Прогнозирование расходов территориального фонда ОМС: математическое и информационное обеспечение

Тип работы:
Дипломная
Предмет:
Экономические науки


Узнать стоимость

Детальная информация о работе

Выдержка из работы

Выпускная квалификационная работа

Прогнозирование расходов территориального фонда ОМС: математическое и информационное обеспечение

Введение

Актуальность темы исследования. Одной из важнейших задач государства является обеспечение граждан доступной квалифицированной медицинской помощью. Подобную функцию в Российской Федерации берёт на себя фонд обязательного медицинского страхования. Такой фонд имеет два уровня: федеральный и территориальный. Федеральный уровень обеспечивает выполнение общей политики государства в области здравоохранения. На сторону регионального фонда ложится ответственность непосредственного исполнения программ взаимодействия граждан с медицинскими учреждениями. Аккумулируя в себе средства бюджета разных уровней, территориальные фонды выполняют функции широкого спектра по обеспечению медицинской помощью за счёт средств собственного бюджета.

Для качественного выполнения возложенных на территориальные фонды функций основополагающую роль играет экономическое состояние такого фонда, что опосредованно, в свою очередь, влияет на качество всей проводимой социальной политики государства на определённой территории. Вышеизложенное определяет актуальность темы исследования.

Объектом исследования является система ОМС, действующая на территории Орловской области.

Предметом исследования выступает математический аппарат прогнозирования стоимости территориальной программы государственных гарантий оказания гражданам РФ бесплатной медицинской помощи.

Целью исследования является прогнозирование стоимости территориальной программы государственных гарантий (ТПГГ) оказания гражданам РФ бесплатной медицинской помощи на территории Орловской области на базе моделей с матричным предиктором.

Для реализации цели были поставлены и решены следующие задачи:

1. Построить модели с матричным предиктором нормативов объёмов, стоимости медицинской помощи по ТПГГ оказания гражданам РФ бесплатной медицинской помощи; проверить адекватность построенных моделей.

2. Построить модели адаптивного матричного предиктора нормативов объёмов, стоимости медицинской помощи по ТПГГ оказания гражданам РФ бесплатной медицинской помощи; проверить адекватность построенных моделей.

3. Реализовать механизмы снижения прогнозных ошибок: провести предварительное сглаживание исходных данных, обосновать возможность исключения выборочных наблюдений; построить модели с матричным предиктором по новым совокупностям наблюдений.

4. Произвести выбор наиболее адекватных моделей, построить прогноз нормативов объёмов, стоимости медицинской помощи по ТПГГ оказания гражданам РФ бесплатной медицинской помощи на территории Орловской области на 2013 год.

5. Построить прогнозную адаптивную модель численности застрахованного населения Орловской области; провести проверку адекватности модели; построить прогноз численности населения на 2013 год.

6. Построить прогноз стоимости ТПГГ оказания гражданам РФ бесплатной медицинской помощи на территории Орловской области на 2013 год.

Теоретическую основу исследования составили труды отечественных учёных по вопросам прогнозирования краткосрочной динамики показателей на основе моделей с матричным предиктором.

Инструментарно-методический аппарат определяют методы построения моделей с матричным предиктором.

Информационно-эмпирическую базу исследования составили данные нормативных документов Орловской области.

Структура работы. Выпускная квалификационная работа построена в соответствии с целями и задачами исследования и состоит из введения, трёх глав, заключения, библиографического списка и приложений.

Во введении обосновываются актуальность, формулируется цель и основные задачи исследования, описывается структура работы.

В первой главе приводится характеристика действующей в РФ системы обязательного медицинского страхования.

Во второй главе приводятся теоретические основы построения прогнозных значений с использованием алгоритмов построения моделей с матричным предиктором.

В третьей главе построены модели с матричным предиктором нормативов объёмов, стоимости медицинской помощи по территориальной программе ОМС; реализован механизм снижения прогнозных ошибок; построен прогноз стоимости территориальной программы ОМС на 2013 год.

В заключении отражены основные результаты и выводы проведённого исследования.

Библиографический список содержит перечень основных источников, используемых при написании работы.

Глава 1. Общая характеристика системы ОМС в РФ

1.1 Экономическая сущность системы ОМС

В мировой практике организации медико-санитарного обслуживания сложились основные системы экономического функционирования здравоохранения: государственная, страховая и частная.

Государственная система основана на принципе прямого финансирования лечебно-профилактических учреждений и гарантирует бесплатную медицинскую помощь. Эта модель характерна для здравоохранения Великобритании, Ирландии, Италии, Испании, Португалии, Греции и Дании. Прототипом этой модели была советская система здравоохранения, основанная на всеобщем охвате населения и жестком финансировании медицинских учреждений из бюджета, которая в дальнейшем получила распространение в Великобритании. В свою очередь национальная система Великобритании получила название бевериджской по имени лорда Бевериджа, провозгласившего принципы бюджетной медицины: богатый платит за бедного, здоровый — за больного. Недостатком данной модели выступает склонность к монополизму, дефициту медицинских услуг в виду недофинансирования отрасли.

Либерально — рыночная модель или частное страхование. Преимущественно эта модель существует в США. Она характеризуется высоким развитием инфраструктуры страховых организаций и практически отсутствием государственного регулирования. Предоставление медицинской помощи в рамках данной модели осуществляется главным образом на платной основе. В качестве основных покупателей медицинских услуг выступает население. В виду того, что рыночная модель противоречит принципу социального равенства и защищенности всех граждан, для малообеспеченных и менее защищенных слоев населения (пенсионеры, безработные) разрабатываются правительственные программы с государственным финансированием. Данная модель, с одной стороны, обеспечивает рост качества предоставляемых медицинских услуг в виду конкуренции страховых компаний на рынке, с другой стороны, порождает неравный доступ населения к медицинской помощи и отсутствие какого-либо контроля государства.

