Производство азотной кислоты

Тип работы:
Реферат
Предмет:
Химия


Узнать стоимость

Детальная информация о работе

Выдержка из работы

Оглавление

Введение

1. Технологические свойства азотной кислоты

2. Сырье для производства азотной кислоты

3. Общая схема азотнокислотного производства

4. Прямой синтез концентрированной азотной кислоты

4.1 Физико-химические основы и принципиальная схема процесса прямого синтеза

4.2 Технологическая схема производства концентрированной азотной кислоты прямым синтезом

4.3 Расходные коэффициенты в процессах производства концентрированной азотной кислоты

Заключение

Список используемой литературы

Введение

Азотная кислота — одна из важнейших минеральных кислот. По объему производства в химической промышленности она занимает второе место после серной кислоты. Азотная кислота широко применяется для производства многих продуктов, используемых в промышленности и сельском хозяйстве:

около 40% ее расходуется на получение сложных и азотных минеральных удобрений;

азотная кислота используется для производства

синтетических красителей,

взрывчатых веществ,

нитролаков,

пластических масс,

лекарственных синтетических веществ и др. ;

железо хорошо растворяется в разбавленной азотной кислоте. Концентрационная азотная кислота образует на поверхности железа тонкий, но плотный слой нерастворимого в концентрированной кислоте оксида, защищающего металл от дальнейшего разъедания. Эта способность железа пассивироваться используется для защиты его от коррозии.

Концентрированную азотную кислоту (особенно с добавлением 10% H2SO4) перевозят обычно в стальных цистернах. Многие органические вещества (в частности животные и растительные ткани) при действии HNO3 разрушаются, а некоторые из них от соприкосновения с очень концентрированной кислотой могут воспламеняться. В лабораторной практике обычно применяется азотная кислота, содержащая около 65% HNO3 (пл. 1,40). В промышленности применяют два сорта азотной кислоты: разбавленную с содержанием 50−60% HNO3 и концентрированную, содержащую 96−98% HNO3.

1. Технологические свойства азотной кислоты

Безводная азотная кислота (моногидрат HNO3) представляет бесцветную жидкость с температурой кристаллизации -41,6°С, температурой кипения -- 82,6°С и плотностью -- 1,513 г/м3. Смешивается с водой во всех отношениях, образуя при этом индивидуальные соединения -- гидраты состава HN03-H20 и НЖ> з-ЗН20, которые дают три эвтектики (рис. 1).

Рис. 1. Диаграмма кристаллизации системы «HNO3 — H2

Температура кипения водных растворов азотной кислоты зависит от их концентрации. С увеличением концентрации температура кипения возрастает, достигая максимума 120,7°С при азеотропном составе кислоты 68,4% (мае), после чего снижается (рис. 2). Это имеет существенное значение для концентрирования азотной кислоты.

Безводная азотная кислота малоустойчива термически и разлагается уже при хранении по уравнению:

Рис. 2. Диаграмма кипения системы «HNO3 — H2

Скорость разложения возрастает с повышением концентрации; для 99% -ной кислоты температурный градиент составляет всего 5 °C.

При нагревании процесс ускоряется и протекает по уравнению:

Выделяющийся оксид азота (IV) растворяется в кислоте и окрашивает ее в желтооранжевый цвет. Для удаления оксида из кислоты в технологическом процессе ее производства предусмотрена операция «отбелки» кислоты.

При растворении оксида азота (IV) в кислоте образуется соединение составаHN03-N02 (нитроолеум), являющийся промежуточным продуктом в прямом синтезе азотной кислоты.

Азотная кислота корродирует и растворяет все металлы кроме золота, платины, титана, тантала, родия и иридия, однако в концентрированном виде пассивирует железо и его сплавы.

2. Сырье для производства азотной кислоты

В настоящее время в промышленных масштабах азотная кислота производится исключительно из аммиака. Поэтому структура сырья азотнокислотного производства совпадает со структурой сырья для производства аммиака, как это видно из рис. 4.

Рис. 4. Сырье для производства азотной кислоты

В настоящее время основную массу азотной кислоты производят из синтетического аммиака, получаемого на основе конверсии природного газа. Аммиак, поступающий из цеха синтеза, содержит катализаторную пыль и пары компрессорного масла, являющиеся каталитическими ядами на стадии окисления аммиака. Поэтому аммиак подвергается тщательной очистке фильтрованием через матерчатые и керамические (поролитовые) фильтры и промывкой жидким аммиаком. Аналогично очищают от механических и химических примесей воздух, который поступает в цех через заборную трубу, устанавливаемую, как правило, вдали от территории предприятия. Для очистки воздуха используются орошаемые водой скрубберы и матерчатые двухступенчатые фильтры.

