Применение метода вейвлет-кодирования для сжатия и реконструкции физиологической информации, передаваемой по каналу радиотелеметрии

Тип работы:
Курсовая
Предмет:
Коммуникации, связь, цифровые приборы и радиоэлектроника


Узнать стоимость

Детальная информация о работе

Выдержка из работы

Тема: «Применение метода вейвлет-кодирования для сжатия и реконструкции физиологической информации, передаваемой по каналу радиотелеметрии «

Содержание

Введение

Глава 1. Информационная организация структур организма

1.1 Общие представления об информационной организации структур организма

1.2 Клиническая информатика как инструмент для анализа состояния организма

1.3 Основные требования к информационным диагностическим системам

Информационная ценность биологических сигналов, как источников данных об организме

1.4 Принципы передачи регистрируемой физиологической информации от биообъекта к средствам обработки

1.5 Расчёт необходимой производительности канала связи

Выводы по главе 1

Глава 2. Приложение математических методов вейвлет-преобразования к медико-биологическим задачам

2.1 Основные принципы вейвлет-преобразования

2.2 Сравнение частотных приложений вейвлет- и Фурье преобразований при обработке медико-биологической информации

Выводы по главе 2

Глава 3. Исследование алгоритмов компрессии биоэлектрических сигналов в реальном масштабе времени

3.1 Методы сжатия цифровой информации для передачи по виртуальной магистрали

3.1.1 RLE — кодирование

3.1.2 Унарное кодирование (VLI

3.1.3 Коды Хаффмена

3.1.4 Вероятностное кодирование

3.1.5 Алгоритм LZ77

3.1.6 Алгоритмы LZ78 — LZW84

3.2 Использование методов вейвлет-кодирования для сжатия биологических сигналов

3.3 Практическое применение алгоритма сжатия на основе математического аппарата вейвлет-преобразования

3.3.1 Обработка электромиограммы

3.3.2 Обработка сигнал тонов Короткова

3.3.3 Обработка электрокардиосигнала

3.4 Использование современных микропроцессорных средств для поддержки вейвлет кодирования-декодирования и передачи по каналу радиотелеметрии

Выводы по главе 3

Глава 4. Организационно-экономическая часть

4.1 Построение, расчет и оптимизация сетевого графика выполнения

дипломной работы

4.1.1 Расчет основных параметров сетевой модели

4.1.2 Оптимизация сетевого графика

4.1.3 Оптимизация по трудовым ресурсам

4.2. Расчет себестоимости и оптовой цены разработки

4.2.1 Расчет капитальных вложений

4.2.2 Расчет заработной платы участников, проводимой работы

4.2.3 Расчет затрат на материалы и комплектующие изделия

4.2.4 Расчет энергетических затрат

4.3 Конкурентноспособность

4.4 Определение социального эффекта

4.5 Структурная схема бизнес-плана

4.6 Выводы по главе 4

Глава 5. Безопасность жизнедеятельности

5.1 Анализ потенциальных опасных и вредных факторов, воздействующих на разработчика и пользователя математического метода вейвлет-преобразования

5.1.1 Анализ потенциально опасных и вредных факторов на рабочем месте

5.1.2 Факторы, влияющие на зрение

5.1.3 Параметры микроклимата

5.1.4 Шум и вибрация

5.1.5 Электромагнитное и ионизирующее излучения

5.1.6 Эргономические требования к рабочему месту

5.1.7 Электробезопасность

5.1.8 Противопожарная безопасность

5.1.9 Оценки факторов рабочей среды

5.1. 10 Определение категории тяжести работ

5.2 Разработка организационных и технических мероприятий по обеспечению электробезопасности на рабочем месте

Выводы по главе 5

Заключение

Список литературы

Введение

Современная медицина неразрывно связана с применением различных диагностических и терапевтических приборов и тенденция к дальнейшему внедрению технических средств в медико-биологическую практику сохраняется. Многие сферы медицины невозможно представить без медицинской электроники, к которой относятся сложнейшие биотехнические и медицинские системы — комплексы для сбора, обработки, и хранения биосигналов, данных обследований, медицинских изображений, диагностические системы и комплексы, терапевтические аппараты и системы, экстракорпоральная и протезирующая техника, биостимуляторы, хирургическая операционная техника и др. В связи с этим, для успешной диагностики и наблюдения за процессом реабилитации в современных условиях жизненно необходимо, чтобы диагностические методы отвечали таким требованиям как простота в измерении, высокая точность, скорость и при этом доступность. Актуальной задачей при этом является проблема съема, сжатия и передачи физиологического сигнала в режиме реального времени. Существующие в настоящее время алгоритмы компрессии биологических сигналов несовершенны, и повсеместное их применение не представляется возможным за счет целого ряда имеющихся каждого из них ограничительных условий. По этой причине целью работы стала задача анализа имеющихся методов компрессии и выбора наиболее оптимального и целесообразного, с точки зрения его применения для оценки непрерывных биологических сигналов, и относительно простого для вычислений, которые могут производиться современными микроконтроллерами в реальном масштабе времени.

Глава 1. Информационная организация структур организма

1.1 Общие представления об информационной организации структур организма

Человек, являющийся объектом медицины, представляет собой открытую нелинейную биологическую систему, существующую благодаря сбалансированному обмену с внешней средой веществом, энергией и информацией в виде «информационных потоков» с пространственно-временным распределением во внутренней среде.

Живыми организмами информация воспринимается, обрабатывается и потребляется посредством согласованного выполнения комплекса функций. Информационные потоки влияют на формирование и синхронизацию функций, что определяет эффективность жизнедеятельности организма, как целого. К информационному обмену имеют непосредственное отношение условия жизнедеятельности конкретных индивидуумов и их общественных образований; уровень их эмоционального и духовного развития; характер, выраженность и устойчивость связей с окружающим миром, происходящих на сознательном и подсознательном уровнях; отношения в семье и в трудовом коллективе; взаимные влияния естественных электромагнитных полей и многое другое.