В основу страховой системы заложен принцип участия граждан, предприятий или предпринимателей в финансировании охраны здоровья напрямую или через посредничество страховых медицинских организаций. Данная модель преобладает в таких странах, как Германия, Франция, Швейцария, Бельгия, Голландия, Нидерланды, Япония, Канада, Россия. Первая система медицинского страхования была введена в Германии в годы правления канцлера Отто Бисмарка в конце XIX века. Она основана на принципе солидарности в оплате страховых взносов и обеспечивает оптимальное распределение финансовых ресурсов среди различных групп застрахованного населения.

Цель медицинского страхования — гарантировать гражданам при возникновении страхового случая получения медицинской помощи за счет накопленных средств и финансировать профилактические мероприятия [17].

Систему медицинского страхования целесообразно рассматривать в двух аспектах. В наиболее широком смысле медицинское страхование представляет собой систему общественного здравоохранения, экономическую основу которой составляет финансирование из специальных страховых фондов. При этом охрана здоровья граждан финансируется «снизу». Страховые фонды образуются за счет различных источников финансирования: средств государственного бюджета, взносов предприятий, предпринимателей и работающих. В узком смысле — это процесс поступления финансовых ресурсов и их расходование на лечебно-профилактическую помощь, дающий гарантию получения этой помощи, причем ее объем и характер определяются условиями страхового договора [1].

Говоря о системе медицинского страхования, необходимо различать добровольное и обязательное медицинское страхование, так последнее является составной частью государственного социального страхования и обеспечивает всем гражданам Российской Федерации равные возможности в получении медицинской и лекарственной помощи.

Обязательное медицинское страхование регулируется Законом Р Ф «О медицинском страховании граждан в Российской Федерации» является частью государственной политики и системы социального страхования.

Обязательное медицинское страхование — вид обязательного социального страхования, представляющий собой систему создаваемых государством правовых, экономических и организационных мер, направленных на обеспечение при наступлении страхового случая гарантий бесплатного оказания застрахованному лицу медицинской помощи за счет средств обязательного медицинского страхования в пределах территориальной программы обязательного медицинского страхования и в установленных настоящим Федеральным законом случаях в пределах базовой программы обязательного медицинского страхования.

Основными принципами осуществления ОМС являются:

1) обеспечение за счет средств ОМС гарантий бесплатного оказания застрахованному лицу медицинской помощи при наступлении страхового случая в рамках территориальной программы ОМС и базовой программы ОМС;

2) устойчивость финансовой системы обязательного медицинского страхования, обеспечиваемая на основе эквивалентности страхового обеспечения средствам обязательного медицинского страхования;

3) обязательность уплаты страхователями страховых взносов на обязательное медицинское страхование в размерах, установленных федеральными законами;

4) государственная гарантия соблюдения прав застрахованных лиц на исполнение обязательств по обязательному медицинскому страхованию в рамках базовой программы обязательного медицинского страхования независимо от финансового положения страховщика;

5) создание условий для обеспечения доступности и качества медицинской помощи, оказываемой в рамках программ обязательного медицинского страхования;

6) паритетность представительства субъектов обязательного медицинского страхования и участников обязательного медицинского страхования в органах управления обязательного медицинского страхования.

Основной программой ОМС является Базовая программа ОМС, которая разрабатывается Министерством здравоохранения РФ, согласовывается Министерством финансов РФ, Федеральным Фондом ОМС и утверждается Правительством. Базовая программа включает в себя первичную медико-санитарную помощь, стационарное и восстановительное лечение, осуществляется за счет средств ОМС и реализуется на основе договоров, заключаемых между субъектами обязательного медицинского страхования.

Территориальная программа обязательного медицинского страхования — составная часть территориальной программы государственных гарантий бесплатного оказания гражданам медицинской помощи, утверждаемой в порядке, установленном законодательством субъекта Российской Федерации. Территориальная программа обязательного медицинского страхования формируется в соответствии с требованиями, установленными базовой программой обязательного медицинского страхования

В качестве субъектов медицинского страхования выступают: гражданин, страхователь, страховая медицинская организация, медицинское учреждение.

Страхователями по ОМС для работающего населения являются лица, производящие выплаты и иные вознаграждения физическим лицам (организации, индивидуальные предприниматели, физические лица, не признаваемые индивидуальными предпринимателями); индивидуальные предприниматели, занимающиеся частной практикой нотариусы, адвокаты.

Страховые взносы на обязательное медицинское страхование работающего населения определяются Федеральным законом от 24 июля 2009 года N 212-ФЗ «О страховых взносах в Пенсионный фонд Российской Федерации, Фонд социального страхования Российской Федерации, Федеральный фонд обязательного медицинского страхования и территориальные фонды обязательного медицинского страхования».

Страхователями по ОМС для неработающего населения выступают органы исполнительной власти субъектов Российской Федерации, уполномоченные высшими исполнительными органами государственной власти субъектов Российской Федерации.

Взаимоотношения между страхователем и страховой медицинской организацией реализуется через страховые взносы. По обязательному медицинскому страхованию они устанавливаются как ставки платежей в размерах, покрывающих затраты на выполнение программ ОМС и обеспечивающих рентабельную деятельность СМО. Каждому застрахованному или страхователю в порядке, установленном договором ОМС, страховой медицинской организацией выдается страховой медицинский полис обязательного медицинского страхования. На территории РФ действует страховой полис обязательного медицинского страхования единого образца. Страховой полис — это документ, гарантирующий человеку предоставление медицинской помощи в рамках ОМС или ДМС [7].

Объектом медицинского страхования является страховой риск, связанный с затратами на оказание лечебно-диагностических услуг при возникновении страхового случая [2].

1. 2 Территориальный фонд ОМС

Новым элементом финансовой системы России являются государственные внебюджетные фонды, аккумулирующие средства, предназначенные преимущественно для финансирования социального развития страны и её регионов.

