Построение эконометрических моделей

Тип работы:
Контрольная
Предмет:
Экономические науки


Узнать стоимость

Детальная информация о работе

Выдержка из работы

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение

высшего профессионального образования

«Челябинский государственный университет»

(ФГБОУ ВПО «ЧелГУ»)

ФАКУЛЬТЕТ ЗАОЧНОГО И ДИСТАНЦИОННОГО ОБУЧЕНИЯ

КОНТРОЛЬНАЯ РАБОТА

Вариант № 3

Челябинск

Задача 1

Имеются данные о сменной добыче угля (тонн) на одного рабочего и мощности пласта (в метрах).

Таблица 1.1. Исходные данные.

Номер региона,

Мощность пласта, (метров).

Сменная выработка угля на одного рабочего, (тонн).

1

22,7

5,4

2

25,8

7,2

3

20,8

7,1

4

15,2

7,9

5

25,4

7,5

6

19,4

6,7

7

18,2

6,2

8

21,0

6,4

9

16,4

5,5

10

23,5

6,9

11

18,8

5,4

12

17,5

6,3

ЗАДАНИЕ

Исследовать зависимость сменной добычи угля на одного рабочего от мощности пласта путем построения уравнения парной линейной регрессии

.

Для исходных данных, приведенных в задаче, требуется:

1. Построить поле корреляции и сформулировать гипотезу о форме связи.

2. Найти оценки параметров модели парной линейной регрессии. Записать полученное уравнение регрессии.

3. Проверить значимость оценок коэффициентов с надежностью 0,95 с помощью статистики Стьюдента и сделать выводы о значимости этих оценок.

4. Определить интервальные оценки коэффициентов с надежностью 0,95.

5. Проверить при уровне значимости 0,05 значимость уравнения регрессии с помощью статистики Фишера и сделать выводы о значимости уравнения регрессии.

6. Определить коэффициент детерминации и коэффициент корреляции. Сделать выводы о качестве уравнения регрессии.

7. Рассчитать среднюю ошибку аппроксимации и сделайте выводы о качестве уравнения регрессии.

8. Рассчитать прогнозное значение результата, если значение фактора X будет больше на 15% его среднего уровня.

9. Дать экономическую интерпретацию коэффициентов парной регрессии.

РЕШЕНИЕ

1. Построим поле корреляции и сформулируем гипотезу о форме связи.

Анализируя поле корреляции, можно предположить, что примерные Х и У связаны линейной зависимостью t = +x, т.к. точки располагаются близко к прямой, причем с возрастанием Х значения У то увеличиваются, то уменьшаются.

2. Найдём оценки параметров модели парной линейной регрессии. Запишем полученное уравнение регрессии.

Составим расчётную таблицу.

Параметры линейного уравнения парной регрессии найдём по формулам

,.

Составим расчётную таблицу 1.2.

Таблица 1.2. Расчётная таблица.

1

2

3

4

5

6

7

8

9

10

1

22,7

5,4

122,58

515,29

29,16

6,671

-1,271

1,615

0,2354

2

25,8

7,2

185,76

665,64

51,84

6,822

0,378

0,143

0,0525

3

20,8

7,1

147,68

432,64

50,41

6,565

0,535

0,286

0,0754

4

15,2

7,9

120,08

231,04

62,41

6,251

1,649

2,719

0,2087

5

25,4

7,5

190,5

645,16

56,25

6,822

0,678

0,460

1,0904

6

19,4

6,7

129,98

376,36

44,83

6,486

0,214

0,046

0,0319

7

18,2

6,2

112,84

331,24

38,44

6,419

-0,219

0,048

0,0353

8

21,0

6,4

134,40

441,00

40,96

6,576

-0,176

0,031

0,0275

9

16,4

5,5

90,20

268,96

30,25

6,318

-0,818

0,669

0,1487

10

23,5

6,9

162,15

552,25

47,61

6,716

0,140

0,020

0,0203

11

18,8

5,4

101,52

353,44

29,16

6,453

-1,053

1,109

0,1950

12

17,5

6,3

110,25

306,25

39,69

6,380

-0,080

0,006

0,0127

Сумма

244,7

78,5

1607,94

5119,2

521,01

7,152

1,1338

Среднее

20,4

6,54

134,00

426,61

43,42

=; =; =; =;

= 134,00−20,4*6,54 / 426,61−20,4І = 0,056

Тогда линейное уравнение регрессии запишется так:

Для вычисления значений t нужно в уравнении (*) представлять соответствующие значения xt, данные в условии и полученные результаты внести в графу (t) расчетной таблицы.

3. Проверить значимость оценок коэффициентов с надежностью 0,95 с помощью статистики Стьюдента и сделать выводы о значимости этих оценок.

Для оценки статистической значимости параметров регрессии и коэффициента корреляции воспользуемся статистикой Стьюдента.

Для этого предварительно рассчитаем стандартную ошибку регрессии S и — стандартную ошибку параметра, используя формулы

и, причём

При n =12, используя результаты таблицы 2, получим:

,
тогда

Число степеней свободы равно числу наблюдений без двух, т. е. n = 12 — 2 = 10

Для этого числа степеней свободы и уровня доверия q = 0,95 из таблицы Стьюдента найдем критическое значение t = 2,228

Расчетное значение t-статистики параметра есть

Значение <, отсюда следует, что параметр не является значимым, значит, и уравнение регрессии (*) не является значимым

4. Определить интервальные оценки коэффициентов с надежностью 0,95.