Качественные и количественные особенности информационных воздействий внешней среды и последующих реакций биологических систем в виде трудовой активности, пищевой и половой мотивации, реализации инстинкта самосохранения и т. д. определяют, в конечном итоге, выживание и здоровье организма. Поэтому понятно, что информационные влияния внешней и внутренней среды могут быть как благоприятными, так и неблагоприятными по отношению к живой системе и, в частности, к здоровью человека, сопровождаясь адекватным или неадекватным функциональным ответом организма. Составляющие компоненты информационного обмена создают условия для реализации тех или иных известных этиологических факторов патологии.

Реакции организма, как целого, систем органов, отдельных органов, тканей, клеток и субклеточных структур являются естественным и закономерным ответом на информационные процессы. Эти реакции представлены многообразными биологическими сигналами, отражающими сложную иерархию внутриорганизменных коммуникационных связей.

Выделено несколько типов информационной коммуникации в биологических системах: химический (иерархически организованные процессы нейро-гуморального контроля жизнедеятельности с участием первичных и вторичных мессенджеров — нейропептидов, иммуноглобулинов и т. д.); прямой — посредством мембранных контактов, рецепторных полей, клеточных иммунологических механизмов; и физический — путем взаимодействия с внешними и внутренними электромагнитными полями различных волновых характеристик. Существует тесное единство этих процессов, а разделение их на конкретные пути коммуникации условно. При этом электромагнитные колебания рассматриваются в качестве универсального координатора функций организма.

Информационные процессы обеспечивают функциональные или патологические реакции субклеточных структур, отдельных клеток или их групп, тканей, органов или систем органов, что в совокупности формирует определенный физиологический (или клинический) «портрет» организма в определенный момент времени. Следовательно, выявление внешних проявлений (признаков) этих реакций может быть использовано в диагностических целях, тем более, что реакции биологических систем фиксируются на определенное время в виде т.н. конформаций, обеспечивая «память» и более или менее продолжительное хранение клинико-биологической информации. Фиксация этой информации обеспечивается генными структурами — ДНК.

Функциональные реакции организма регистрируются различными клинико-физиологическими методами, что и составляет основу клинической диагностики в биологии и медицине.

В здоровом организме эти реакции имеют в своей основе изменения преимущественно в молекулярно-энергетических и регуляторных процессах и обычно не выходят за границы представлений о норме.

Интенсивность и продолжительность комплекса внешних воздействий с одной стороны, и особенности полисистемного (полиорганного) функционального ответа организма — с другой, определяют направление патологического процесса (сердечно-сосудистая система, органы пищеварения), вид патологии (гипертоническая болезнь или инфаркт миокарда, язвенная болезнь или рак желудка), а также скорость клинической манифестации и исхода заболевания. Следовательно, становится очевидным существование особой начальной стадии болезни, которая может быть условно определена как информационная стадия, которая в последующем трансформируется в доклиническую и затем в клиническую стадии.

Доклиническая стадия характеризуется тем, что у человека отсутствуют субъективные и объективные признаки того или иного заболевания, но при использовании биохимических, иммунологических, серологических, иммуногенетических тестов и т. д. могут быть обнаружены отклонения от нормы соответствующих функций или показателей. В ряде случаев это могут быть т.н. функциональные или латентные органические изменения, прогностически неблагоприятные и говорящие о риске развития той или иной патологии. Но и во многих случаях на этой стадии могут быть обнаружены признаки уже существующих патологических состояний (например, неактивный хронический вирусный гепатит, скрытый сахарный диабет, «немая» язва желудка, доброкачественные или злокачественные опухоли и т. д.), которые клинически себя еще не проявили.

Для практической медицины доклиническая стадия патологии крайне важна. Ранняя диагностика и прогноз заболевания позволяют избежать развития грубых необратимых изменений и их осложнений, благодаря назначению, организации выполнения и контролю исполнения лечебно-профилактических мероприятий. Например, рекомендации пациентам, склонных к сахарному диабету, употреблять меньше сахара и мучного, снизить массу тела и больше двигаться, позволяют избежать с одной стороны, затрат на лекарства, а с другой — служат способом профилактики развернутого сахарного диабета и его осложнений. Но для контроля эффективности данных мероприятий требуется измерение уровня сахара в крови, АД, массы тела и т. д.

Клиническая стадия патологии, с которой преимущественно имеет дело традиционная медицина, отличается развернутой клинической картиной, жалобами больных (чаще всего на боли), наличием признаков (симптомов) того или иного заболевания. На данной стадии, как правило, в основе любой болезни уже лежат более или менее выраженные органические изменения (ишемия, воспаление, атрофические, дистрофические, фиброзные изменения, нарушения регенерации тканей). Фактически это стадия декомпенсации функций и необратимых изменений органа или системы органов. Можно ли излечить больного человека на этой стадии? Практически нет. Можно добиться той или иной компенсации нарушенных функций и обеспечить клиническую ремиссию заболевания, сохраняя этим трудоспособность больного или лишь сохраняя возможность самообслуживания и поддерживая на некоторое время его жизнь. И это несмотря на то, что современная медицинская наука способна улучшить качество и увеличить продолжительность жизни больных путем совершенствования способов диагностики, методов лечения и реабилитации. Однако наука пока не в состоянии устранить те патологические конформации, которые образуются в организме человека в ответ на многочисленные патогенные воздействия на доклинической и, тем более, клинической стадиях развития болезни.

Иными словами, диагностические задачи клинической медицины, решаемые традиционными методами исследований, нацелены на уже существующий материальный (органический) — клинический или субклинический субстрат заболеваний.

