Расчет показателей эконометрики

Тип работы:
Контрольная
Предмет:
Экономические науки


Узнать стоимость

Детальная информация о работе

Выдержка из работы

Содержание

Задача 1

Решение

Задача 2

Решение

Задача 3

Решение

Задача 4

Решение

Задача 5

Решение

Список используемой литературы

Приложение

Задача 1

По регионам страны изучается зависимость ВРП на душу населения (y тыс. руб.) от инвестиций в основной капитал (x — тыс. руб.):

№ региона

1

2

3

4

5

6

7

8

9

10

x, тыс. руб.

9,4

2,5

3,9

4,3

2,1

6,0

6,3

5,2

6,8

8,2

y, тыс. руб.

35,8

22,5

28,3

26,0

18,4

31,8

30,5

29,5

41,5

41,3

Задание

1. Постройте поле корреляции, характеризующее зависимость ВРП на душу населения от размера инвестиций в основной капитал.

2. Определите параметры уравнения парной линейной регрессии. Дайте интерпретацию коэффициента регрессии и знака при свободном члене уравнения.

3. Рассчитайте линейный коэффициент корреляции и поясните его смысл. Определите коэффициент детерминации и дайте его интерпретацию.

4. Найдите среднюю ошибку аппроксимации.

5. Рассчитайте стандартную ошибку регрессии.

6. С вероятностью 0,95 оцените статистическую значимость уравнения регрессии в целом, а также его параметров. Сделайте вывод.

7. С вероятностью 0,95 постройте доверительный интервал ожидаемого значения ВРП на душу населения в предложении, что инвестиции в основной капитал составят 80% от максимального значения. Сделайте вывод.

Решение

1. Построение поля корреляции производится по исходным данным о парах значений ВРП на душу населения и инвестиций в основной капитал.

2. Оценка параметров уравнения парной линейной регрессии производится обычным методом наименьших квадратов (МНК).

Для расчета параметров a и b линейной регрессии y = a + b*x решаем систему нормальных уравнений относительно a и b:

По исходным данным (табл. 1. 1) рассчитываем Уy, Уx, Уyx, Уx2, Уy2.

Таблица 1.1 Расчетная таблица

y

x

yx

x2

y2

Аi

1

35,8

9,4

336,520

88,360

1281,640

41,559

-5,759

16,087

2

22,5

2,5

56,250

6,250

506,250

22,248

0,252

1,122

3

28,3

3,9

110,370

15,210

800,890

26,166

2,134

7,541

4

26,0

4,3

111,800

18,490

676,000

27,285

-1,285

4,944

5

18,4

2,1

38,640

4,410

338,560

21,128

-2,728

14,827

6

31,8

6,0

190,800

36,000

1011,240

32,043

-0,243

0,765

7

30,5

6,3

192,150

39,690

930,250

32,883

-2,383

7,813

8

29,5

5,2

153,400

27,040

870,250

29,804

-0,304

1,032

9

41,5

6,8

282,200

46,240

1722,250

34,282

7,218

17,392

10

41,3

8,2

338,660

67,240

1705,690

38,201

3,099

7,504

Итого

305,6

54,7

1810,790

348,930

9843,020

305,600

0

79,027

Среднее значение

30,56

5,47

181,079

34,893

984,302

-

-

-

7,098

2,23

-

-

-

-

-

-

50,381

4,973

-

-

-

-

-

-

Система нормальных уравнений составит

Используем следующие формулы для нахождения параметров:

= 2,799

305,6 — 2,799*5,47 = 15,251

Уравнение парной линейной регрессии:

= 15,251 + 2,799* x

Величина коэффициента регрессии b = 2,799 означает, что с ростом инвестиций в основной капитал на 1 тыс. руб. доля ВРП на душу населения растет в среднем на 2,80%-ных пункта.

Знак при свободном члене уравнения положительный, следовательно связь прямая.