Т.К. доверительный интервал неизвестного нам коэффициента рассчитывается по формуле: -T кр * S< < + Т кр, Sв

Где на уровне доверия q = 0. 95 T кр = 2,228

= 0,056; Sв = 0,0755

0,056- 2,228* 0,0755< в < 0. 056+2,228*0,0755

0,056 — 0,1682< в < 0,056 +0,1682

-0,11 < в < 0,2242 — доверительный интервал параметра в (для q=0,95)

Аналогично находят доверительный интервал для параметра л

= 1,5602

Доверительный интервал л находится так

— T кр *Sл < л < + Ткр *Sл

5,40 — 2,228 * 1,5602 <л < 5,40+2,228*1,5602

5,40 — 3,476 < л < 5,40+3,476

1,924 < л < 8,876 — доверительный интервал для q= 0,95

5. Проверим при уровне значимости 0,05 значимость уравнения регрессии с помощью статистики Фишера и сделаем выводы о значимости уравнения регрессии.

Расчётное значение статистики Фишера определим по формуле

,

где — коэффициент парной линейной корреляции (его можно находить по разным формулам и результаты при этом могут не совпадать)

Используя формулу

,

где и — стандартные отклонения представляющие собой корень квадратный из выбранных дисперсий переменных. х и у соответственно.

;

В нашем случае

F расч = 0,0505* (12−2) / 1−0,0505 = 0,532

При значимости 0,05 и степенях свободы K1 = m=1

И K2 = n-m-1=12−1-1 =10 в таблице найдем F табл = 4,96

Т.к. F факт = 0,532 < F табл =4,96, то уравнение регрессии (*) на уровне значимости 0,05 не является значимым

6. Определим коэффициент детерминации и коэффициент корреляции. Сделаем выводы о качестве уравнения регрессии.

= 0,0737 Это говорит о том, что на 7,37% дисперсия зависимой переменной у объясняется изменение переменной Х, а 92,63% изменения у

объясняется влиянием других факторов, не учтенных в задаче. И, следовательно, значение = 0,0737 свидетельствует о том, что найденное уравнение регрессии не является значимым

На основе полученного коэффициента детерминации можно рассчитать коэффициент парной линейной корреляции ху = = 0,2715. Это значение говорит о незначительной тесноте связи между переменными Х и У

Из этого следует, что связь между мощностью пласта и выработкой угля на одного рабочего в целом прямая

Так, при изменении Х на 1 единицу (1м) выработка угля на одного рабочего вырастет на 0,056 единицы (тонны)

7. Рассчитаем среднюю ошибку аппроксимации и сделаем выводы о качестве уравнения регрессии.

А = 1/12 * 1,1338=0,0945=9,45%

Очень близка к 10%. Это говорит о качестве подгонки недостаточно хороший, т.к. в среднем расчетные значения отличаются от фактической на 9,45%

8. Рассчитать прогнозное значение результата, если значение фактора будет больше на 15% его среднего уровня.

Имеем = 20,4 (100% + 15% =115% = 1,15)

Х=1,15 * = 1,15*20,4=23,46

Этому значению согласно полученной математической модели будет соответствовать = 5,40+0,056*23,46=5,40+1,314=6,714

Итак, (23,46) = 6,714

9. Дадим экономическую интерпретацию коэффициентов парной регрессии. По приведенным в условии данным получили линейное уравнение регрессии Хt. Значение = 0,0735 говорит о том, что изменения переменной у зависит от изменения фактора х только на 7,35

На уровне значимости 0,05 доверительные интервалы параметров

1,924< л < 8,876

-0,1122 < в< 0,2242

Rху = 0,2715 говорит о прямой зависимости между х и у и незначительной тесноте связи между переменными Х и У

При изменении х на 1 единицу, значение У увеличивается на 0,056 единиц. Смысл параметра л — это значение при х=0

Библиографический список

Айвазян С. А., Мхитарян В. С. Прикладная статистика и основы эконометрики. Учебник для вузов. — М.: ЮНИТИ, 1998. — 1022 с.

Айвазян С. А., Мхитарян В. С. Прикладная статистика в задачах и упражнениях: Учебник для вузов. — М.: ЮНИТИ-ДАНА, 2001. — 270 с.

Афанасьев В. Н., Юзбашев М. М., Гуляева Т. И. Эконометрика: Учебник / В. Н. Афанасьев, М. М. Юзбашев, Т. И. Гуляева; под ред. В. Н. Афанасьева. — М.: Финансы и статистика, 2005. — 256 с.

Доугерти К. Введение в эконометрику: Учебник / Пер. с англ. — М.: ИНФРА-М, 2004. — 432 с.

Магнус Я. Р., Катышев П. К., Пересецкий А. А. Эконометрика. Начальный курс: Учеб. — М.: Дело, 2004. — 576 с.

Практикум по эконометрике: Учеб. пособие / И. И. Елисеева, С. В. Курышева, Н. М. Гордеенко и др.; Под ред. И. И. Елисеевой. — М.: Финансы и статистика, 2007. — 192 с.

Эконометрика: Учебник / И. И. Елисеева, С. В. Курышева, Т. В. Костеева и др.; Под ред. И. И. Елисеевой. — М.: Проспект, 2010. — 576 с.

ПРИЛОЖЕНИЯ

линейная регрессия корреляция аппроксимация

ПоказатьСвернуть
Заполнить форму текущей работой