Правда, многие, используемые на практике, методы чаще всего не позволяют достоверно судить об органической или функциональной природе выявляемых изменений в организме, что могло бы дать основание для суждения о существующей патологии или о риске ее развития. Здесь, конечно, речь не идет о методах эндоскопический, ультразвуковой и рентгенологический диагностики, биохимических и иммунологических тестах и т. д., многие из которых нацелены на верификацию уже существующей патологии. Но понятно, что любая патология, зарождаясь задолго до появления органических изменений в организме, проходит доклинические (функциональные) этапы своего развития. И потому научные исследования, посвященные теоретическим и методическим основам диагностики патологии на этих этапах, представляются наиболее перспективными для современной клинической и профилактической медицины. Современное лечение в большинстве случаев потому недостаточно превентивно, потому что диагностика является запоздалой: это говорят классики нашей медицины.

1.2 Клиническая информатика как инструмент для анализа состояния организма

Клиническая информатика — это самостоятельная наука (в рамках, как медицины, так и информатики) о системах и о законах накопления, передачи, обработки информации в организме больного и медицинских системах (и в организме здорового человека или преморбидного больного). Предмет К И — информационные процессы при патологических состояниях при их распознавании и в ходе помощи при них в реальных клинических условиях (информационные процессы существуют и у здорового человека). Для этого необходим количественный подход к оценке патологического процесса, его вида и тяжести с использованием вероятностных моделей и метрологических шкал оценки тяжести патологического состояния. В модели должны быть представлены процессы автоматического регулирования в организме в виде многочисленных контуров регулирования, звеньев этих контуров, взаимосвязей между звеньями и уравнений взаимосвязей, причем эти уравнения должны описывать не однозначно детерминированную, а вероятностную картину этих взаимосвязей. Многие экспертные системы не содержат вероятностных подходов, а основаны на детерминированных логических моделях (изменения на ЭКГ — ишемия, инфаркт).

Но вероятностный подход особенно важен для догоспитального и доспециализированного периодов оказания помощи, в которых совершается большинство ошибок, которые могут снизиться, благодаря информационным технологиям. Процессы автоматического (информационного) управления в организме в норме и при патологических процессах моделируются N-мерным пространством признаков. И сегодня эта модель лежит в основе информационной концепции патологии как фундаментальной науки о патологических процессах в живых и неживых системах. Например, уравнения химической кинетики уже используются для описания процессов развития опухолей (Эммануэль Н.М., Евсеенко Л. С. Количественные основы клинической онкологии. М.: 1970).

С этой точки зрения, например, легко понять основное отличие процессов регуляции при болезни от физиологической регуляции. Это примерно то же, что отличает аварийное регулирование в технических системах от нормального регулирования — изменение цели (вектора) регулирования (пример с тонущим кораблем).

Рассматриваемый подход к пониманию патологического процесса можно назвать «информационной сущностью патологии». Однако правильнее его рассматривать как этап в развитии самой патологии (можно привести тот же технический пример).

Суть этого этапа и этого подхода состоит в том, что патологический процесс рассматривается как процесс динамической угрозы, которая прогрессирует до реализации при недостаточной помощи и убывает до ликвидации при достаточной помощи, а под основной измеряемой и регулируемой величиной патологического процесса нужно понимать вероятность реализации определенной угрозы за определенный отрезок времени.

1.3 Основные требования к информационным диагностическим системам

Информационные диагностические системы должны служить в интересах срочного распознавания угрожающих состояний и выбора тактического решения по спасению. Это — информационная задача. Основная задача компьютерных систем — оказание неспециалисту такой помощи в принятии решения, чтобы это решение стало близким по своей профессиональной компетентности к решению специалиста, но не выдача готовых решений и, тем более, не управление помощью вместо специалиста, а улучшение и ускорение тактических решений самого специалиста и повышение производительности консультативного труда. Цель — оптимальная медицинская помощь больному, как система выбора минимально достаточного уровня помощи и, разумеется, предоставления этой помощи. Здесь может быть обеспечено ускорение первичной диагностики тяжести и вида патологического процесса, преодоление «противоречий специализации». Поэтому важно использование условной «патометрической» шкалы: I — характер угрозы; II — нозологический вид угрозы; III — степень (величина) угрозы, как вероятность ее реализации от 0 до 1 применительно к N-мерной модели.

Многим перечисленным требованиям отвечает телеметрическая технология мониторинга качества здоровья и скрининг-диагностики, представляющая собой аппаратно-программный комплекс на базе персонального компьютера. Теоретическую основу технологии составляют представления об информационных взаимосвязях клеточных образований, органов и систем органов, обеспечиваемых не только системами регуляции и иммунитета, но и электромагнитно-частотными колебаниями и биологическими ритмами структур организма.

1.4 Информационная ценность биологических сигналов, как источников данных об организме

Информационное единство внутриорганизменных связей дает основание использовать многие биологические сигналы организма, как отражение тех или иных реакций, для интегрального суждения не только о состоянии конкретного органа, являющегося источником данного сигнала, но и о состоянии иных органов и систем, и организма, как целого.

В биологии и медицине большинство методов исследований направлены на оценку тех или иных реакций или биологических сигналов. Ряд методов может быть использован для выявления заболеваний в режиме скрининга. В качестве примеров достаточно привести работы, посвященные изучению квантовых характеристик клеток, собственной люминесценции живых тканей, генетических структур клеток, диагностика по Фолю, иридодиагностика, тепловидение и т. д. Подобные примеры можно было бы продолжить, однако вопросы клинического применения этих и иных способов ограничены, прежде всего, узко направленным спектром выявляемой информации и, в большинстве случаев, невозможностью интегрального суждения о состоянии макроорганизма.

Среди множества биосигналов, выявляемых в клинико-диагностической практике, особое внимание привлекают кардиосигналы не только потому, что они наиболее доступны для информационно-математического анализа, но и в связи с тем, что сложились представления о сердечно-сосудистой системе, как индикаторе адаптационных реакций организма и состояния вегетативной нервной системы.

Применение математического анализа сердечного ритма (кардиоритмографии) и комплексной оценки сердечно-сосудистой системы (включая характеристики пульса, сердечного ритма, артериального давления, минутного объема, гомеостаза и т. д.) на практике доказало свою эффективность и перспективность для донозологической диагностики заболеваний, в том числе при проведении массовых обследований населения. В этом отношении уместно вспомнить, что еще древние китайские врачи, оценивая особенности пульса пациентов, диагностировали многие соматические заболевания. Поэтому сердце и сердечно-сосудистая система (в отличие от традиционного — анатомо-физиологического, понимания их функций) составляют мощный информационный канал, несущий значительный объем информации, первичным источником которой могут быть все без исключения органы и системы организма.