3. Рассчитаем линейный коэффициент корреляции:

или

где , — средние квадратические отклонения признаков x и y, соответственно

Так как = 2,23, = 7,098, то

= 0,879, что означает тесную прямую связь рассматриваемых признаков

Коэффициент детерминации составит

= 0,773

Вариация результата (y) на 77,3% объясняется вариацией фактора (x). На долю прочих факторов, не учитываемых в регрессии, приходится 22,7%.

4. Средняя ошибка аппроксимации () находится как средняя арифметическая простая из индивидуальных ошибок

= =7,9%,

(см. последнюю графу расчетной табл. 1.1.).

Ошибка аппроксимации показывает хорошее соответствие расчетных () и фактических (y) данных: среднее отклонение составляет 7,9%.

5. Стандартная ошибка регрессии рассчитывается по следующей формуле:

,

где m — число параметров при переменных x.

В нашем примере стандартная ошибка регрессии

= 3,782

6. Оценку статистической значимости построенное модели регрессии в целом производится с помощью F-критерия Фишера. Фактическое значение F-критерия для парного линейного уравнения регрессии определяется как

F =

где Сфакт = - факторная, или объясненная регрессия, сумма квадратов; Сост = - остаточная сумма квадратов;

— коэффициент детерминации.

В нашем примере F-критерий Фишера будет равен (см. приложение № 1):

F = = 27,233

Табличное значение F-критерия при числе степеней свободы 1 и 8 и уровне значимости 0,05 составит: 0,05 F1,8 = 5,32, т. е. фактическое значение F (Fфакт = 27,233) превышает табличное (Fтабл = 5,32), и можно сделать вывод, что уравнение регрессии статистически значимо. Следовательно гипотеза Н0 отклоняется.

Чтобы оценить значимость отдельных параметров уравнения, надо по каждому из параметров определить его стандартные ошибки: mb и ma.

Стандартная ошибка коэффициента регрессии определяется по формуле:

mb = =

где S2 — остаточная дисперсия на одну степень свободы.

Стандартная ошибка параметра a определяется по формуле:

ma =.

Для нахождения стандартных ошибок строим расчетную таблицу (см. приложение № 1).

Для нашего примера величина стандартной ошибки коэффициента регрессии составила:

mb == 0,536.

Величина стандартной ошибки параметра a составила:

ma = = 3,168

Для оценки существенности коэффициента регрессии и параметра a их величины сравниваются с их стандартными ошибками, т. е. определяются фактические значения t-критерия Стьюдента:

tb =, ta =.

Для нашего примера

tb = = 5,222, ta = = 4,814

Фактические значения t-критерии превосходят табличные значения:

tb =5,222 > tтабл = 2,306; ta = 4,814 > tтабл = 2,306

Поэтому гипотеза Н0 отклоняется, т. е. a и b не случайно отличаются от нуля, а статистически значимы.

7. Полученные оценки уравнения регрессии позволяют использовать его для прогноза. Для расчета точечного прогноза подставим в уравнение регрессии заданное значение факторного признака. Если прогнозное значение инвестиций в основной капитал составит:

= 9,4*0,8 = 7,52 тыс. руб

Тогда прогнозное значение ВРП на душу населения составит:

= 15,251 + 2,799* 7,52 = 36,299 тыс. руб.

Доверительный интервал прогноза определяется с вероятностью (0,95) как

,

где tтабл — табличное значение t-критерия Стьюдента для уровня значимости (1−0,95) и числа степеней свободы (n-2) для парной линейной регрессии; - стандартная ошибка точечного прогноза, которая рассчитывается по формуле:

В нашем примере стандартная ошибка прогноза составила

= 4,116

Предельная ошибка прогноза, которая в 95% случаев не будет превышена, составит:

= = 2,306 * 4,116 = 9,491.

Доверительный интервал прогноза

г= 36,299 9,491;

гmin = 36,299 — 9,491 = 26,808 тыс. руб.

гmаx = 36,299 + 9,491 = 45,79 тыс. руб.

Выполненный прогноз ВРП на душу населения оказался надежным (р = 1 — = 0,95), но не точным, так как диапазон верхней и нижней границ доверительного интервала Dг составляет 1,708 раза:

Dг = гmаx / гmin = 45,79 / 26,808 = 1,708.

