Расчет переходных процессов

Тип работы:
Курсовая
Предмет:
Физика


Узнать стоимость

Детальная информация о работе

Выдержка из работы

Введение

Под переходным (динамическим, нестационарным) процессом или режимом в электрических цепях понимается процесс перехода цепи из одного установившегося состояния (режима) в другое. При установившихся, или стационарных, режимах в цепях постоянного тока напряжения и токи неизменны во времени, а в цепях переменного тока они представляют собой периодические функции времени. Установившиеся режимы при заданных и неизменных параметрах цепи полностью определяются только источником энергии. Следовательно, источники постоянного напряжения (или тока) создают в цепи постоянный ток, а источники переменного напряжения (или тока) — переменный ток той же частоты, что и частота источника энергии.

Переходные процессы возникают при любых изменениях режима электрической цепи: при подключении и отключении цепи, при изменении нагрузки, при возникновении аварийных режимов (короткое замыкание, обрыв провода и т. д.). Изменения в электрической цепи можно представить в виде тех или иных переключений, называемых в общем случае коммутацией. Физически переходные процессы представляют собой процессы перехода от энергетического состояния, соответствующего до коммутационному режиму, к энергетическому состоянию, соответствующему после коммутационному режиму.

Переходные процессы обычно быстро протекающие: длительность их составляет десятые, сотые, а иногда и миллиардные доли секунды. Сравнительно редко длительность переходных процессов достигает секунд и десятков секунд. Тем не менее изучение переходных процессов весьма важно, так как позволяет установить, как деформируется по форме и амплитуде сигнал, выявить превышения напряжения на отдельных участках цепи, которые могут оказаться опасными для изоляции установки, увеличения амплитуд токов, которые могут в десятки раз превышать амплитуду тока установившегося периодического процесса, а также определять продолжительность переходного процесса. С другой стороны, работа многих электротехнических устройств, особенно устройств промышленной электроники, основана на переходных процессах. Например, в электрических нагревательных печах качество выпускаемого материала зависит от характера протекания переходного процесса. Чрезмерно быстрое нагревание может стать причиной брака, а чрезмерно медленное отрицательно оказывается на качестве материала и приводит к снижению производительности.

1. Теория о переходных процессах и методах расчета

1. 1 Причины возникновения переходных процессов. Законы коммутации

В общем случае в электрической цепи переходные процессы могут возникать, если в цепи имеются индуктивные и емкостные элементы, обладающие способностью накапливать или отдавать энергию магнитного или электрического поля. В момент коммутации, когда начинается переходный процесс, происходит перераспределение энергии между индуктивными, емкостными элементами цепи и внешними источниками энергии, подключенными к цепи. При этом часть энергия безвозвратно преобразуется в другие виды энергий (например, в тепловую на активном сопротивлении).

После окончания переходного процесса устанавливается новый установившийся режим, который определяется только внешними источниками энергии. При отключении внешних источников энергии переходный процесс может возникать за счет энергии электромагнитного поля, накопленной до начала переходного режима в индуктивных и емкостных элементах цепи.

Таким образом, переходные процессы не могут протекать мгновенно, так как невозможно в принципе мгновенно изменять энергию, накопленную в электромагнитном поле цепи. Теоретически переходные процессы заканчиваются за время t>?. Практически же переходные процессы являются быстропротекающими, и их длительность обычно составляет доли секунды. Так как энергия магнитного WМ и электрического полей WЭ описывается выражениями

Первый закон коммутации состоит в том, что ток в ветви с индуктивным элементом в начальный момент времени после коммутации имеет то же значение, какое он имел непосредственно перед коммутацией, а затем с этого значения он начинает плавно изменяться. Сказанное обычно записывают в виде iL(0-) = iL(0+), считая, что коммутация происходит мгновенно в момент t = 0.

Второй закон коммутации состоит в том, что напряжение на емкостном элементе в начальный момент после коммутации имеет то же значение, какое оно имело непосредственно перед коммутацией, а затем с этого значения оно начинает плавно изменяться: UC(0-) = UC(0+).

Следовательно, наличие ветви, содержащей индуктивность, в цепи, включаемой под напряжение, равносильно разрыву цепи в этом месте в момент коммутации, так как iL(0-) = iL(0+). Наличие в цепи, включаемой под напряжение, ветви, содержащей разряженный конденсатор, равносильно короткому замыканию в этом месте в момент коммутации, так как UC(0-) = UC(0+).