Известно, что оценка сердечного ритма и тонуса ВНС по Р. М. Баевскому позволяет судить: об удовлетворительной адаптации организма; о функциональном напряжении механизмов адаптации; о неудовлетворительном состоянии процессов адаптации с уменьшением функциональных резервов; о срыве адаптации с истощением функциональных резервов. Нетрудно убедиться, что варианты дисадаптации организма могут иметь связь с патогенетическими механизмами многих патологических синдромов и заболеваний (и не только сердечно-сосудистых).

Разработка данного направления позволила подойти к пониманию того, что амплитудно-частотные характеристики и ритмы кардиосигналов могут нести закодированную диагностическую информацию о конкретных патологических состояниях, синдромах и заболеваниях как на клинической, так и доклинической стадиях развития патологии. Это положение создало возможности выделения информационно-кодовых признаков как нормы, так и будущей патологии. Подробный анализ кардиосигнала совместно с физиологическими показателями дает возможность обнаружить наличие и, прежде всего, предрасположение к тому или иному заболеванию. По этой причине столь важно, чтобы процесс регистрации физиологического сигнала, последующая его передача (т.е. неизбежное сопутствующее преобразование) и анализ были произведены наиболее щадящими и сохранными методами по отношению к входному сигналу независимо от его типа и формы — ведь количество физиологических показателей человека и животных чрезвычайно велико и с развитием биологической науки общее число физиологических, биохимических, биофизических показателей, как и количество биомедицинских параметров ускоренно возрастает. В табл. 1 [1] представлены основные физиологические показатели, подлежащие первичному преобразованию или приему до ввода в измерительно-информационные системы.

Таблица 1. Основные физиологические показатели, подлежащие первичному преобразованию.

Физиологические показатели

Диапазон частот, Гц

Величина биосигнала, мкВ

Вид приемного устройства

1

2

3

4

Электрокардиосигнал (ЭКС)

Фонокардиография (ФКГ)

Электрокимография (ЭКИ)

Баллистокардиография (БКГ)

Динамокардиография (ДКГ)

Реокардиография (РКГ)

Ультрозвуковая кардиография (УКГ)

Ультрозвуковая вальвулокардиография (УВГД)

Пульсовая осцилляция при регистрации артериального давления (АД)

Регистрация АД по тонам Короткова

Регистрация АД прямым методом

Регистрация венозного давления прямым методом (ФД)

Флебография (венный пульс)

Объемная скорость крово-тока

0,3 — 300

20−1000

1−10

0,1−30

0,1−30

0,3−30

0,5 — 10

0,5 — 10

0,3 — 10

0,3 — 10

0,1 — 20

300 — 3000

100−1000

500−2000

100 — 104

100 — 104

100 — 2000

104 — 105

Электроды

Датчики

Датчики

Датчики

Датчики

Электроды

Датчики

Датчики

Датчики

Датчики Датчики

Линейная скорость кровотока

Температура крови в полости сердца и сосудах

Температура кожного покрова

Температура в полости пищевода и желудка

Электроэнцефалограмма

Альфа-ритм

Бета-ритм

Гамма-ритм

Дельта-ритм

Тета-ритм

Электромиограмма (ЭМГ)

Электронистагмограмма

Элекроокулограмма (ЭОГ)

Пневмограмма (ПГ)

Объемная сфигмограмма

Электроплетизмограмма

Импедансная плетизмография

Электроретигография

Внутриглазное давление

Легочная вентиляция

Кожно-гальванический рефлекс (КГР)

По Тарханову

По Фере

Перемещение кожного по-крова

Контактное давление

Вибрационное смещение

Вибрационная скорость

Вибрационное ускорение

Статическое давление мор-ской воды при движении животных

Перемещение кожного по-крова морских животных при движении

Скоростной напор в погра-ничном слое при движении морских животных

0,1 — 20

8−13

14−35

30−80

0,5−3

4−7

0,1−1000

3−7

0,1−3

0,1−10

0,3−30

0,3−30

0−10

0,1−20

0,1−200

0,1−10

0,1−10

0,5−100

5−1000

5−1000

5−100

до 50

1−500

до 500

104 — 105

100 — 5000

100 — 5000

100−1000

20−100

5−30

2−10

10−80

20 и более

20−3000

20−100

20−200

20−100

20−100

30−400

100−10 000

100−50 000

100−2000

100−104

100−104

зависит от типа ДБИ

100−104

100−104

100−104

То же

Катетерные датчики

Датчики

Датчики

Электроды

Датчики

Датчики

Датчики

Датчики

Датчики

Датчики

Датчики

Датчики-электроды

Датчики

Датчики

Датчики

Датчики

Датчики

Датчики

Датчики для гидробиони-ческих исследова-ний

1.5 Принципы передачи регистрируемой физиологической информации от биообъекта к средствам обработки

Передача различных медико-биологических сигналов от биообъекта к стационарному комплексу, который в настоящее время базируется на основе персонального компьютера, является достаточно сложной технической задачей. Для передачи подготовленной информации в существующих стандартах, необходимо наличие кабелей, которые загромождают помещения, через которые осуществляется передача. Кроме того, окружение биообъекта техническим оборудованием и кабелями связи нарушают комфортное состояние биообъекта, увеличивают стоимость требуемых технических средств. Элементы связи (кабели) существенно ограничивают возможности регистрации, при размещении пациента, привязывая его к оборудованию в непосредственной близости к оборудованию. Это может вносить психологический дискомфорт и изменять состояние оцениваемых функциональных систем организма. Кроме того, кабели, связывающие пациента с оборудованием, питающимся от сети переменного тока, являются источником потенциальной опасности поражения электрическим током, что недопустимо. Освобождение от таких кабелей также является актуальной задачей, обусловленной необходимостью обеспечить электробезопасность пациента в соответствии с достаточно жёсткими нормами ГОСТа Р50 267. 0−92.