Задача 2

Зависимость валовой продукции сельского хозяйства (y — млн. руб.) от валового производства молока (x1 — тыс. руб.) и мяса (x2 — тыс. руб.) на 100 га сельскохозяйственных угодий по 26 районам области характеризуется следующим образом:

= - 2,229 + 0,039* x1 + 0,303* x2 R2 = 0,956.

Матрица парных коэффициентов корреляции и средние значения:

y

x1

x2

Среднее

y

1

25,8

x1

0,717

1

364,9

x2

0,930

0,489

1

45,3

Задание

1. Оцените значимость уравнения регрессии с помощью F-критерия Фишера с вероятностью 0,95. Сделайте выводы.

2. Найдите скорректированный коэффициент множественной корреляции.

3. Постройте уравнение множественной регрессии в стандартизованном масштабе и сделайте вывод.

4. Найдите частные средние коэффициенты эластичности и корреляции; сделайте выводы.

5. Постройте таблицу дисперсионного анализа для оценки целесообразности включения в модель фактора x2 после фактора x1, если известно, что = 1350,5.

6. Оцените значимость интервала при факторе x2 через t-критерий Стьюдента и дайте интервальную оценку коэффициента регрессии с вероятностью 0,95.

7. Найдите стандартную ошибку регрессии.

Решение

1. Оценку значимости уравнения регрессии в целом дает F-критерия Фишера:

Fфакт =

где m- число факторных признаков в уравнении регрессии; R — линейный коэффициент множественной корреляции.

В нашем примере F-критерий Фишера составляет

Fфакт = = 249,864

Fтабл = 3,42; б = 0,05.

Сравнивая Fтабл и Fфакт, приходим к выводу о необходимости отклонить гипотезу Н0, так как Fтабл = 3,42 < Fфакт = 249,864. С вероятностью 0,95 делаем заключение о статистической значимости уравнения в целом и показателя тесноты связи R2.

2. Скорректированный коэффициент множественной корреляции находится как корень из скорректированного коэффициента множественной детерминации (R2 скорр):

R скор = == = 0,976

3. Линейное уравнение множественной регрессии y от x1 и x2 имеет вид:

4. y = a + b1*x1 + b2*x2.

5. По условию оно нам дано:

= - 2,229 + 0,039* x1 + 0,303* x2

Построим искомое уравнение в стандартизованном масштабе:

ty = в1*tx1 + в2*tx2.

Расчет в-коэффициентов выполним по формулам:

в1 = = = 0,345;

в2 = = = 0,761.

Получим уравнение

ty = 0,345*tx1 + 0,761*tx2.

6. Для характеристики относительной силы влияния x1 и x2 на y рассчитаем средние коэффициенты эластичности:

;

= 0,552%; = 0,532%.

С увеличением валового производства молока x1 на 1% от его среднего уровня валовая продукция сельского хозяйства y возрастает на 0,55% от своего среднего уровня; при повышении валового производства мяса x2 на 1% валовая продукция сельского хозяйства y возрастает на 0,53% от своего среднего уровня. Очевидно, что сила влияния валового производства молока x1 на валовую продукцию сельского хозяйства y оказалась большей, чем сила влияния валового производства мяса x2, но правда не намного.

Частные коэффициенты корреляции рассчитываются по формуле:

= = 0,817,

т.е. при закреплении фактора x2 на постоянном уровне корреляция y и x1 оказывается более высокой (0,817 против 0,717);

= = 0,953,

т. е. при закреплении фактора x1 на постоянном уровне влияние фактора x2 на y оказывается более высокой (0,953 против 0,930);

= = - 0,692

7. Результаты дисперсионного анализа представлены в табл. 2.1.