В электрических цепях с резистивными элементами энергия электромагнитного поля не запасается, вследствие чего в них переходные процессы не возникают, т. е. в таких цепях стационарные режимы устанавливаются мгновенно, скачком.

В действительности любой элемент цепи обладает каким-то сопротивлением r, индуктивностью L и емкостью С, т. е. в реальных электротехнических устройствах существуют тепловые потери, обусловленные прохождением тока и наличием сопротивления r, а также магнитные и электрические поля.

Переходные процессы в реальных электротехнических устройствах можно ускорять или замедлять путем подбора соответствующих параметров элементов цепей, а также за счет применения специальных устройств.

1. 2 Математические основы анализа переходных процессов

Задача исследования переходных процессов заключается в том, чтобы выяснить, по какому закону и как долго будет наблюдаться заметное отклонение токов в ветвях и напряжений на участках цепи от их установившихся значений. Так, например, если в исследуемой ветви некоторой цепи до коммутации существовал постоянный ток I1, а в установившемся режиме после коммутации он стал I2, то нас будет интересовать закон изменения переходного тока i между моментом коммутации (t=0) и тем неизвестным нам моментом времени t1, когда переходный процесс можно считать закончившимся.

При анализе переходных процессов в электрических цепях считается, что:

— рубильники включаются и размыкаются мгновенно, без возникновения электрической дуги;

— время переходного процесса, теоретически бесконечно длительное, (переходный режим асимптотически приближается к новому установившемуся режиму), ограничивают условным пределом — длительностью переходного процесса;

— установившийся режим после коммутации рассчитывают при теоретическом условии t> ?, т. е. когда после коммутации прошло бесконечно большое время.

Установившийся режим до коммутации рассчитывают обычно в предположении, что к моменту коммутации в цепи закончился предыдущий переходный процесс. Хотя иногда приходится анализировать переходные процессы, возникающие в цепи, когда предыдущий переходный процесс, вызванный прежними коммутациями, еще не закончился. Но это не изменяет теоретическую постановку задачи.

Анализ переходных процессов производят путем решения дифференциальных уравнений, составленных для исследуемой электрической цепи на основе законов Кирхгофа или метода контурных токов.

Рисунок 1 — Пример схем

Пусть в некоторой цепи (рисунок 2) внезапно изменяется сопротивление. До коммутации в цепи существовали сопротивления R0 и R, после коммутации остается только R. Требуется определить переходный ток i. Электрическое состояние схемы после коммутации описывается интегродифференциальным уравнением, записанным на основании II закона Кирхгофа для мгновенных значений токов и напряжений

(1. 1)

Если это уравнение продифференцировать по времени получим линейное дифференциальное уравнение второго порядка, у которого в качестве постоянных коэффициентов выступают параметры цепи или их комбинации

(1. 2)

Из математики известно, что полное решение линейного дифференциального уравнения с постоянными коэффициентами находят в виде суммы частного решения неоднородного и общего решения соответствующего однородного уравнения.

Поскольку в правой части дифференциальных уравнений, описывающих электрическое состояние цепей, обычно находится напряжение (или ток) источника (внешняя вынуждающая сила), то частное решение находят из анализа установившегося режима после коммутации. Отсюда этот режим называют принужденным и соответственно токи или напряжения, найденные в данном режиме, называют принужденными. Расчет принужденного режима, когда внешние источники вырабатывают постоянную или синусоидальную э.д.с. (ток), не представляет трудностей и может быть осуществлен любым известным методом.

Однородное дифференциальное уравнение получают из выражения (1. 2) путем «освобождения» его от правой части. Физически это означает, что исследуемая цепь «освобождается» от внешней вынуждающей силы. Токи или напряжения, найденные при решении однородного дифференциального уравнения, называются свободными. Свободные токи и напряжения являются результатом действия внутренних источников схемы: э.д.с. самоиндукции, возникающих в катушках, и напряжений на конденсаторах, когда и те, и другие не уравновешены внешними источниками.

Схематически анализ переходного процесса может быть представлен как результат наложения двух режимов: принужденного и свободного. Схема на рисунке 2 б должна быть рассчитана в установившемся (принужденном) режиме, а схема на рисунке 2 в режиме, когда цепь освобождена от внешних источников.

i = iу + iсв

(1. 3)

Заметим, что физически существует только переходные токи и напряжения, а разложение их на свободные и принужденные составляющие является математическим приемом, позволяющим упростить расчет переходных процессов в линейных цепях. Напомним, что принцип суперпозиции применим лишь к линейным цепям.