Основные доходные источники государственных внебюджетных фондов — утвержденные законодательством целевые федеральные налоги, уплата которых обязательна для широкого круга хозяйствующих субъектов — юридических и физических лиц. Хотя внебюджетные фонды предназначены для решения тех же проблем, что и бюджет, порядок их образования и использования существенно отличается. С одной стороны, внебюджетные фонды, основу которых составляет заработная плата, являются более надежными по сравнению с бюджетом [2]. С другой стороны, бюджетные расходы находятся под пристальным вниманием общества, обсуждение бюджета происходит в общей полемике вплоть до требований отставки правительства, в то время как внебюджетные фонды, вполне сопоставимые с бюджетом, расходуются стихийно и бесконтрольно. Такая ситуация привела к тому, что появился соблазн объединить их с бюджетными средствами. И хотя вопросы использования внебюджетных средств и их территориальное перераспределение влияют на общий ход социально-экономического развития России, механизм использования внебюджетных фондов практически отсутствует.

Территориальный фонд ОМС является основным организаторским звеном. Он осуществляет регистрацию плательщиков, сбор, учет и контроль за поступлением страховых взносов и платежей, обеспечивает всеобщность медицинского страхования на местном уровне. Фонд финансирует медицинскую помощь населению через страховые медицинские организации и через свои филиалы.

Доходы бюджетов территориальных фондов составляют:

1) субвенции из бюджета Федерального фонда бюджетам территориальных фондов;

2) межбюджетные трансферты, передаваемые из бюджета Федерального фонда в соответствии с законодательством РФ;

3) платежи субъектов РФ на дополнительное финансовое обеспечение реализации территориальной программы ОМС в пределах базовой программы ОМС;

4) платежи субъектов РФ на финансовое обеспечение дополнительных видов и условий оказания медицинской помощи, не установленных базовой программой ОМС;

5) доходы от размещения временно свободных средств;

6) межбюджетные трансферты, передаваемые из бюджета субъекта РФ, в случаях, установленных законами субъекта РФ;

7) начисленные пени и штрафы, подлежащие зачислению в бюджеты территориальных фондов в соответствии с законодательством РФ;

8) иные источники, предусмотренные законодательством РФ.

Расходы бюджетов территориальных фондов осуществляются в целях финансового обеспечения:

1) выполнения территориальных программ ОМС;

2) исполнения расходных обязательств субъектов РФ, возникающих при осуществлении органами государственной власти субъектов РФ переданных полномочий РФ в результате принятия федеральных законов и (или) нормативных правовых актов Президента Р Ф, и (или) нормативных правовых актов Правительства Р Ф в сфере охраны здоровья граждан;

3) исполнения расходных обязательств субъектов РФ, возникающих в результате принятия законов и нормативных правовых актов субъектов РФ;

4) ведения дела по ОМС страховыми медицинскими организациями;

5) выполнения функций органа управления территориального фонда.

Территориальный фонд осуществляет следующие полномочия страховщика:

1) участвует в разработке территориальных программ государственных гарантий бесплатного оказания гражданам медицинской помощи и определении тарифов на оплату медицинской помощи на территории субъекта Российской Федерации;

2) аккумулирует средства ОМС и управляет ими, осуществляет финансовое обеспечение реализации территориальных программ ОМС в субъектах РФ, формирует и использует резервы для обеспечения финансовой устойчивости ОМС;

3) получает от органа, осуществляющего контроль за правильностью исчисления, полнотой и своевременностью уплаты (перечисления) страховых взносов на ОМС, необходимую информацию для осуществления обязательного медицинского страхования;

4) осуществляет администрирование доходов бюджета Федерального фонда, поступающих от уплаты страховых взносов на обязательное медицинское страхование неработающего населения, регистрирует и снимает с регистрационного учета страхователей для неработающих граждан;

5) начисляет в соответствии недоимку по страховым взносам на ОМС неработающего населения, штрафы и пени и взыскивает их со страхователей для неработающих граждан;

6) утверждает дифференцированные подушевые нормативы для СМО в порядке, установленном правилами ОМС;

7) предъявляет в интересах застрахованного лица требования к страхователю, СМО и медицинской организации, связанные с защитой его прав и законных интересов в сфере ОМС;

8) обеспечивает права граждан в сфере ОМС;

9) осуществляет контроль за использованием средств ОМС страховыми медицинскими организациями и медицинскими организациями;

10) собирает и обрабатывает данные персонифицированного учета сведений о застрахованных лицах и персонифицированного учета сведений о медицинской помощи, оказанной застрахованным лицам в соответствии с законодательством Российской Федерации;

11) ведет реестр СМО, медицинских организаций, осуществляющих деятельность в сфере обязательного медицинского страхования на территории субъекта РФ и др.

Каждый регион самостоятельно разрабатывает и утверждает тарифы на медицинские услуги. При этом заработная плата в тарифе на конкретную услугу при одинаковой сложности не зависит от категории стационара. Тарифы на услуги, не вошедшие в клинико-статистические группы, рассчитываются дополнительно. Тарифы даже не предусматривают затрат на ремонт оборудования, не говоря уже о финансировании развития материально-технической базы здравоохранения [6].

1.3 Проблемы обязательного медицинского страхования в России и пути их решения

Одной из наиболее острых проблем ОМС является то, что при поступлении средств ОМС в систему здравоохранения иногда происходит сокращение бюджетного финансирования отрасли, что затрудняет реализацию Закона ОМС. Сегодня тариф страхового взноса не обеспечивает финансового покрытия медицинской помощи даже работающему населению страны, а большая часть — это неработающее население, в основном старики, дети, инвалиды, безработные, которые к тому же более всего нуждающиеся в медицинской помощи. Поэтому проблема платежей на неработающее население особо остро встает именно в связи с сокращением бюджетного финансирования здравоохранения. При таком сокращении в первую очередь страдают скорая и неотложная медицинская помощь и социально-значимые виды медицинской помощи [5].

Платежи за неработающее население из средств выделенного бюджета здравоохранения ведут к дефициту средств на противотуберкулезную, психиатрическую и наркологическую службы, чего нельзя допустить так как рост активного туберкулеза среди детей за последние пять лет увеличился почти на 20% и т. д. Сегодня становится реальной угроза разрыва связи между лечебной и профилактической медициной. В России возникает такая ситуация, когда система становится заинтересованной в постоянном росте числа больных, а не здорового населения, а качество медицинской помощи определяется не результатами, а более дорогими технологиями.