Связь специализированных аппаратных средств с персональным компьютером должна быть простой, без вмешательства в аппаратные средства компьютера. С этой целью предложено использовать стандартный последовательный порт типа COM или USB, который с одной стороны обладает необходимым быстродействием, а с другой стороны позволяет организовать передачу данных с минимумом аппаратных затрат на схему интерфейса.

Анализ предъявленных требований к средствам связи показывает, что для минимизации указанных недостатков при множественной одновременной регистрации физиологической информации необходимо осуществлять обмен информацией путём последовательной передачи накопленных за достаточно короткий интервал времени данных из совокупности устройств регистрации по запросу персонального компьютера. Такая задача может быть решена путём использования каналов телеметрической связи, в которых носителем информации являются не физические линии связи (провода), а физические поля.

Основными предпосылками для применения технологий телеметрии являются:

— необходимость получения вектора физиологических параметров требует использования нескольких датчиков, информационно объединенных в систему;

— обеспечение высокой степени электробезопасности пациента;

— оперативность установки датчиков физиологических параметров;

— обеспечение возможности проведения процедур стимуляции в движении пациента;

— исключение физиологических помех [2];

— исключение влияния артефактов движения, обеспечение обработки сигнала в месте отведения;

— интеграция системы в комплекс централизованного управления медицинским оборудованием.

Эти задачи могут быть решены с применением распределенной многоканальной биотелеметрической системы.

Основная концепция любой биометрической системы отражена на рис. 1 [2]. Она подразумевает наличие некоего исследуемого биологического объекта, находящегося в свободном пространстве (в условиях среды обитания), и канала биотелеметрии, одной из основных характеристик которого является размер вектора параметров, передаваемых в единицу времени.

Любой процесс измерения физиологических параметров и контроль за состоянием объекта можно выразить операторным выражением:

гдеL — оператор, характеризующий непосредственно систему биотелеметрии

A — пространственно — временной оператор, отражающий множество исследуемых физиологических функций xX во множество их проявлений, подлежащих измерению: Ax=

— результат измерения на выходе системы биотелеметрии.

/

/

Ax= () LAx =L =

Рис. 1. Обобщенная схема биотелеметрических измерений.

Наличие пространственно — временного оператора, А в схеме (рис. 1) является характерной особенностью биоизмерений и отражает косвенный характер получаемых данных в ходе физиологического эксперимента.

1.6 Расчёт необходимой производительности канала связи

Пусть в реальном времени передается информация с четырех высокопроизводительных каналов измерительных датчиков. Частота дискретизации — 1000 Гц, то есть за секунду необходимо транслировать 1000 10-битовых отсчетов полезной информации. Всего расчетных каналов 4: 4000 10-битовых отсчетов. С использованием вейвлет компрессии в реальном времени объем информации уменьшается до 4000 / 8 = 500 10-битовых отсчетов в секунду.

Фрейм виртуальной магистрали для передачи одного отсчета составляет 5 байт, то есть объем передаваемой информации необходимо увеличить в 2,5 раза (2 байта отсчета + 3 байта фрейма MBus): 500 * 2,5 = 1250 байт в секунду.

Каждый байт циклически кодируется в два байта (двухкратная избыточность): объем информации на секунду составляет 1250 * 2 = 2500 байт в секунду.

Общее число бит — 2500 * 8 = 20 000.

Таким образом, предельная производительность канала должна быть не менее 20 000 бит / секунду.

Учитывая необходимость множественной регистрации физиологической информации (часто более 16-ти), а также возможности только последовательной информации по каналу телеметрической связи, особо актуальной становиться проблема оптимального кодирования первичной информации и специальной подготовки её к передаче. Решению этой проблемы посвящается данный дипломный проект.

Выводы по главе 1

Осуществлён анализ представлений об информационной организации структур организма. Показано, что организм человека — сложная нелинейная система, взаимодействующая на информационном уровне с внешней и внутренней средой.

Определена связь нарушений в информационном обмене и патологическими состояниями организма. Предложено использовать методы клинической информатики для оценки состояния организма. Предъявлены требования к информационным диагностическим системам. Выявлена информационная ценность биологических сигналов с точки зрения оценки состояния систем организма. Показана необходимость использования методов информационно-математического аппарата для анализа медико-биологической информации. Рассмотрены физиологические показатели, определяемые современной физиологией и медициной. Определены принципы передачи регистрируемой физиологической информации от биообъекта к средствам обработки. Выявлены основные направления минимизации факторов, ведущих к нарушению принципа адекватности состояния организма человека при проведении исследования в составе биотехнического комплекса. Предложено использовать принципы биотелеметрии для передачи физиологической информации. Рассмотрены принципы организации биотелеметрических измерений. Осуществлён расчёт производительности канала связи при организации множественной регистрации физиологической информации.

Показано, что для повышения скорости обмена информацией, необходимо использовать методы её оптимального кодирования. Предложено использовать методы сжатия информации в канале связи с помощью математического аппарата вейвлет-преобразования, представленного в главе 2.

Глава 2. Приложение математических методов вейвлет-преобразования к медико-биологическим задачам

Вейвлет-преобразование (wavelet transformation) — новый перспективный метод цифровой обработки сигналов [4]. Благодаря свойствам для анализа нестационарных сигналов (статистические свойства изменяются со временем), волновое преобразование стало мощной альтернативой для Фурье метода во многих медицинских приложениях, где такие сигналы преобладают. Вейвлет- преобразование — эффективный метод для исследования поздних потенциалов, вариабельности сердечного ритма и поляризации [66, 85, 99]. Дополнительно к распознаванию и обнаружению ключевых диагностических характеристик, оно обеспечивает мощные средства для сжатия данных (электрокардиограмм, медицинских изображений и т. д.) с небольшой потерей ценной информации.

