Построение экономических моделей.
Оптимизация и прогнозирование производства

Тип работы:
Контрольная
Предмет:
Экономические науки


Узнать стоимость

Детальная информация о работе

Выдержка из работы

http: ///

http: ///

Министерство образования и науки Украины

НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ХАРЬКОВСКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ»

Факультет экономической информатики и менеджмента

Кафедра экономической кибернетики и маркетингового менеджмента

КОНТРОЛЬНАЯ РАБОТА

по решению задач экономико-математического моделирования

Харків, НТУ «ХПІ»

Содержание

  • Введение
    • 1. Задача линейного программирования
    • 2. Экономико — статистическая задача
    • Выводы
    • Список использованной литературы

Введение

В наше время построение моделей — это один из важнейших шагов для достижения хороших результатов, как в бизнесе, так и во всех остальных сферах деятельности. Построение модели, описывающей реальные тенденции для какого — либо дела — это уже половина результата, так как по этой модели можно отследить возможные результаты и выбрать наилучший.

В данный момент с помощью эволюции в науке и технике значительно упростился процесс построения моделей. Например, если раньше для построения более-менее адекватной модели требовалось значительное количество бумаги, то с появлением компьютера данную модель можно записать в одном файле.

Помимо построения моделей существуют так же методы оптимизации, с помощью которых можно значительно уменьшить количество затрачиваемых ресурсов и времени для производства продукции.

Применение оптимизационных задач имеет особый успех при проектировании и анализе больших технических систем. Кроме того, интенсивное развитие средств вычислительной техники стимулирует ускорение темпов внедрения теоретических разработок в экономическую практику. В настоящее время для экономиста знание методов оптимизации столь же необходимо, как знание основ математического анализа, экономики, основ маркетинга и других дисциплин.

Целью данной работы- научиться применять на практике знания, приобретенные в области оптимизации и прогнозирования

Ставились следующие задачи: отыскание оптимальной структуры производства, построение по исходным значениям модели и поиск по ней прогнозного значения.

1. Задача линейного программирования

выпуск товар прибыль продажа

Условие

Кондитерская фабрика для производства двух видов карамели А, В использует три вида основного сырья: сахарный песок, патоку, фруктовое пюре. Нормы расхода сырья каждого вида на производство 1 т карамели — в таблице. В ней же указано общее количество сырья каждого вида, которое может быть использовано фабрикой, а также приведена прибыль от реализации 1 т карамели данного вида.

Таблица 1.1 — Условие

Вид сырья

Нормы расхода сырья (т) на 1 т карамели

Общее количество сырья (т)

А

В

Сахарный песок

0,8

0,5

800

Патока

0,8

0,4

600

Фруктовое пюре

-

0,1

120

Прибыль от реализации 1 т продукции (усл. ден. ед.)

108

112

Необходимо отыскать выпуск карамелей, при котором прибыль от реализации будет максимальной.

Решение

Решение начинается с ввода нулевого вектора-решений, это выпуск карамели, А и В.

Затем задается целевая функция — произведение прибыли на выпуск карамели. Ее нужно максимизировать.

Вводятся ограничения — имеющееся на складе количество сахарной пудры, патоки и фруктового пюре:

Рисунок 1.1 — Ограничения

Задача решается с помощью функции «Поиск решений», позволяющей найти оптимальный выпуск.

Рисунок 1.2 — Поиск решений

Карамель А

Карамель В

Целевая функция

Сахар. Песок

Патока

Фрукт. пюре

1

150

1200

150 600

720

600

120

Рисунок 1.3 — Ответ

Данное решение удовлетворяет заданным ограничениям и максимизирует целевую функцию, следовательно, чтобы максимизировать прибыль от реализации карамели, необходимо выпускать 150 ед. карамели, А и 1200 ед. карамели В. Проверка на устойчивость состоит в изменении поочередно каждого ресурса на 1%, и проверки как после этого менялась целевая функция. (При изменении на 1% ресурсы соответственно станут: сахарный песок- 808, патока 606, фруктовое пюре — 121,2 едениц)

Таблица 1.2 — Влияние измененных факторов на результат

Карамель А

Карамель В

Целевая функция

Сахар. Песок

Патока

Фрукт. пюре

1

150

1200

150 600

800

600

120

2

150

1200

150 600

808

600

120

3

158

1200

151 410

800

606

120

4

144

1212

151 296

800

600

121,2

В таблице 1.2 в первой строке показан результат при исходных ограничения, во 2 — при увеличении сахарного песка на 1%, изменения целевой функции не происходит, в 3 — при увеличении патоки на 1% происходит увеличение целевой функции на 0,538%, а при увеличении фруктового пюре на 1% происходит увеличение целевой функции на 0,462%. По данной таблице можно сделать вывод, что результат устойчив к изменению сахарного песка, в отличии от изменения патоки и фруктового пюре. Соответственно можно сделать вывод, что на результат больше всего влияет изменение патоки.