На практике происходит двойное перераспределение финансовых средств: экономически активное население платит страховые взносы (отчисления работодателей) с одной стороны, а с другой — являются налогоплательщиками в бюджеты, которые представляют собой один из основных источников финансирования здравоохранения, в частности, медицинского страхования. С учетом упомянутой выше проблемы неуплаты необходимых страховых взносов за неработающее население, можно сделать вывод, что неработающее население застраховано за счет взносов работодателей, то есть работающего населения [15].

Внедрение системы ОМС практически на всех территориях отмечается неоправданно большим разнообразием моделей страхования. Это объясняется главным образом недостаточностью нормативно-правовой базы и нежеланием руководителей органов здравоохранения что-либо менять. Результаты сборов страховых взносов и наличие задолженности по уплате страховых взносов фондам обязательного медицинского страхования показывают необходимость значительной работы по совершенствованию методов сбора страховых взносов.

В настоящее время отсутствуют механизмы выравнивания условий реализации Базовой программы ОМС по отдельным субъектам РФ [1, 15]. В виду самостоятельности бюджетов разных уровней на практике достаточно сложно рассчитать единый подушевой норматив финансирования для отдельных регионов, поэтому в системе ОМС остро стоит проблема выравнивания условий финансирования программы ОМС по отдельным территориям. Базовые нормативы финансирования устанавливаются на федеральном уровне, по территориальной программе ОМС регионы, в свою очередь, могут только увеличивать объемы предоставляемых медицинских услуг. Поэтому в виду необеспеченности собственными финансовыми средствами в ряде регионов территориальная программа не выполняется. Субсидии на выравнивание условий деятельности предоставляются лишь в случае выполнения обязательств местными бюджетами по страхованию в полном объеме неработающего населения. Таким образом, на практике отсутствует централизованное финансирование субъектов РФ.

Особой является проблема управления, обеспечения и экспертизы качества медицинской помощи. Лицензионная деятельность регулируется рядом нормативно-методических документов по проведению сертификации и лицензирования, как юридических, так и физических лиц [12].

Еще одна острая проблема — это проблема достоверности информации о поступлении и расходовании государственных средств системы ОМС. Функции государственных органов по контролю за поступлением средств, формированием и использованием доходов системы ОМС должным образом не определены. Кроме того, в условиях бюджетного дефицита внедряемая модель ОМС является неоправданно дорогостоящей [8].

В связи с вышеизложенными проблемами Министерство здравоохранения и медицинской промышленности РФ считает, что для их решения необходимо:

1. Исполнение Закона Р Ф «О медицинском страховании граждан» органами исполнительной власти субъектов РФ должно быть безусловным;

2. В связи с обеспеченностью финансовыми средствами территориальных программ ОМС, составляющей в среднем по России 40%, а в некоторых территориях 10 — 20%, целесообразно рассмотреть об увеличении тарифа страхового взноса на ОМС;

3. Разработать систему подготовки медицинских кадров к работе в условиях медицинского страховании.

Таким образом, проводимая в России реформа здравоохранения, введение обязательного медицинского страхования предполагает структурную, инвестиционную перестройку отрасли, направленную на повышение экономической и клинической эффективности ее функционирования, улучшения качества оказания медицинской помощи и обеспечение конституционных прав населения РФ на гарантированный государством объём медицинской помощи.

Глава 2. Теоретические основы прогнозирования с использованием моделей матричного предиктора

2.1 Детерминированный матричный предиктор

Детерминированный матричный предиктор имеет смысл строить в тех ситуациях, когда возможность применения статистических методов моделирования полностью исключена.

Пусть — величина -го показателя в момент времени;

— величина — го показателя в момент времени;

— величина изменения (прироста) -го показателя.

Предполагается, что любое изменение произвольного -го показателя зависит от величины остальных показателей. Это может быть функциональная или регрессионная зависимость. Рассмотрим случай, когда малый объём ретроспективных данных не позволяет реализовать известнее методы идентификации этой зависимости. Единственно доступной альтернативой идентификации в подобной ситуации является подход, основанный на значительном упрощении этой зависимости. В качестве такой упрощенной формы удобно использовать линейное представление приростов. При рассмотрении краткосрочных периодов такое упрощение не приводит к значительному росту ошибки прогнозирования даже в том случае, когда истинная зависимость явно нелинейная. Но такая модель, построенная по двум наблюдениям, не может претендовать на применение для расчётов на долгосрочную перспективу.

Модель этой простейшей (линейной) зависимости строится на следующих предположениях [4]:

1. Прирост любого из показателей формируется под воздействием всех остальных, являясь суммарной величиной.

2. Каждый показатель в отдельности оказывает незначительное влияние.

3. Среди этих показателей нет доминирующих.

Для реализации этого предположения вводится в рассмотрение характеристика, устанавливающая степень влияния -го показателя на изменения, происходящие в -м. В качестве такой характеристики удобно использовать косвенный темп прироста:

Если условиться, что на формирование прироста все показатели оказывают равномерное воздействие, то, разделив на получим ту долю в приросте -го показателя, которая сформирована под воздействием — го. Использование введённой меры степени влияния -го показателя на — й позволяет выразить прирост через сумму произведений

Учитывая, что можно величину любого -го показателя представить в виде суммы предшествующего значения и прироста:

Для полученной системы уравнений, введя обозначения

можно использовать компактную матричную запись:

Считая, что неизвестным вектором в этой системе является, запишем его следующим образом [4]:

Обратная матрица называется матричным предиктором. Он определяет переход из состояния, описываемого вектором значений предшествующего момента времени, в состояние, представленное вектором значений текущего момента времени. Внедиагональные элементы обратной матрицы интерпретируются как косвенные темпы роста, а диагональные — как прямые темпы роста оставшейся части.

Выражение позволяет рассчитывать прогнозные оценки. Основное преимущество данного подхода заключается в том, что с его помощью можно проводить расчёты для многомерных рядов динамики даже в том случае, когда исследователь располагает наблюдениями лишь за два периода.