Таблица 2. 1

Вариация результата, y

Число степеней свободы

Сумма квадратов отклонений, S

Дисперсия на одну степень свободы, s2

Fфакт

Fтабл

б =0,05,

k1 = 2,

k2 = 23

Общая

Df = n-1 = 25

35 113

-

-

-

Факторная

— за счет x1

— за счет дополнительного x2

k1 = m = 2

1

1

33 568,028

18 051,207

15 516,821

16 784,014

18 051,207

15 516,821

249,864

268,728

230,999

3,42

4,28

4,28

Остаточная

k2 = n-m-1 = 23

1544,972

67,173

-

-

Sобщ = = 1350,5 * 26 = 35 113;

Sфакт = = 1350,5 * 26 * 0,956 = 33 568,028;

Sфакт x1 == 1350,5 * 26 * 0,7172 = 18 051,207;

Sфакт x2 = Sфакт — Sфакт x1 = 33 568,028 — 18 051,207 = 15 516,821;

Sост = = Sобщ — Sфакт = 35 113 — 33 568,028 = 1544,972;

Fфакт = = = 249,864;

Fфактx1 = = = 268,728;

Fчастнx2 = = = 230,999.

= 16 784,014;

= 15 516,821;

= 18 051,207

Включение в модель фактора x2 после фактора x1 оказалось статистически значимым и оправданным: прирост факторной дисперсии (в расчете на одну степень свободы) оказался существенным, т. е. следствием дополнительного включения в модель систематически действующего фактора x2, так как Fчастнx2 = 230,999 > Fтабл = 4,28.

8. Оценка с помощью t-критерия Стьюдента значимости коэффициента b2 связана с сопоставлением его значения с величиной его случайной ошибки: mb2.

Расчет значения t-критерия Стьюдента для коэффициента регрессии линейного уравнения находится по следующей формуле:

= 15,199.

При б = 0,05; df = n-m-1 = 26−2-1 = 23; tтабл = 2,07. Сравнивая tтабл и tфакт, приходим к выводу, что так как = 15,199 > 2,07 = tтабл, коэффициент регрессии b2 является статистически значимым, надежным, на него можно опираться в анализе и в прогнозе.

9. Стандартная ошибка регрессии рассчитывается по следующей формуле:

= = 8,196.

Задача 3

Рассматривается модель вида

где

Сt — расходы на потребление в текущий период,

Сt-1 — расходы на потребление в предыдущий период,

Rt — доход текущего периода,

Rt-1 — доход предыдущего периода,

Yt — инвестиции текущего периода.

Ей соответствует следующая приведенная форма (построена по районам области)

Задание

1. Проведите идентификацию модели.

2. Укажите способы оценки параметров каждого уравнения структурной модели.

3. Найдите структурные коэффициенты каждого уравнения, если известны следующие данные:

1

2

3

4

5

6

7

8

9

10

11

12

Yt

4

4

6

10

9

8

7

6

8

12

8

16

Сt

14

13

15

20

20

14

16

12

12

21

12

17

Rt-1

15

14

16

22

26

18

18

15

19

28

18

26

Сt-1

12

11

12

15

17

12

14

10

11

20

12

16

Решение

1. Модель имеет три эндогенные Н (Сt, Yt, Rt). Причем переменная Rt задана тождеством. Поэтому практически статистическое решение необходимо только для первых двух уравнений системы, которые необходимо проверить на идентификацию. Модель содержит две предопределенные D (Сt-1, Rt-1) переменные.

Проверим каждое уравнение системы на необходимое и достаточное условия идентификации.

Проверим необходимое условие идентификации для уравнений модели.

I уравнение.

Н: эндогенных переменных — 2 (Сt, Rt), отсутствующих предопределенных переменных — 1 (Rt-1).

Следовательно, по счетному правилу D + 1 = H (1 + 1 = 2) уравнение идентифицируемо.

II уравнение.

Н: эндогенных переменных — 1 (Yt); переменная Rt в данном уравнении не рассматривается как эндогенная, так как она участвует в уравнении не самостоятельно, а вместе с переменной Rt-1.

отсутствующих предопределенных переменных — 1 (Сt-1).

Следовательно, по счетному правилу D + 1 > H (1 + 1 > 1) уравнение сверхидентифицировано.

III уравнение.

Третье уравнение представляет собой тождество, параметры которого известны. Необходимости в его идентификации нет.