Вейвлет-преобразование может обеспечить как очень хорошее временное разрешение на высоких частотах, так и удовлетворительное частотное разрешение на низких частотах. Это возможно даже при отсутствии информации о характере временных и частотных параметров сигнала благодаря избыточности, присущей непрерывному волновому преобразованию сигнала. Фактически, в реальных приложениях желательно устранить значительную часть этой избыточности, чтобы уменьшить требования к памяти и ускорить численные вычисления. Этого достигают обычно дискретизацией частотных и временных параметров, используя бинарную схему (основание 2) в частотно-временной плоскости.

Преимущество вейвлет-преобразования заключается в способности выделить детали биологического сигнала с лучшим локальным разрешением по частоте. Выделяют два типа: избыточное непрерывное и дискретно ортогональное преобразование. Основные области использования для цифровой обработки биологических сигналов: 1-го типа — анализ и оценка биологических сигналов, 2-го типа — сжатие биологических сигналов. Ортогональное вейвлет-преобразование эффективно сжимает биологический сигнал (например, в 6 раз при погрешности 2%).

2.1 Основные принципы вейвлет-преобразования

Вейвлет-преобразование заключается [86] в разложение исследуемого сигнала в ряд базисных функций, имеющих специальные свойства. Все функции определенного базиса являются подобными и отличаются только масштабными коэффициентами. Каждая функция базиса имеет свою частоту и локализацию. Волновые базисные функции должны обладать определенными свойствами: интегрируемости и нулевого среднего. Свойство интегрируемости заключается в том, что интеграл по бесконечности от квадрата модуля волновой функции имеет конечное значение. Свойство нулевого среднего требует, чтобы интеграл по бесконечности волновой функции был равен нулю.

Непрерывное вейвлет-преобразование определяется как:

Где: g (?, t) — волновая функция,? — означает комплексное сопряжение, x (u) — сигнал.

Наиболее широко используется волновая функция Морлета (Morlet's wavelet), определяемая как:

Следовательно, можно записать:

Преобразование Фурье равенства (3) является симметричной функцией относительно частоты ?0/2?a. Поэтому wavelet-преобразование можно рассматривать как частотно-временное с частотой анализа равной ?0/2?a. Среди множества известных на данный момент волновых функций функция Морлета обладает следующими отличительными свойствами:

— Определяется точной аналитической функцией.

— Проста для вычисления.

— Ее применение ведет к квазинепрерывному представлению.

Любая функция, используемая в качестве волновой функции, должна удовлетворять следующему необходимому условию:

В случае функции Морлета это условие выполнимо для широкого диапазона значений ?0.

Другой подход основан на фиксации ?0 и модификации g (t) введением дополнительного параметра ?, что приводит к модифицированной волновой функции:

Таким образом, выбирая малые значения? (?1) — что соответствует высокой концентрации энергии во временной области — получают низкое разрешение в частотной области и, наоборот, большие значения? (?2) приводят к более высокому разрешению в частотной области (принцип неопределенности). Принимая во внимание это утверждение, для пары значений? (?1 и ?2) определено модифицированное вейвлет-преобразование, имеющее размерность энергии. Его можно записать как:

где F означает Фурье оператор.

и высокое частотное разрешение.

Для данного значения a (связанного с частотой) параметр? определяет ширину Гаусового окна. Малые значения? улучшают временное разрешение в ущерб спектральному, и наоборот. Интуитивно понятно, что произведение (7) принимает большие значения только тогда, когда оба множителя значительны. Таким образом, получается высокое временное разрешение,

Чтобы получить центральную частоту волновой функции равную 1 Гц при a=1, мы должны принять ?0=2? rad/s. В классическом волновом преобразовании параметр a изменяется согласно закону: a=2-?. Если? целое, закон называется двоичным. Из равенства (3) следует, что центральная частота также подчиняется двоичному закону, что несовместимо с классическим частотно-временным распределением.

Следовательно, можно переписать определение этого параметра как:

где ?f -- интервал дискретизации по частоте, а n — положительное целое.

2.2 Сравнение частотных приложений вейвлет- и Фурье преобразований при обработке медико-биологической информации

Преобразование Фурье наиболее широко используется для спектрального анализа. Оно разлагает сигнал на ортогональные базисные функции (синусы и косинусы), определяя его частотные составляющие. Метод Фурье-анализа строго математически применим только к стационарным сигналам (не меняющим свои статистические свойства), к нестационарным сигналам он не применим. Фурье-преобразование не позволяет, например, определить присутствовала данная частота в сигнале всегда или она появилась в какой-то момент. В реальной практике, рассматривают нестационарные сигналы как стационарные, разделяя их на блоки условно стационарных сегментов, чья статистика остается по существу неизменной в течение их длительности.

Пока еще применяемый, метод оконного преобразования Фурье имеет фундаментальный недостаток: если временное окно сделать очень коротким, то пострадает частотное разрешение, удлинив его — можно аннулировать предположение о стационарности в пределах окна.

В медицинской практике преобладают нестационарные сигналы, статистические свойства которых изменяются со временем. Часто, они состоят из кратковременных, высокочастотных компонентов сопровождаемые длительными низкочастотными составляющими. Любой применяемый метод анализа таких сигналов должен показывать хорошее разрешение по частоте наряду с прекрасным разрешением по времени. Первое, чтобы локализовать низкочастотные компоненты, и второе, чтобы разрешить высокочастотные составляющие. Для анализа таких сигналов преобразование Фурье строго математически не применимо. Преобразование Фурье разлагает сигналы на ортогональные базисные функции (синусы и косинусы), определяя их частотные составляющие. Но этот метод не может локализовать частотные компоненты во времени, а только анализирует их наличие и величину. На практике, рассматривают нестационарные сигналы как стационарные, разделяя их на блоки квазистационарных сегментов, чья статистика остается по существу неизменной в течение их длительности. Пока еще применяемый в ряде приложений, этот метод названный short-time Fourier преобразованием, имеет фундаментальный недостаток: если временное окно сделать очень коротким, то пострадает частотное разрешение, с другой стороны, удлиняя его, можно аннулировать предположение о стационарности в пределах окна.