Рассмотренная модель является базовой, и её прикладные возможности весьма ограничены. Но основные принципы построения матричного мультипликатора используются при создании более сложных модификаций модели.

2.2 Матричный предиктор с регулируемым темпом роста

Введём в рассмотрение параметр, с помощью которого будем регулировать изменение темпа роста прогнозируемых показателей.

Тогда можно записать

или в логарифмах

В тех случаях, когда темп роста (индекс) больше единицы и наблюдается его снижение, параметр должен быть меньше единицы. Если наблюдается тенденция увеличения темпа прироста, то. Возможны и другие ситуации (например, — некоторая линейная функция времени или вектора).

Значение параметра может определяться: экспертно; по результатам анализа динамики, если для этого имеется достаточный набор данных; в процессе построения модели, используя для этого процедуру настройки параметра по постпрогнозным расчётам [4].

2. 3 Модель с настраиваемым параметром матричного предиктора

Решающим фактором выбора модели с настраиваемым параметром матричного предиктора, является не число наблюдений, а, скорее, ситуация, когда за рамками системы показателей, для которых строится матричный предиктор остались факторы, оказывающие заметное влияние на динамику. Природа этих факторов либо не изучена, либо такова, что не поддаётся количественному измерению, и поэтому факторы не могут быть включены в модель. Но их влияние проявляется в динамике показателей, включённых в модель. Уловить это влияние можно, если прирост каждого показателя разделить на две части, одна из которых формируется механизмом, явно учитываемым моделью, а вторая — «скрытыми» факторами. В соответствии с этим делением прирост представляется в виде суммы двух составляющих [4]:

,

где — часть прироста, которая формируется «скрытыми» факторами;

— часть прироста, которая формируется пропорционально факторам, включённым в модель.

Поскольку влияние «скрытых» факторов в соответствии с нашим предположением проявляется непосредственно в динамике самих показателей, то и отразить это влияние можно через собственные темпы той части прироста, которая формируется «скрытыми» факторами, т. е. :

.

Коэффициенты косвенных темпов прироста в этом случае называются частными и вычисляются по второй составляющей прироста:

Сложение диагональной матрицы прямых темпов прироста:

,

элементы которой вычислены по формуле, и матрицы косвенных темпов прироста с элементами:

приводит к матрице темпов прироста

,

с помощью которой можно записать

где матрица роста с элементами, представляющими собой частные коэффициенты роста.

Для определения отношения, в котором находятся две составляющие прироста, в модель необходимо ввести настраиваемый параметр. Это возможно тогда, когда имеются данные более двух наблюдений, часть которых можно использовать в качестве контрольной выборки для настройки параметра.

Введение такого параметра позволяет каждую из составляющих прироста любого -го показателя представить виде:

где.

Если в формулах и используются составляющие прироста,, то матрица темпов приростов зависит от настраиваемого параметра и модель можно переписать в виде:

У этой модели полностью сохраняются свойства, касающиеся точности аппроксимации, и одновременно повышается точность экстраполяции.

Настройку параметра можно представить таким образом, чтобы минимизировать выражение

,

представляющее собой максимальную величину разности между компонентами контрольного наблюдения и вектора прогнозных оценок

.

В тех случаях, когда прогнозируемые показатели сильно отличаются масштабом измерения, критерий в виде разности теряет свою целесообразность. Его можно заменить относительной величиной ошибки:

.

Порядок построения модели с настраиваемым параметром следующий.

Для удобства расчётов, проводимых в матричной форме, вводится матрица элементы которой определяются настраиваемым параметром и матрица весовых коэффициентов. В ней отражено, как соотносятся между собой рассматриваемые показатели.

Затем рассчитывается комбинированная матрица прямых и косвенных темпов прироста:

Используя операции блочного умножения (*) и обращения матриц, получаем предиктор:

с помощью которого рассчитываются постпрогнозные оценки и относительные ошибки

Настройка параметра по критерию минимизации максимальной относительной ошибки позволяет установить оптимальное значение параметра, при котором предиктор

даёт прогнозные оценки с наименьшими относительными ошибками сглаживания [4].

2.4 Адаптивные модели

2.4.1 Адаптивный матричный предиктор

Предположим, что по имеющимся данным построен матричный предиктор, с помощью которого проведены прогнозные расчёты

.

Истинная ошибка прогноза доступна измерению, когда становятся известными фактические значения показателей. По ошибкам предсказания

строится с использованием известной процедуры корректирующая матрица, удовлетворяющая соотношению

Из и следует, что

Применение в дальнейших расчётах скорректированного предиктора позволит получить новую оценку прогнозной ошибки и на её основе провести очередную корректировку предиктора. Для того, чтобы снизить уровень прогнозной ошибки, вводится настраиваемый параметр и многомерный адаптивный предиктор представляет собой комбинацию текущих и скорректированного предикторов

.

Такую прогнозную модель называют адаптивным матричным предиктором. Особенность данной модели заключается в том, что её предиктор строится в два этапа. На первом этапе определяется начальное приближение, на втором организуется процесс обучения предиктора в виде рекуррентной процедуры прогнозных расчётов. С этой целью выборочное множество наблюдений делится на две части. Пусть первых наблюдений используются для определения начальных значений. Кроме того, вводится в рассмотрение матрица, определяющая соотношение прямых и косвенных темпов приростов:

и матрица весовых коэффициентов:

,

определяемая либо по соответствующим коэффициентам корреляции, либо с помощью экспертного оценивания.

При заданном начальном значении предиктора, настроенных параметрах и, и известной матрице адаптивная модель записывается следующим образом:

,

,

,

Модель — записана в предположении, что начальное значение мультипликатора, и оптимальные значения параметров и известны, а сами процедуры их получения не описывались ранее, поэтому логично привести их алгоритмическое описание.

Процедура построения начального приближения:

1. Расчёт текущих значений прямых и косвенных темпов прирост показателей.

2. Определение геометрических средних значений прямых и косвенных темпов прироста показателей за период

.