азотная кислота синтез концентрация

3. Общая схема азотнокислотного производства

Существуют два способа производства азотной кислоты:

-- получение разбавленной кислоты с последующим концентрированием ее в случае необходимости и

-- непосредственное получение концентрированной кислоты.

Наиболее распространен первый способ, что связано с использованием в народном хозяйстве как концентрированной, так и разбавленной кислоты. Методы различаются физико-химическими закономерностями протекающих процессов и технологическими схемами. Однако независимо от схемы, синтез азотной кислоты из аммиака описывается общей химической схемой:

Первая стадия процесса (конверсия аммиака) одинакова как для получения разбавленной, так и для получения концентрированной кислоты, вторая стадия (переработка нитрозных газов) отличается рядом особенностей. Решающее значение при выборе параметров той или иной технологической схемы имеет выбор оптимального давления на каждой из стадий процесса. В производстве азотной кислоты повышение давления существенно интенсифицирует химические реакции на всех стадиях процесса, способствует эффективности теплообмена, позволяет использовать более совершенные массообменные устройства, уменьшает размеры аппаратуры и коммуникаций и, в конечном итоге, позволяет снизить капитальные расходы.

В то же время повышение давления оказывает и негативное влияние на экономические показатели работы агрегата. К ним относятся: ускорение побочных реакций на стадии окисления аммиака, снижение степени конверсии, потери катализатора вследствие его уноса потоком газа и необходимость частой замены его, что связано с остановкой производства.

Технико-экономический анализ показывает, что применение единого (повышенного) давления на всех стадиях производства целесообразно лишь в том случае, когда мощность установки не превышает 600--800 т/сутки. Установки большей мощности экономически выгодно создавать только с использованием разных давлений на стадии конверсии аммиака и стадии переработки нитрозных газов.

4. Прямой синтез концентрированной азотной кислоты

Внедрение в производство этого метода получения концентрированной азотной кислоты вызвано высокой энергоемкостью (расход тепла на упаривание ВОС) процессов концентрирования разбавленной кислоты.

4.1 Физико-химические основы и принципиальная схема процесса прямого синтеза

В основе прямого синтеза концентрированной азотной кислоты лежит взаимодействие жидкого тетроксида азота с водой и газообразным кислородом под давлением 5 МПа, протекающее по уравнению:

Необходимое условие этого процесса -- предварительное получение жидкого тетроксида из нитрозного газа. 100% -ный оксид азота (IV) димеризуется в тетроксид уже при атмосферном давлении и температуре 21,5С. Однако в нитрозном газе его содержание составляет не более 11%. Перевести оксид азота (IV) в тетроксид при такой концентрации его при атмосферном давлении невозможно. Даже при -- 20 °C и давлении 1 МПа степень превращения его в тетроксид в этом случае не превышает 85%.

Для выделения 100%-ного диоксида азота (IV) из нитрозного газа используют его способность растворяться в концентрированной азотной кислоте с образованием нитроолеума состава HNO3. NO2. При последующем разложении нитроолеума образуется концентрированная азотная кислота как товарный продукт и оксид азота (IV), сжижаемый при охлаждении в тетроксид азота. Процесс этот представлен в виде схемы на рис. 5.

Процесс прямого синтеза концентрированной азотной кислоты включает следующие стадии:

1. Выделение тетроксида азота из нитрозного газа:

Рис-5. Схема выделения оксида азота (IV) из нитрозного газа

2. Образование азотной кислоты:

3. Окисление оксида азота (II) концентрированной азотной кислотой:

Суммарное уравнение процесса с учетом агрегатного состояния реагентов:

Решающее значение в этом процессе имеет полнота сдвига равновесия:

которая определяется содержанием оксида азота (IV) в нитрозном газе, температурой и давлением. Поэтому, концентрация получаемой азотной кислоты зависит от давления (рис. 6).

Рис. 6. Взаимозависимость концентрации азотной кислоты и давления

4.2 Технологическая схема производства концентрированной азотной кислоты прямым синтезом

Технологическая схема производства концентрированной азотной кислоты прямым синтезом из жидких оксидов азота представлена на рис. 7. Она включает операции: охлаждение нитрозных газов в котле-утилизаторе и холодильнике-конденсаторе, окисление оксида азота (II) до оксида азота (IV), доокисление оксида азота (II) азотной кислотой, охлаждение нитрозных газов в рассольном холодильнике, поглощение оксида

Рис. 7. Технологическая схема производства азотной кислоты прямым синтезом:

азота (IV) азотной кислотой, обезвреживание отходящих газов, выделение оксида азота (IV) из раствора в азотной кислоте (нитроолеума), охлаждение оксидов азота водой и рассолом, приготовление смеси жидкого тетроксида азота и азотной кислоты, окисление тетроксида азота кислородом до азотной кислоты, десорбция избытка тетроксида азота из азотной кислоты.