Существуют различные методы решения однородного дифференциального уравнения, полученного из выражения (1. 2)

(1. 4)

Классический метод анализа переходных процессов заключается в непосредственном интегрировании дифференциальных уравнений. Решение находят в виде суммы экспонент:

(1. 5)

После подстановки экспонент Ak · epkt в исходное уравнение (1. 3) и дифференцирования можно получить характеристическое уравнение, из которого определяют корни p1, p2. Если встречаются кратные корни (например, p1 = p2 = P), решение имеет вид A1 · ePt + A2 · ePt.

Постоянные интегрирования A1, A2 находят из начальных условий, которые определяют с помощью законов коммутации. Различают независимые и зависимые (после коммутационные) начальные условия. К первым относят значения токов через индуктивности и значения напряжений на емкостях, известные из до коммутационного режима работы цепи.

Значения остальных токов и напряжений при t = 0 в после коммутационной схеме, определяемые по независимым начальным значениям из законов Кирхгофа для схемы после коммутации, называют зависимыми начальными значениями.

1. 3 Алгоритм расчета переходного процесса классическим методом

Для анализа переходного процесса предварительно следует привести схему к минимальному числу накопителей энергии, исключив параллельные и последовательные соединения однотипных реактивных элементов (индуктивностей или емкостей). Система интегродифференциальных уравнений, составленных в соответствии с законами Кирхгофа или методом контурных токов, может быть сведена путем подстановки к одному дифференциальному уравнению, которое используется для составления характеристического уравнения.

Порядок дифференциального, следовательно, и характеристического уравнения зависит от числа реактивных элементов приведенной схемы. Главная трудность в решения задачи классическим методом для уравнений высоких порядков состоит в отыскании корней характеристического уравнения и постоянных интегрирования.

Для практических целей при анализе переходных процессов в любой схеме классическим методом может быть рекомендован следующий алгоритм:

— рассчитать принужденный (установившийся) режим при t>?. Определить принужденные токи и напряжения;

— рассчитать режим до коммутации. Определить токи в ветвях с индуктивностью и напряжения на конденсаторах. Значения этих величин в момент коммутации является независимыми начальными условиями;

— составить дифференциальные уравнения для свободного процесса (Е = 0) в схеме после коммутации по законам Кирхгофа или по методу контурных токов. Существуют приемы, упрощающие операцию отыскания корней характеристического уравнения, например, приравнивание нулю входного операторного сопротивления цепи, которое получается путем замены в выражении комплексного сопротивления цепи множителя «j?» на оператор «р».

— записать общие выражения для искомых напряжений и токов в соответствии с видом корней характеристического уравнения;

— переписать величины, полученные в п. 4, и производные от них при t = 0;

— определить необходимые зависимые начальные условия, используя независимые начальные условия;

— подставив начальные условия в уравнения п. 5, найти постоянные интегрирования;

— записать законы изменения искомых токов и напряжений.

2. Расчет переходного процесса классическим методом

Исходные данные: Е=100 В, r1=r2=r3=25 Ом, L=125 мГн, С=50 мкФ.

Для данной схемы классическим методом найти i1(t) и i2(t) после включения рубильников.

Переходные процессы (ПП) в цепях возникают при всех изменениях режима электрической цепи: включение или выключение цепи или ее отдельных участков, при коротком замыкании, обрыве и т. п. Эти процессы не могут протекать мгновенно, так как невозможны мгновенные изменения энергии, запасенной в электрическом и магнитном полях цепи.

Первая коммутация

Определение независимых начальных условий (ННУ) из анализа и расчета схемы до коммутации при t = -0

Определение корней характеристического уравнения. Характеристическое уравнение составляется по выражению для комплексного сопротивления послекоммутационной схемы при замене j? на р

z = pL + r1 + r3 +

То есть и характеристическое уравнение имеет вид

100 + pL + = 0

(2. 2)

Корни характеристического уравнения комплексно сопряженные

Определим выражение искомого тока в переходном процессе

Ток установившегося режима определяем из анализа и расчета схемы после окончания переходного процесса. Переходный процесс в цепи возникает из-за того, что конденсатор заряжается. В установившемся режиме конденсатор зарядится в рассматриваемой цепи до ЭДС постоянного источника, после чего ток цепи становится равным нулю, т. е. = 0

где, А — постоянная интегрирования, определяемая из независимых начальных условий. Ток переходного процесса

Для определения двух неизвестных, А и? составим второе уравнение, дифференцируя полученное выражение переходного тока

Определим постоянные интегрирования при t = 0

i1(0) = 0 по независимым начальным условиям

По второму закону Кирхгофа

А/с

— искомое выражение переходного тока

Рассчитываем напряжение на емкости uc(t) в переходном процессе

где В и? — постоянные интегрирования, определяемые из начальных условий.