3. Формирование матрицы средних темпов прироста за период

.

4. Построение начального приближения мультипликатора для

.

Процедура настройки параметров:

1. Определение шага изменения настраиваемых параметров:

,

где — достаточно малое положительное число.

2. Присвоение начальных значений параметрам

и критерию

,

где -достаточно большое положительное число.

3. Изменение текущего значения

и проверка на выполнение неравенства.

Если неравенство выполняется, то настройка параметров завершается.

4. Присваивание начального значения параметру

.

5. Изменение текущего значения

и проверяется выполнение неравенства.

Если неравенство выполняется, то осуществляется переход к п. 3.

6. Установка счётчика

Присвоение начального значения критерию

.

7. Изменение счётчика

и его проверка: если, то выполняется п. 16.

8. Вычисление постпрогнозной оценки

.

9. Расчёт критерия

10. Определение суммарного критерия по всему периоду обучения

.

11. Вычисление корректирующих темпов прироста

.

12. Формирование матрицы корректирующих темпов прироста

.

13. Построение корректирующего мультипликатора

14. Определение текущего мультипликатора для момента времени

и переход к п. 8.

15. Сравнение текущего значения критерия с его текущим оптимальным значением: если

, то

.

16. Переход к п. 5.

Описанные процедуры построения начального приближения мультипликатора и настройки параметров достаточно универсальны и могут использоваться при построении любых модификаций базовой модели с мультипликатором [4].

2.3.2 Предиктор Хольта

Первые модели адаптивного прогнозирования были разработаны для одномерных временных рядов, применение к которым традиционных методов было не совсем корректным. Не без основания считалось, что в данных таких рядов хотя и не содержится информация о закономерностях, происходящих в прогнозируемом процессе изменениях, но сами изменения могут использоваться для идентификации кратковременно действующих тенденций. Для обнаружения тенденций подобного рода необходимы специальные способы и приёмы, с помощью которых в прогнозных моделях предусматриваются специальные механизмы, уточняющие их текущую адекватность по данным статистики о происходящих изменениях.

Развитие аппарата адаптивного прогнозирования экономических процессов в основном осуществлялось по двум направлениям. Первое направление связано с усложнением структуры адаптивных моделей до уровня, обеспечивающего адекватное отражение закономерностей реальных явлений, а второе — с совершенствованием самого адаптивного механизма этих моделей. Развитием простейшей модели

где — значение показателя, характеризующего уровень прогнозируемого процесса в момент времени;

— изменяющийся во времени параметр, характеризующий средний уровень прогнозируемого процесса в момент времени;

— случайные независимые отклонения фактических значений от текущего среднего, имеющего нулевое математическое ожидание и конечную дисперсию, в рамках первого из определенных ранее направлений можно считать полином первого порядка

где — текущее значение коэффициентов модели;

— период упреждения;

— случайные независимые отклонения расчётных от фактических, имеющие нулевое математическое ожидание и конечную дисперсию.

Одновременно с изменением структуры модели, как правило, претерпевает соответствующие изменения и её адаптивный механизм. Неизменным может оставаться только принцип построения. Причём, для одной и той же модели на основе одного того же принципа можно строить различные варианты адаптивных механизмов. Примером модели, для которой можно построить различные варианты адаптивных механизмов, как раз и является рассматриваемый адаптивный полином первой степени. Один из вариантов её адаптивного механизма был предложен Чарльзом Хольтом. Этим вариантом предусматривается расчёт оценок текущих (т.е. на данный момент времени) коэффициентов модели по двум рекуррентным соотношениям

,

,

где — параметры экспоненциального сглаживания.

Если через обозначить ошибку прогноза, то эти соотношения можно переписать в следующем виде:

,

.

Полученное представление показывает, что используемая в рекуррентных соотношениях и процедура экспоненциального сглаживания приводит, как и в случае полинома нулевой степени, к адаптивному механизму, построенному на принципе регулятора с обратной связью [3].

Глава 3. Прогнозирование расходов ТФОМС на финансирование ТПГГ на территории Орловской области

3.1 Построение прогнозных моделей стоимости медицинских услуг

Целью исследования является построение прогноза стоимости территориальной программы обязательного медицинского страхования Орловской области на 2013 год. Стоимость программы — это, пожалуй, наиболее точная характеристика оценки состояния территориальной фонда ОМС в узком смысле, а в широком состояния всей медицинской отрасли Орловской области. Для выполнения поставленной задачи были определены и проанализированы документы, регламентирующие объём тех или иных показателей, участвующих в формировании стоимости территориальной программы. Вся совокупность показателей, общее количество которых получилось равным шести, была разбита на две группы: в первую группу вошли стоимостные показатели, определяющие стоимости медицинских услуг в рублях, во второю группу — нормативные показатели, определяющие объём услуг показателей первой группы, доступных населению в расчёте на одного человека в год.

Временной охват исследуемых данных составил период с 2005 по 2012 год. По причине крайне ограниченного количества наблюдений применение классических статистических методов моделирования исключается. Наиболее оптимальным решением в подобным случае может считаться использование моделей, основанных на построении матричного предиктора. Такие модели обладают высокой прогностической точностью даже при малом количестве наблюдений. При помощи детерминированной модели матричного предиктора, а также моделей, являющихся модификациями по отношению к базовой, будет построен прогноз обеих групп показателей.

Конечная цель — расчёт стоимости территориальной программы на 2013 год достигается путём построения прогноза стоимости обслуживания одного пациента в год, с последующем умножением полученного показателя на прогнозное значение численности населения на 2013 год.

3.1.1 Построение модели с детерминированным матричным предиктором

В первую группу показателей вошли такие показатели как: стоимость одного посещения амбулаторно-поликлинического учреждения и других медицинских организаций, стоимость одного пациенто-дня лечения в условиях дневных стационаров и стоимость одного койко-дня в больничных учреждения. Динамика показателей объёмов медицинской помощи по программе ОМС приведена в табл. 3. 1

Таблица 3.1 Динамика показателей объёмов медицинской помощи по программе ОМС

Год

Группа 1

2005

62,7

145,2

396,3

2006

75,71

197,72

339,07

2007

79,44

188,12

468,37

2008

124,58

309,57

837,01

2009

121,42

267,41

867,09

2010

110,55

256,86

753,83

2011

169,5

470,5

1167

2012

227,8

710,5

1695,7

Построим прогноз показателей нормативов объёмов медицинской помощи. График динамики показателей первой группы представлен на рис. 3.1.