Альтернативный путь анализа нестационарных медицинских сигналов вейвлет-преобразование — разложение их в ряд базисных функций, особо выбранных для этого типа сигнала. Вейвлет-преобразование позволяет анализировать любые сигналы, как стационарные, так и нестационарные, точно локализуя частотные составляющие. Оно может обеспечить, как очень хорошее временное разрешение на высоких частотах, так и удовлетворительное частотное разрешение на низких частотах. Это возможно даже при отсутствии информации о статистическом характере временных и частотных параметрах сигнала, благодаря избыточности присущей непрерывному вейвлет-преобразованию сигнала.

В реальных приложениях желательно устранить значительную часть этой избыточности, чтобы уменьшить требования к памяти и ускорить численные вычисления. Этого достигают обычно дискретизацией частотных и временных параметров с необходимым временным разрешением для каждой частоты. Отличное сочетание временного и частотного разрешения позволяет применять вейвлет-анализ для медицинских исследований и диагностики.

Выводы по главе 2

Рассмотрен математический аппарат вейвлет-преобразования. Рассмотрены преимущества данного метода преобразования информации перед существующими. Осуществлён анализ основных принципов вейвлет-преобразования. Показаны принципы его реализации. Проведено сравнение результатов частотного анализа, полученных методами Фурье анализа и вейвлет-преобразования. Показаны преимущества аппарата вейвлет-преобразования при работе с квазистационарными процессами, представленными физиологическими сигналами. Предложено использовать аппарат вейвлет-преобразования для сжатия биотелеметрической информации. В главе 3 представлено исследование предложенных принципов сжатия медико-биологической информации.

Глава 3. Исследование алгоритмов компрессии биоэлектрических сигналов в реальном масштабе времени

Передача отсчетов сигналов в реальном времени по всем каналам в условиях конечной пропускной способности и производительности встроенных интеллектуальных систем требует построения строгой информационной модели системы. Известно, что физиологические сигналы имеют значительную избыточность и могут быть упакованы с целью снижения требований к системе.

Рассмотрение алгоритмов компрессии сигналов необходимо выполнять с представлением о том, что их выполнение будет возложено на микроконтроллерное управляющее ядро с известными возможностями по производительности. Важной особенностью анализируемого метода сжатия информации является его принципиальная неблочность, то есть метод должен позволять обеспечить компрессию в реальном времени и с предсказуемым коэффициентом сжатия для целей адекватного управления потоками информации с датчиков.

3.1 Методы сжатия цифровой информации для передачи по виртуальной магистрали

3.1.1 RLE — кодирование

Алгоритм: Последовательности отсчетов сигнала ставится в соответствие набор из трех выходных символов: байт префикса, длина входной последовательности, собственно входной символ.

Алгоритм в отношении биологических сигналов относительно эффективен в случае, если сигнал уже обработан (не имеет шумовой составляющей) и получен с высокой частотой дискретизации (велика вероятность повторения символов).

3.1.2 Унарное кодирование (VLI)

Алгоритм: Значениям кода ставится в соответствие код, соответствующий частоте повторения данного отсчета в последовательности.

Алгоритм относится к разряду очевидных. Недостаток метода состоит в непредсказуемом объеме выходной последовательности и малой эффективности при использовании для кодирования биологических сигналов, для которых характерна шумовая форма с равномерным частотным распределением.

3.1.3 Коды Хаффмена

Алгоритм: Пусть I1, … IK — положительные целые числа (какими и являются отсчеты сигнала). Для того, чтобы существовал префиксный код, длины слов которого равны I1, … IK, необходимо и достаточно выполнение неравенства Крафта:

Все префиксные коды являются кодами со свойством однозначного декодирования, но не наоборот. Избыточность дешифрируемого кодирования неотрицательна. Для кода Хаффмена избыточность не превышает 1. Чем больше длина символом входного алфавита, тем меньше избыточность.

Для кода Хаффмена значительными являются требования к памяти данных для расчета алфавита. Недостатком можно назвать непредсказуемый коэффициент компрессии для каждой конкретной последовательности (имеется ввиду его вариабельность).

3.1.4 Вероятностное кодирование

Алгоритм: Кодирование осуществляется с построением модели Маркова 2. Осуществляется предсказание очередного кода по известным двух последним. Если предсказание осуществлено верно, то вместо кода передается логическая единица, а приемная сторона по той же модели вычисляет предсказанный код. Если предсказание неверно, то передается логический ноль и собственно код. Для некоторых видов сигналов, например, значение давления в манжете или узкополосные сигналы вроде импедансной пневмограммы или плетизмограммы, модель Маркова 2 может дать неплохие результаты. Однако, унификация протокола магистрали и построение строгой модели информационных потоков требует выбора метода компрессии для всех сигналов. Недостаток метода — непредсказуемость выходного потока в смысле объема информации и неработоспособность для сигналов всплескового характера.

3.1.5 Алгоритм LZ77

Алгоритм: Имеется скользящий словарь V объемом 2−32 кБ. Если очередная входная строка совпадает со строкой словаря, то она заменяется на указатель на эту строку вида ptr={prefix, distance, length}. Понятие словаря и строки несколько отличается от обыденного — под строкой подразумевается любая непрерывная последовательность отсчетов кода. Длина кода обычно выбирается из диапазона 16 — 256 байт. Алгоритм адаптирующийся, то есть подразумевается составление словаря по составу поступающей информации. Таким образом, в первый момент сжатия информации не происходит. Значительные возможности по эквивалентной компрессии сигнала могут быть получены при существенной предсказуемости сигнала, то есть повторении его последовательностей кода. Код, отсутствующий в словаре транслируется без изменения. Реализация алгоритма построения словаря и поиска по словарю — достаточно сложные и медленные процедуры. Объем выходного кода имеет не предсказуемую величину в известном смысле и не представляется возможным транслировать словарь на приемную сторону.