Следовательно, рассматриваемая в целом структурная модель сверхидентифицируема по счетному правилу.

Проверим для каждого из уравнений достаточное условие идентификации.

Для этого составим матрицу коэффициентов при переменных модели:

Сt

Yt

Rt

Rt-1

Сt-1

I уравнение

-1

0

b11

0

b12

II уравнение

0

-1

b21

-b21

0

III уравнение

1

1

-1

0

0

В соответствии с достаточным условием идентификации определитель матрицы коэффициентов при переменных, не входящих в исследуемое уравнение, не должен быть равен нулю, а ранг матрицы должен быть равен числу эндогенных переменных модели минус 1, т. е. 3−1=2.

I уравнение.

Матрица коэффициентов при переменных, не входящих в уравнение, имеет вид:

Уравнение

Отсутствующие переменные

Yt

Rt-1

Второе

-1

-b21

Третье

1

0

Определитель матрицы не равен 0 (Det A = -1*0 — (1*-b21) 0), ранг матрицы равен 2; следовательно, выполняется достаточное условие идентификации.

II уравнение.

Матрица коэффициентов при переменных, не входящих в уравнение, имеет вид:

Уравнение

Отсутствующие переменные

Сt

Сt-1

Первое

-1

b12

Третье

1

0

Определитель матрицы не равен 0 (Det A = -1*0 — (1*b12) 0.), ранг матрицы равен 2; следовательно, выполняется достаточное условие идентификации.

2. Первое уравнение идентифицируемое, следовательно, для его решения применяется косвенный метод наименьших квадратов.

Косвенный метод наименьших квадратов (МНК):

— Составить приведенную форму модели и определить численные значения параметров каждого уравнения системы обычным МНК.

— Путем алгебраических преобразований переходим от приведенной формы к уравнениям структурной формы модели и получаем численные оценки структурных параметров.

Для решения второго уравнения, а оно у нас сверхидентифицируемое, применяется — двухшаговый метод наименьших квадратов.

Двушшаговый метод:

— Составить приведенную форму модели и определить численные значения параметров каждого уравнения системы обычным МНК.

— Выявляем эндогенные переменные, находящиеся в правой части структурного уравнения, параметры которого определяют двухшаговым МНК, и находим расчетные значения по соответствующим уравнениям приведенной формы модели.

— Обычным МНК определяем параметры структурного уравнения, используя в качестве исходных данных фактические значения предопределенных переменных и расчетные значения эндогенных переменных, стоящих в правой части данного структурного уравнения.

3. Найдем структурные коэффициенты первого и второго уравнений на основании исходных данных.

Составим расчетную таблицу (Rt = Ct + Yt; обозначим d Rt = Rt — Rt-1).

Таблица 3.1 Расчетная таблица

Yt

Ct

Rt-1

Ct-1

Rt

dRt

Yt*dRt

(dRt)2

(Rt)2

(Ct-1*Rt

Ct*Rt

(Ct-1)2

Ct*Ct-1

1

4

14

15

12

18

3

12

9

324

216

252

144

168

2

4

13

14

11

17

3

12

9

289

187

221

121

143

3

6

15

16

12

21

5

30

25

441

252

315

144

180

4

10

20

22

15

30

8

80

64

900

450

600

225

300

5

9

20

26

17

29

3

27

9

841

493

580

289

340

6

8

14

18

12

22

4

32

16

484

264

308

144

168

7

7

16

18

14

23

5

35

25

529

322

368

196

224

8

6

12

15

10

18

3

18

9

324

180

216

100

120

9

8

12

19

11

20

1

8

1

400

220

240

121

132

10

12

21

28

20

33

5

60

25

1089

660

693

400

420

11

8

12

18

12

20

2

16

4

400

240

240

144

144

12

16

17

26

16

33

7

112

49

1089

528

561

256

272

?