Рисунок 3.1 — Динамика показателей объёмов медицинской помощи

В динамике наблюдается общая тенденция к росту, однако 2009 и 2010 год характеризуются паданием. Такое отклонение может иметь последствия в виде уменьшения предикторной точности моделей. Вполне возможно, что будет необходимо прибегнуть к сглаживанию исходных данных с целью уменьшения ошибок прогнозирования.

Алгоритм расчёта модели начинается с определения приростов на 2007 год и формирования матрицы косвенных темпов прироста:

,.

На основе матрицы вычислим предиктор и, используя его, получим прогнозные оценки показателей на 2007 год:

,.

Вектор относительных ошибок имеет вид:

.

Средняя ошибка прогноза равна 29,09%.

Далее аналогично построены прогнозы показателей на 2008−2013 годы (табл. 3. 2). Подробные расчёты представлены в Приложении 1.1.

Таблица 3.2 Результаты прогнозирования

Год

Значение

показателя

Средняя ошибка прогноза

2008

Фактическое

124,58

309,57

837,01

34,80%

Прогнозное

83,57

176,95

597,19

Ошибка

32,92%

42,84%

28,65%

2009

Фактическое

121,42

267,41

867,09

74,19%

Прогнозное

200,68

511,76

1438,64

Ошибка

65,28%

91,38%

65,92%

2010

Фактическое

145,46

368,96

1017,05

12,72%

Прогнозное

118,46

225,10

894,42

Ошибка

7,16%

12,36%

18,65%

2011

Фактическое

169,50

470,50

1167,00

44,17%

Прогнозное

100,64

247,53

647,70

Ошибка

40,62%

47,39%

44,50%

2012

Фактическое

227,80

710,50

1695,70

13,22%

Прогнозное

266,74

807,64

1846,71

Ошибка

17,09%

13,67%

8,91%

2013

Прогнозное

312,92

1048,65

2448,99

Ошибка модели, рассчитанная как среднее арифметическое за 2011 и 2012 год, составила 28,70%.

3.1.2 Нелинейный вариант детерминированного матричного предиктора

Для построения нелинейного варианта детерминированного матричного предиктора проведём логарифмирование исходных данных (табл. 3. 3)

Таблица 3.3 Динамика показателей объёмов медицинской помощи по программе ОМС

Год

Группа 1

2005

4,1384

4,9781

5,9822

2006

4,3269

5,2869

5,8262

2007

4,3750

5,2371

6,1493

2008

4,8249

5,7352

6,7298

2009

4,7993

5,5888

6,7651

2010

4,7055

5,5485

6,6252

2011

5,1329

6,1538

7,0622

2012

5,4285

6,5660

7,4359

Построение модели начинается с расчётов приростов для логарифмов на 2007 год и формирования матрицы косвенных темпов прироста:

На основе матрицы вычислим предиктор и логарифмы

В результате потенцирования получим вектор оценок

Вектор относительных ошибок имеет вид:

Средняя ошибка равна 32,48%.

Далее аналогично построены прогнозы показателей на 2008 — 2013 годы, приведённые в табл. 3.4. Подробные расчёты представлены в Приложении 1.2.

Таблица 3.4 Результаты прогнозирования

Год

Значение показателя

Средняя ошибка прогноза

2008

Фактическое

124,58

309,57

837,01

32,66%

Прогнозное

83,44

178,70

647,13

Ошибка

33,02%

42,27%

22,69%

2009

Фактическое

121,42

267,41

867,09

83,57%

Прогнозное

203,91

535,03

1584,07

Ошибка

67,94%

100,08%

82,69%

2010

Фактическое

110,55

256,86

753,83

12,08%

Прогнозное

118,37

230,99

897,75

Ошибка

7,08%

10,07%

19,09%

2011

Фактическое

169,50

470,50

1167,00

43,93%

Прогнозное

100,79

246,93

656,59

Ошибка

40,54%

47,52%

43,74%

2012

Фактическое

227,8

710,5

1695,7

18,96%

Прогнозное

269,74

904,17

1885,96

Ошибка

18,41%

27,26%

11,22%

2013

Прогнозное

311,61

1097,77

2521,66

Средняя ошибка модели, рассчитанная как среднее арифметическое ошибок за 2011 и 2012 годы, составила 31,45%.

3.1. 3 Модель с регулируемым темпом роста

Построение модели начинается с расчёта приростов логарифмов, умноженных на параметр которые используются для формирования матрицы косвенных темпов прироста логарифмов

.

На основе этой матрицы вычисляется предиктор

,

с помощью которого рассчитываются логарифмы прогнозных оценок и прогнозные оценки

.

Вектор относительных ошибок имеет вид

.

Средняя ошибка равна 12,47%. Оптимальное значение параметра определялось таким образом, что сумма квадратов отклонений прогнозных значений от фактических принимала наименьшее значение. Приведенные выше расчёты были произведены с уже настроенным параметром, значение которого совпало с начальным и получилось равным 0,0001 (Приложение 1. 3).

Таблица 3.5 Результаты прогнозирования

Год

Значение

показателя

Средняя ошибка прогноза

2008

Фактическое

124,58

309,57

837,01

39,84%

Прогнозное

79,44

188,12

468,39

Ошибка

36,23%

39,23%

44,04%

2009

Фактическое

121,42

267,41

867,09

7,28%

Прогнозное

124,59

309,59

837,06

Ошибка

2,61%

15,77%

3,46%

2010

Фактическое

145,46

368,96

1017,05

9,65%

Прогнозное

121,42

267,41

867,09

Ошибка

9,83%

4,11%

15,03%

2011

Фактическое

169,50

470,50

1167,00

38,53%

Прогнозное

110,55

256,86

753,82

Ошибка

34,78%

45,41%

35,41%

2012

Фактическое

227,80

710,50

1695,70

30,18%

Прогнозное

169,51

470,53

1167,05

Ошибка

25,59%

33,78%

31,18%

2013

Прогнозное

227,81

710,53

1695,76

Средняя ошибка модели составила 34,36%.