Нитрозный газ поступает в скоростной холодильник 1, где охлаждается до 40 °C, причем из него выделяется 3% -ная азотная кислота, и затем в холодильник 2. Образовавшаяся в нем 30% -ная азотная кислота направляется в смеситель 7, а нитрозные газы в окислительную башню 3, орошаемую для охлаждения азотной кислотой. Из окислительной башни нитрозные газы поступают в доокислитель4, орошаемой 98% -ной азотной кислотой и затем, после охлаждения до -10°С в рассольном холодильнике 5, в абсорбционную колонну 6 для поглощения окси* да азота (IV) и получения нитроолеума. С этой целью колонна орошается 98% -ной азотной кислотой. Непоглощенные газы из верхней части колонны направляются в систему очистки выхлопных газов. Образовавшийся в абсорбционной колонне нит-роолеум подается на десорбцию оксида азота (IV) в отбелочную колонну с?, куда вводится пар. Отбеленная азотная кислота концентрацией 98% охлаждается в холодильнике 10 и поступает в хранилище. Газообразные оксиды азота из отбелочной колонны охлаждаются и конденсируются в холодильнике-конденсаторе 11у охлаждаемом рассолом до -10°С и поступают в смеситель 7, в котором из них и смеси кислот образуется смесь: 68-- 80% N204, 26--10,5% HN03 и 6--9,5% Н20. Эта смесь подается в автоклав 0, куда под давлением 5 МПа поступает кислород. Концентрированная азотная кислота отбирается из нижней части автоклава и соединившись с нитроолеумом из абсорбционной колонны 6 подается в отбелочную колонну 8.

Новыми в этой схеме являются автоклав и абсорбционная колонна.

Автоклав -- это цилиндрический вертикальный реактор непрерывного действия диаметром 1,2 м и высотой 8,6 м, изготовленный из стали, внутри которого находится стакан из алюминия. В стакане расположена насадка из ситчатых тарелок. Смесь кислоты с жидким тетроксидом азота перетекает по тарелкам сверху вниз, а снизу под давлением подается кислород.

Абсорбционная колонна диаметром 2,4 м и высотой 27 м состоит из трех зон: доокислительной, нитроолеумной и промывной, в каждой из которых расположены тарелки. Между тарелками доокислительной и нитроолеумной зон расположены охлаждающие змеевики, поддерживающие оптимальный тепловой режим работы колонны.

4.3 Расходные коэффициенты в процессах производства концентрированной азотной кислоты

В табл.1 приведены расходные коэффициенты (РК) в расчете на 1 т азотной кислоты для процессов концентрирования с помощью серной кислоты и прямого синтеза.

Таблица 1. Расходные коэффициенты производства концентрированной азотной кислоты разными способами

Из данных табл. 2. следует, что экономически более выгодным остается метод концентрирования разбавленной азотной кислоты.

Промышленность выпускает три сорта разбавленной и два сорта концентрированной азотных кислот. Согласно ГОСТ-701 они должны удовлетворять следующим условиям (табл. 2).

Таблица 2. Стандарты на азотную кислоту

Заключение

Исключительное значение азотной кислоты для многих отраслей народного хозяйства и оборонной техники и большие объемы производства обусловили интенсивную разработку эффективных и экономически выгодных направлений совершенствования азотнокислотного производства. К таким направлениям относятся:

-- создание систем высокой единичной мощности (до 400 тыс. т/год), работающих по комбинированной схеме;

-- разработка высокоактивных избирательно действующих неплатиновых катализаторов окисления аммиака;

-- возможно более полное использование энергии сжатых отходящих газов и низкопотенциальной теплоты процессов путем создания полностью автономных энерготехнологических схем;

-- создание замкнутого оборота охлаждающей воды;

-- решение проблемы очистки отходящих газов с утилизацией оксидов азота путем внедрения адсорбционно-десорбционного метода очистки на силикагеле и цеолитах;

-- возможно более полное удаление остатков оксидов азота из отходящих газов с использованием в качестве восстановителей горючих газов и аммиака.

Список используемой литературы

1. Соколов Р. С. Химическая технология: Учеб. Пособие для студ. Высш. Учеб. Заведений: В 2 т. — М.: Гумат. Изд. Центр ВЛАДОС, 2003.

2. Купетов А. М. и др. Общая химическая технология. — М.: Высшая школа, 1985.

3. Общая химическая технология. Под ред. А. Г. Амелина.- М.: Химия, 1977.

ПоказатьСвернуть
Заполнить форму текущей работой