98

186

235

162

284

49

442

245

7110

4012

4594

2284

2611

Коэффициенты уравнений найдем методом наименьший квадратов:

(решение системы найдено в программе MATLAB)

Таким образом, получена система структурных уравнений

Задача 4

Динамика номинальной среднемесячной заработной платы одного работника области характеризуется следующими данными:

Месяц

1

2

3

4

5

6

7

8

9

10

11

12

Тыс. руб.

3,2

3,1

3,5

3,5

3,7

4,0

4,1

4,0

4,1

4,2

4,3

5,4

Задание

1. Определите коэффициент автокорреляции первого порядка и дайте его интерпретацию.

2. Постройте линейное уравнение тренда. Дайте интерпретацию параметрам.

3. С помощью критерия Дарбина — Уотсона сделайте выводы относительно автокорреляции в остатках в рассматриваемом уравнении.

4. Дайте интервальный прогноз ожидаемого уровня номинальной заработной платы на январь следующего года.

Решение

1. Коэффициент автокорреляции первого порядка рассчитывается по следующей формуле:

где;

Для расчета коэффициента автокорреляции первого порядка составим расчетную таблицу:

Таблица 4.1 Расчетная таблица

t

yt

yt-1

1

3,2

-

-

-

-

-

-

2

3,1

3,2

-0,9

2,8

-2,5

7,9

0,8

3

3,5

3,1

-0,5

2,7

-1,3

7,3

0,2

4

3,5

3,5

-0,5

3,1

-1,5

9,7

0,2

5

3,7

3,5

-0,3

3,1

-0,9

9,7

0,1

6

4,0

3,7

0,0

3,3

0,0

11,0

0,0

7

4,1

4,0

0,1

3,6

0,4

13,0

0,0

8

4,0

4,1

0,0

3,7

0,0

13,8

0,0

9

4,1

4,0

0,1

3,6

0,4

13,0

0,0

10

4,2

4,1

0,2

3,7

0,8

13,8

0,0

11

4,3

4,2

0,3

3,8

1,2

14,5

0,1

12

5,4

4,3

1,4

3,9

5,5

15,3

2,0

Итого

47,1

41,7

0,0

37,3

2,1

129

3,4

= 3,991;

= 0,391.

Коэффициент автокорреляции первого порядка равен:

= = 0,1.

Это значение (0,1) свидетельствует о слабой зависимости текущих уровней ряда от непосредственно им предшествующих уровней, т. е. слабой зависимости между номинальной среднемесячной заработной платы текущего и непосредственно предшествующего месяца.

2. Линейное уравнение трендов имеет вид:

Параметры a и b этой модели определяются обычным МНК. Система нормальных уравнений следующая:

По исходным данным составит расчетную таблицу:

Таблица 4.2 Расчетная таблица

t

y

yt

t2

1

3,2

3,2

1

2

3,1

6,2

4

3

3,5

10,5

9

4

3,5

14

16

5

3,7

18,5

25

6

4

24

36

7

4,1

28,7

49

8

4

32

64

9

4,1

36,9

81

10

4,2

42

100

11

4,3

47,3

121

12

5,4

64,8

144

Итого

78

47,1

328,1

650

Средние

6,5

3,925

27,342

54,167

Система нормальных уравнений составит:

Используем следующие формулы для нахождения параметров:

= 0,153;

= 2,927.

Линейное уравнение трендов

= 2,927 + 0,153* t

Параметр b = 0,153 означает, что с увеличение месяца на 1 месяц номинальная среднемесячная заработная плата увеличивается в среднем на 0,153 тыс. руб.

3. Для оценки существенности автокорреляции остатков используют критерий Дарбина — Уотсона:

Коэффициент автокорреляции остатков первого порядка может определятся как:

Для каждого момента (периода) времени t = 1: n значение компонента определяется как