3.1.4 Модель с настраиваемым параметром матричного предиктора

Построим модель с настраиваемым параметром матричного предиктора. Используя данные табл. 3.1. Зададим матрицу весовых коэффициентов, элементами которой являются парные коэффициенты корреляции [4]:

.

После этого составим матрицу определяющую соотношение прямых и косвенных темпов прироста (при начальном значении):

.

Рассчитаем матрицу прямых и косвенных темпов прироста

.

Получаем предиктор и производим расчёт прогнозных оценок на 2007 год

,.

Проведём настройку параметра по критерию минимизации суммы квадратов отклонений прогнозных значений от фактических. Настройка параметра позволила установить его оптимальное значение.

Таким образом, матрица примет вид

.

Вновь полученный предиктор:

,

Соответственно, постпрогнозные оценки на 2007 год равны:

.

Относительные ошибки:

.

Постпрогнозные оценки и относительные ошибки на 2008 год составили:

,.

Средняя прогнозная ошибка — 32,66%.

Аналогично построим прогноз на 2009 — 2013 год при оптимальном значении (табл. 3. 6). В Приложении 1.4 представлены расчёты моделей до настройки параметров, в Приложении 1.5 с настроенным параметром.

Таблица 3.6 Результаты прогнозирования

Год

Значение

показателя

Средняя ошибка прогноза

2009

Фактическое

121,42

267,41

867,09

74,65%

Прогнозное

195,38

509,46

1495,89

Ошибка

60,91%

90,52%

72,52%

2010

Фактическое

145,46

368,96

1017,05

12,09%

Прогнозное

118,34

230,99

898,25

Ошибка

7,05%

10,07%

19,16%

2011

Фактическое

169,50

470,50

1167,00

44,01%

Прогнозное

100,65

246,73

655,35

Ошибка

40,62%

47,56%

43,84%

2012

Фактическое

227,80

710,50

1695,70

13,98%

Прогнозное

259,90

861,88

1806,74

Ошибка

14,09%

21,31%

6,55%

2013

Прогнозное

306,16

1072,97

2464,03

Средняя ошибка модели 28,99%.

3.1.5 Нелинейная модель с настраиваемым параметром матричного предиктора

Построим модель с настраиваемым параметром матричного предиктора с использованием логарифмированных данных из таблицы 3.3.

Матрица весовых коэффициентов имеет вид:

.

Матрица определяющая соотношение прямых и косвенных темпов прироста (при начальном):

.

Рассчитаем матрицу прямых и косвенных темпов прироста

.

Получаем предиктор и производим расчёт логарифмов прогнозных оценок

,

Потенцированные прогнозные ошибки примут вид:

.

Настройка параметра позволила установить его оптимальное значение. Таким образом, матрица примет вид:

.

Вновь полученный предиктор:

,

Соответственно, логарифмы и потенцированный прогноз на 2007 год будет равен:

Относительные ошибки:

.

Средняя ошибка прогноза — 33,26%.

Аналогично построим прогноз на 2008 — 2013 год при оптимальном значении (табл. 3. 7). В Приложении 1.6 представлены расчёты моделей до настройки параметра.

Таблица 3.7 Результаты прогнозирования

Год

Значение

показателя

Средняя ошибка прогноза

2008

Фактическое

124,58

309,57

837,01

32,17%

Прогнозное

83,40

179,07

658,69

Ошибка

33,06%

42,16%

21,30%

2009

Фактическое

121,42

267,41

867,09

83,51%

Прогнозное

204,63

534,17

1580,18

Ошибка

68,53%

99,76%

82,24%

2010

Фактическое

145,46

368,96

1017,05

11,99%

Прогнозное

118,36

231,85

898,42

Ошибка

7,06%

9,74%

19,18%

2011

Фактическое

169,50

470,50

1167,00

43,91%

Прогнозное

100,84

246,80

657,26

Ошибка

40,51%

47,55%

43,68%

2012

Фактическое

227,80

710,50

1695,70

19,29%

Прогнозное

270,18

920,72

1859,56

Ошибка

18,61%

29,59%

9,66%

2013

Прогнозное

311,42

1103,00

2513,22

Средняя ошибка модели за 2011 и 2012 год составила 31,6%.

3.1.6 Модели адаптивного матричного предиктора

Построим прогноз нормативов объёмов медицинской помощи по программе обязательного медицинского страхования Орловской области, используя модель с адаптивным параметром матричного предиктора.

По причине того, что модель обладает двумя настраиваемыми параметрами, может возникнуть ситуация, когда от модели можно добиться большей предикторной точности за счёт изменения выборок, по которым осуществляется настройка параметров. В работе рассмотрено два варианта разбиения выборок: первый, параметр настраивается с 2007 по 2009 год, параметр с 2010 по 2011 год, второй вариант, настройка осуществляется с 2007 по 2008 год, параметр с 2009 по 2011 год. В обоих случаях контрольной является выборка за 2012 год.

Начнём с первого варианта настройки параметров. Рассчитаем комбинированную матрицу прямых и косвенных темпов прироста:

.

Матрицы и при начальном значении равны:

Далее определяем предиктор и производим расчёт прогнозных оценок на 2007 год:

Вектор относительных ошибок средняя ошибка прогноза составила 48,68%.

Комбинированная матрица прямых и косвенных темпов прироста, а также матричный предиктор:

Произведём расчёт прогнозных оценок и ошибок на 2008 год:

Средняя ошибка прогноза — 44,94%.

Построим прогноз и вычислим относительные ошибки для 2009 года. Приросты показателей для 2009 года составили:

ПоказатьСвернуть
Заполнить форму текущей работой