3.1.6 Алгоритмы LZ78 — LZW84

Модификация метода LZ77, также требующая управления словарем и передачи его на приемную сторону.

Результаты обзора классических методов компрессии сигналов в реальном времени сведены в таблицу 2. Величины степени сжатия, скорости, объема требуемой памяти указаны в условных единицах.

Таблица 2. Методы компрессии сигналов в реальном масштабе времени.

Алгоритм

Степень сжатия

Скорость

Память

Сжатие без потерь

Проходы

Распространение ошибки

Возрастание избыточности

RLE

2−3

10

10

Да

1

Нет

Возм.

VLI

2−3

9

10

Да

1

Да

Возм.

Хаффмен

5−6

8

8

Да

2

Да

Редко

Вероят-

ностное

5−6

9

6

Да

1

Да

Возм.

LZ77

8−9

3

2

Да

1

Да

Редко

Так или иначе ни один алгоритм компрессии сигнала не может обеспечить предсказуемого (в смысле объема выходного потока) коэффициента сжатия.

Особенность измерительного сигнала электрофизиологии — его всплесковый характер. Для обработки подобных сигналов разработан вейвлет-метод декомпозиции и реконструкции сигнала. Основной его идеей является разложение сигнала по заданному алгоритму на коэффициенты во временной области и трансмиссию исключительно последних. На приемной стороне с применением обратного алгоритма производится реконструкция сигнала. Собственно вейвлет-кодирование не предусматривает компрессию сигнала и не дает уменьшения объема информации при передаче коэффициентов разложения, однако, имеется возможность обработки коэффициентов с целью исключения избыточности биологического сигнала.

Всплесковая особенность биологического сигнала позволяет построить декомпозицию на основе вычисления сверток сигнала с выбранными вейвлетами. Серьезной проблемой остается выбор вейвлета, по вычислительным возможностям адекватного способности микроконтроллерного ядра работать по алгоритму в реальном времени.

В этом отношении вейвлеты более высоких порядков позволяют значительно повысить эффективность кодирования. На рис. 2 представлены вейвлеты Хаара и Daubechies 3. На рис. 3 представлено графическое представление коэффициентов декомпозиции выбранного сигнала (кардиограммы) и их объема.

Рис. 2. Вейвлеты Хаара и Daubechies 3.

А) 2500 отсчетов 1:1 (исходный сигнал)

Б) 313 отсчетов 1: 8

В) 161 отсчет 1: 16

Рис. 3. Декомпозиция ЭКГ-сигнала с применением вейвлет- кодирования.

А) Исходный сигнал — 2500 отсчетов

Б) Графическое представление коэффициентов декомпозиции по Хаару — 313 отсчетов

В) Графическое представление коэффициентов декомпозиции по — Daubechies 3 — 161 отсчёт

Необходимо отметить, что на рис. 3 представлены коэффициенты разложения во временной области, но не сами сигналы. Реконструкция сигнала позволит визуально полностью восстановить сигнал, но даже коэффициенты позволяют констатировать высокую эффективность вейвлет метода.

К достоинствам метода можно отнести относительную простоту вычислительных операций, их итеративность, низкие требования в оперативной памяти и соответствие входного потока к выходному как степень двойки (1: 8, 1: 16 и т. п.).

3.2 Использование методов вейвлет-кодирования для сжатия биологических сигналов

Для некоторого сигнала S длины N дискретное вейвлет — преобразование (ДВП) максимально состоит из log2N уровней разложения, уровней декомпозиции. На первом шаге, начиная с исходного сигнала S, получают два множества коэффициентов: аппроксимационные коэффициенты cA1 и коэффициенты детализации cD1. Эти коэффициенты получаются сверткой сигнала S с импульсной характеристикой фильтра нижних частот LoF_D для получения аппроксимации и фильтра верхних частот HiF_D для детализации. После чего следует децимация полученных коэффициентов.

Графически первый уровень представлен на рис. 4.

Рис. 4. Первый уровень декомпозиции сигнала S.

Если n = длина (S), то сигналы F и G (рис. 4) имеют длину n+2N-1 и тогда коэффициенты cA1 и cD1 имеют длину ((n-1)/2)+N. На следующем шаге производится декомпозиция аппроксимационных коэффициентов cA1 на две последовательности по тому же алгоритму с получением на выходе cA2 и cD2, и так далее.

Прямое дискретное вейвлет-преобразование

На рис. 5 обобщёно представлен алгоритм прямой декомпозиции коэффициентов. Инициализация алгоритма производится принятием cA0 = S.

Рис. 5. Алгоритм прямой декомпозиции коэффициентов.

Вейвлет декомпозиция сигнала S, анализируемого на уровне j, имеет следующую структуру: [cAj, cDj, …, cD1](8)

Рис. 6. Структура процесса декомпозиции при j=3.

Напротив, начиная с коэффициентов cAj и cDj с использованием алгоритма обратного вейвлет-преобразования можно реконструировать cAj-1.

Алгоритм реконструкции на некотором уровне j представлен на рис. 7.

Рис. 7. Алгоритм реконструкции на некотором уровне j.

Обозначим h = LoF_R (импульсная характеристика ФНЧ) и g = HiF_R (импульсная характеристика ФВЧ). Необходимо определить переход от уровня j к уровню j+1 аппроксимационных коэффициентов процесса декомпозиции (аналогичным образом могут быть получены и коэффициенты детализации, но при использовании фильтра g вместо h).

(AK (j))KZ — координаты вектора Aj.

(9)

(AK (j+1))KZ — координаты вектора Aj+1.

Полученный результат объясняется особенностями функций j, k и j, k (шкалирующей функции и импульсной характеристики вейвлета).

(10)

Ak (j+1) вычисляется как

(11)

Эта формула сходна с выражением свертки. Вычислительные операции по объему не превышают операций по стандартной цифровой обработке. Пусть h*(k)=h (-k) и

ПоказатьСвернуть
Заполнить форму текущей работой