Составим расчетную таблицу

Таблица 4.3 Расчетная таблица

t

y

1

3,2

3,080

0,120

-

-

-

0,014

-

-

2

3,1

3,233

-0,133

0,120

-0,253

0,064

0,018

0,018

-0,016

3

3,5

3,386

0,114

-0,133

0,247

0,061

0,013

0,013

-0,015

4

3,5

3,539

-0,039

0,114

-0,153

0,023

0,002

0,002

-0,004

5

3,7

3,692

0,008

-0,039

0,047

0,002

0,000

0,000

0,000

6

4

3,845

0,155

0,008

0,147

0,022

0,024

0,024

0,001

7

4,1

3,998

0,102

0,155

-0,053

0,003

0,010

0,010

0,016

8

4

4,151

-0,151

0,102

-0,253

0,064

0,023

0,023

-0,015

9

4,1

4,304

-0,204

-0,151

-0,053

0,003

0,042

0,042

0,031

10

4,2

4,457

-0,257

-0,204

-0,053

0,003

0,066

0,066

0,052

11

4,3

4,610

-0,310

-0,257

-0,053

0,003

0,096

0,096

0,080

12

5,4

4,763

0,637

-0,310

0,947

0,897

0,406

0,406

-0,197

У

1,145

0,714

0,7

-0,067

Критерий Дарбина — Уотсона равен = 1,604.

Коэффициент автокорреляции равен = - 0,096.

Фактическое значение d сравниваем с табличными значениями при 5%-ном уровне значимости. При n = 12 месяцев и m = 1 (число факторов) нижнее значение d' равно 0,97, а верхнее — 1,33. Фактическое значение d=1,604 > d'=1,33, следовательно, автокорреляция остатков отсутствует.

Чтобы проверить значимость отрицательного коэффициента автокорреляции, сравним фактическое значение d с (4-dL) и (4-dU):

4-dL

4-dU

1,604

3,03

2,67

Из таблицы видно, что в обоих случаях фактическое значение меньше сравниваемых. Это означает отсутствие в остатках автокорреляции.

Так же принято считать, что если фактическое значение d близко к 2, то автокорреляции остатков нет. В нашем примере это совпадает.

4. В соответствии с интерпретацией параметров линейного тренда, каждый последующий уровень ряда есть сумма предыдущего уровня и среднего цепного абсолютного прироста. Тогда:

а) Точечный прогноз составит:

Точечный прогноз по уравнению тренда — это расчетное значение переменной, полученное путем подстановки в уравнение тренда значений

(n — длина динамического ряда, l — период упреждения).

= 2,927 + 0,153* (12 + 1) = 4,916 (тыс. руб.)

ожидаемый уровень номинальной заработной платы на январь следующего года.

б) Интервальный прогноз составит:

Доверительный интервал прогноза определяется с вероятностью 0,95, как:

;

где, tтабл=2,2281 — табличное значение t-критерия Стьюдента для уровня значимости б=0,05 и числа степеней свободы (n — 2 = 12 — 2 = 10); - стандартная ошибка точечного прогноза, которая рассчитывается по формуле:

Данные необходимые для расчета представим в таблице.

Таблица 4.4 Расчетная таблица

t

y

2

2

2

1

1

3,2

3,080

2

-4,5

20,25

0,120

0,014

-5,5

30,25

2

2

3,1

3,233

3

-3,5

12,25

-0,133

0,018

-4,5

20,25

3

3

3,5

3,386

4

-2,5

6,25

0,114

0,013

-3,5

12,25

4

4

3,5

3,539

5

-1,5

2,25

-0,039

0,002

-2,5

6,25

5

5

3,7

3,692

6

-0,5

0,25

0,008

0,000

-1,5

2,25

6

6

4

3,845

7

0,5

0,25

0,155

0,024

-0,5

0,25

7

7

4,1

3,998

8

1,5

2,25

0,102

0,010

0,5

0,25

8

8

4

4,151

9

2,5

6,25

-0,151

0,023

1,5

2,25

9

9

4,1

4,304

10

3,5

12,25

-0,204

0,042

2,5

6,25

10

10

4,2

4,457

11

4,5

20,25

-0,257

0,066

3,5

12,25

11

11

4,3

4,610

12

5,5

30,25

-0,310

0,096

4,5

20,25

12

12

5,4

4,763

13

6,5

42,25

0,637

0,406

5,5

30,25

У

78

47,1

47,058

0,042

0,714

143

Сред

6,5

= 0,714 — остаточная сумма квадратов.