2 Экономико-статистическая задача

Условие

В таблице приведены бальные оценки (наилучшее значение — 5 баллов) основных производителей жалюзи г. Харькова.

Таблица 2.1 — Бальные оценки на горизонтальные алюминиевые цветные жалюзи для разных предприятий

Название фирмы

Факторы

Объем продаж

Цена

Ассортимент

Скидки

Установка

Срок изготовления

Гарантийное обслуживание

Солодковский и К?

3

4

4

3

1

2

6

Глобус

4

2

3

1

1

1

5

Окна + Сервис

1

1

1

1

1

2

2

ЧП Кочетков

4

2

3

2

1

2

6

ЧП Бышенко

3

2

1

3

1

2

5

ЭПЛ

3

1

4

4

1

4

7

ЧП Есин

3

3

1

2

4

2

5

Fenster — West

3

1

1

2

4

2

5

Каскад

3

1

1

4

1

2

5

Квін — Свіг

2

4

1

2

1

1

4

Ваши окна

3

4

1

2

2

2

5

Гомон

2

3

1

1

1

4

3

Необходимо построить модель зависимости объема продаж от основных экономических и технических показателей продукции. Оценить, как изменится объем продаж предприятия ЭПЛ, если предприятие снизить цены на 30%, расширит ассортимент в два раза и сократит срок изготовления на 40%.

Решение

Данная задача решается в 3 этапа. На первом строится модель, на втором проверяется на адекватность, на третьем делается прогноз.

1. Построение модели выполняется с помощью метода наименьших квадратов. Вид зависимости между объемом продаж и факторами, влияющими на него — это многофакторная регрессия, так как этих факторов 6.

Рисунок 2.1 — Исходные данные

В методе наименьших квадратов используется матрица Н. В первом столбце этой матрицы будут стоять единицы, в остальных — столбцы из матрицы влияющих факторов.

Рисунок 2.2 — Нахождение неизвестных параметров модели

После ввода матрицы Н, с помощью метода наименьших квадратов находятся коэффициенты, стоящие при факторах, эти коэффициенты записаны в векторе А.

Рисунок 2.3 — Регрессия

2. Проверка данной модели на адекватность. Проверка осуществляется с помощью коэффициента детерминации.

Рисунок 2.4 — Коэффициент детерминации

Коэффициент детерминации лежит в допустимых пределах, следовательно, модель адекватна.

3. Построение прогноза для фирмы ЭПЛ. В данной задаче нужно было уменьшить цену на 30%, увеличить ассортимент в 2 раза, и уменьшить срок изготовления на 40%. В приведенном ниже рисунке представлены новые факторы для фирмы ЭПЛ.

Рисунок 2.5 — Измененные факторы

В итоге, при изменении факторов объем реализации будет равен:

Рисунок 2.6 — Новый объем реализации

Объем реализации увеличится с 7 до 7. 8, это объясняется тем, что были снижены цены, уменьшился объем производства и увеличился ассортимент, что положительно отразилось на объеме продаж.

Выводы

Работа была посвящена решению задач экономико-математического моделирования, в первой задачи нужно было отыскать оптимальный выпуск товаров, обеспечивающий максимум прибыли. Данная задача относится к задачам линейного программирования и была решена в пакете Exel. Вторая задача — задача экономического моделирования, необходимо найти модель, описывающую зависимость между факторами и объемом продажи. По построенной модели необходимо найти новый объем продаж при измененных факторах.

Список использованной литературы

1. ДСТУ 3008−95 Документація. Звіти у галузі науки і техніки. Структура і правила оформлення. — Харків: НТУ «ХПІ», 2000

2. ДСТУ 7. 1−84 Бібліографічний опис документу. Загальні вимоги та правила складання.

3. СТВУЗ-ХПІ-3. 01−2006 Текстові документи у сфері навчального процесу. Загальні вимоги до виконання.

4. Айвазян С. А., Мхитарян В. С. Прикладная статистика. Том 1. Теория вероятностей и прикладная статистика. -- М.: Юнити, 2001.

5. Айвазян С. А. Прикладная статистика. Том 2. Основы эконометрики. -- М.: Юнити, 2001.

ПоказатьСвернуть
Заполнить форму текущей работой