: производится проверка моделей и их прогнозных следствий. Работа в перспективных участках.

3 ЭТАП. Основной

7 стадия: производится внесение изменений и данных в разработанные модели с учетом их проверки.

Методы подсчета прогнозных ресурсов

Поисковые и поисково-разведочные работы предполагают обнаружение ПИ и определение общих перспектив на ПИ исследуемых площадей.

Категории: Р1, Р2, Р3

Прогнозные ресурсы позволяют судить о возможности расширения минерально-сырьевой базы ПИ и способствовать улучшению ее географо-экономического положения.

В соответствии с научно-технич. документационные показатели выделения категорий:

1. Категория Р1.

Ресурсы учитывают возможность выявления новых м/р на перспективных участках и рудных тел на разработанных и разведуемых территорий. Для их колличественной оценки исп. геол. обоснованное представление о рамерах и т. д. территории, исп. материала одиночных структурных и поисковых скв. или горных выработок.

Реализуется маериалы геол. экстраполяции в структ., литол. и стратигр и др. геол. данных более изученных участков.

2. Категория Р2.

Предполагается возможность обнаржения в известных и потенциальных минерагенических подразделениях новых МПИ, вероятность наличия которых основана на положительной оценке выявленных при средне-, крупномасштабной съемке и поисках рудопроявлений, а также геоф., геох. и др. аномалий.

Требования: Колич. оценка ресурсов Р2 + представления о размерах предполагаемого м/р в минер. составе и качестве руд определенных на основе аналогии с уже известными объектами того же формационного типа.

3. Категория Р3.

Учитывается лишь потенциальная возможность открытия МПИ на основании благоприятных поисковых предпосылок (стратигр., литолого-фац., магм., структ., климатич.)

Регион. геол. изучение недр и колич. оценка ресурсов Р3 производится без привязки к конкретным объектам только на основе аналогии с более изученными минерагенич. подразделениями того же ранга, где имеются м/р того же формационно-генетического типа.

Требования к выделению категорий

1. Категория Р1.

Используют материалы 1: 25 000 и крупнее. Базируется на том, что: должны быть установлены границы тела, расположение рудных тел, их внутренняя структура и рудолокализующие факторы. Должны быть установлена морфология тел, глубина их залегания и уровень эрозионного среза. Минер. и хим. состав ПИ, состав и содержание полезных компонентов.

Р (оценка)=Q (запас)*c (% содержание)

V=S*m (сред)

2. Категория Р2

Масштабы работ 1: 200 000 — 1: 50 000

Прогнозные карты крупнее.

Материалы: должны быть известны площади рудопроявлений на основании прямых и косвенных признаков по геох, геоф данным, принадлежность к опред. генетич. типу промыш. типу.

Должно быть установлено сходство благоприятных тект. структур, горизонтов осадочных пород, магм., метам. комплексов с аналогичными образованиями на известных м/р того же типа. Ожидаемый минер. и хим. состав руд и сред. содержание компонентов.

2 параметра:

Отс-ют сведения о минералогич. и хим. составе руд.

р (рудоносность)=Q (эталонный объек)/S (этал.)

Р (оценка)=S*р (рудоносность)*к (понижающий коэффициент)

3. Категория Р3

Выявление новых рудопроявлений для постановки поисково-оценочных работ. Осущ. по итогам поисков в масштабе по 1: 200 000 и менее. Основа: прогнозные карты масштаба 1: 200 000 и 1: 100 000.

В основе оценки ресурсов: наличие продуктивных рудоносных формаций осад., вулканог., меам. происхождения; наличие благоприятных разрывных нарушений. Наличие уже известных проявлений и МПИ. Наличие прямых и косвенных признаков ПИ, предполагаемый тип, размер, состав тел ПИ. Сходство территории по геол. строению и составу пород с минерагенич. подразделениями того же ранга, на которых уже известны промыш. м/р.

ПоказатьСвернуть
Заполнить форму текущей работой