Второе уравнение для определения В и? получаем дифференцируя выражение uc(t)

Определение В и? из начальных условий подстановки, а и ?0 имеем

После

20 000−24 500 ctg ?=0

ctg ?=

tg?=0,816

?=39?

Искомое напряжение в переходном процессе

Спустя время происходит замыкание в цепи второго ключа.

Определим ток в индуктивности и напряжение на конец первой коммутации и начало второй коммутации

Вторая коммутация

Независимые начальные условия

А

Определение корней характеристического уравнения после коммутации

В установившемся режиме ток будет равен

А, т. к. хL = 0

Определим ток и напряжение на конец второй коммутации

1. 22 = 2 + A

A = 1. 22 — 2 = -0. 78

с

А

Третья коммутация

Независимые начальные условия

Определение корней характеристического уравнения

Корни характеристического уравнения

где? = -350 — коэффициент затухания

?0 = ± j194 с-1 — частота собственных колебаний контура

В установившемся режиме ток будет равен

А

= 0

При t = 0, для

При t = 0, для

Используя закон Кирхгофа, определяем, , ,

Для определения и

А

А

А/с

Продифференцировав (1)

Продифференцировав (2)

, так как

В/с

А/с

А/с

66 +350*0,44=0,44*194*ctg?

;? = -72?

3. Расчет переходного процесса операторным методом

Учитывая независимые начальные условия, составим операторную схему, методом контурных токов. Определяем изображение

переходный процесс операторный расчет

Операторная схема составляется для цепи после коммутации. Операторный метод расчета основан на преобразовании Лапласа. Преобразование Лапласа позволяет осуществить переход от действительной переменной t к комплексной переменной p, при этом происходит замена дифференциальных уравнений алгебраическими относительно изображений, где данные

, — изображение оригиналов токов, соответственно

, , — изображение ЭДС, напряжения на емкости и катушке соответственно

=

=

После подстановки данных получим

где — полином от рn

где — полином от рm

Во всех физически осуществимых устройствах и цепях m>n (это один из критериев проверки на устойчивость работы цепи)

Переход от изображения к оригиналу функции вещественной переменной t осуществляем по теореме разложения.

Рассчитываем корни полинома знаменателя

;

Рассчитываем значения полинома числителя

Определяем значение производной полинома знаменателя

Оригинал тока определяем по формуле разложения

Заключение

Данная схема была рассчитана классическим и операционным методами. Были найдены токи переходных процессов и дополнительно ток третьей коммутации.

По полученным значениям был построен график зависимости, полностью соответствующий полученным данным.

Так же были проанализированы и обработаны теоретические материалы по теме «Теория о переходных процессах и методах расчета».

Список использованной литературы

переходный процесс операторный расчет

1. А. З. Вахитова, В. П. Обрусник. Основы теории цепей. Часть 1. Расчет переходных процессов электротехнических цепей. Учебное методическое пособие., 2000−128 с.

2. Бессонов Л. А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. -7-е изд., перераб. и доп. — М.: Высш. шк., 1978. -528 с.

3. Г. В. Зевеке, П. А. Ионкин, А. В. Нетушил, С. В. Страхов. Основы теории цепей: Учеб. для вузов 5-е изд., перераб. — М.: Энергоатомиздат, 1989. -528 с.

4. Добротворский И. Н. Теория электрических цепей. Учебник для техникумов. 1989. -472 с.

5. К. М. Поливанова. Т.1. К. М. Поливанов. Линейные электрические цепи с сосредоточенными постоянными. — М.: Энергия — 1972. -240 с.

6. Мустафина Р. М., Мустафина Г. М., Воликова М. П. Переходные процессы в линейных цепях с сосредоточенными параметрами. Учебно-методическое пособие. — Павлодар, 2003 — 28 с. ил.

ПоказатьСвернуть
Заполнить форму текущей работой