= 0,267 — среднее квадратическое отклонение остаточной суммы квадратов

= 0,313

Таким образом, прогнозируемый уровень номинальной заработной платы на январь следующего года составит

= 4,916 ± 2,2281*0,313 = 4,916 ± 0,697 тыс. руб.

Выполненный прогноз уровня номинальной заработной платы на январь следующего года оказался надежным (р = 1 — = 0,95), и не точным, так как диапазон верхней и нижней границ доверительного интервала Dг составляет 1,33 раза

Dг = гmаx / гmin = 5,613 / 4,219 = 1,33.

Задача 5

Динамика численности незанятых граждан и объема платных услуг населению в регионе характеризуется следующими данными

Месяц

Число незанятых граждан тыс. чел., x1

Объем платных услуг населению млрд. руб., y1

Январь

44,0

6,5

Февраль

45,5

7,0

Март

47,9

7,0

Апрель

48,3

7,4

Май

49,1

7,5

Июнь

49,9

7,2

Июль

50,5

7,5

Август

51,9

7,9

Сентябрь

52,3

8,2

Октябрь

52,3

8,5

Ноябрь

53,5

8,9

Декабрь

54,7

9,2

В результате аналитического выравнивания получены следующие уравнения трендов и коэффициент детерминации (t=1ч12):

А) для объема платных услуг населению

Y1=6,3061+0,2196t, R2=0,9259

Б) для численности незанятых граждан

1=43,724+0,8937t, R2=0,989

Задание

1. Дайте интерпретацию параметров уровней трендов.

2. Определите коэффициент корреляции между временными рядами, используя:

А) непосредственно исходные уровни

Б)о тклонения от основной тенденции

3). Сделайте вывод о тесноте связи между временными рядами.

4). Постройте вывод о тесноте связи между временными рядами. Дайте интерпретацию параметров уравнения.

Решение

Наиболее простую экономическую интерпретацию имеют параметры линейного тренда. Параметры линейного тренда можно интерпретировать так:

а — начальный уровень временного ряда в момент времени t = 0;

b — средний за период абсолютный прирост уровней ряда.

Для исходной задачи начальный уровень ряда для выпуска товаров соответствует значению 6,3061 млрд руб., средний за период абсолютный прирост уровней ряда составляет 0,2196 млрд руб. Параметр b > 0, значит уровни ряда равномерно возрастают на 0,2196 млрд руб. каждый год.

Для числа незанятых граждан тыс, чел коэффициент, а — начальный уровень ряда соответствует значению 43,724 тыс. чел.; абсолютное ускорение увеличения среднесписочной численности работников соответствует 0,8937.

Рассчитаем коэффициент корреляции между временными рядами, используя непосредственно исходные уровни. Коэффициент корреляции характеризует тесноту линейной связи между изучаемыми признаками. Определяем его по формуле

rxy=

Расчет параметров коэффициента корреляции

X

Y

x·y

y

1.

1

2

3

4

5

6

7

1.

44

6,5

1936

286

42,25

15,96

78,9

2.

45,5

7

2070,25

318,5

49

16,2979

80,1

3.

46,8

7

2190,24

327,6

49

16,82 494

82,08

4.

47,9

7,4

2294,41

354,46

54,76

17,8 846

82,34

5.

48,8

7,5

2381,44

48,8

56,25

17,2644

82,98

6.

49,1

7,2

2410,81

353,52

51,84

17,25

83,62

7.

49,9

7,5

2490,01

374,25

56,25

17,3959

84,1

8.

50,5

7,9

2550,25

50,5

62,41

17,70 334

85,22

9.

51,9

8,2

2693,61

425,58

67,24

17,79 118

85,54

10

52,3

8,5

2735,29

444,55

72,25

17,79 118

85,85

11

53,5

8,9

2862,25

476,15

79,21

18,0547

86,3

12

54,7

9,2

2992,09

503,24

84,64

18,31 822

87,46

?

594,9

92,8

29 606,65

3963,15

725,1

207,7402

1011,49

ср. знач

49,575

7,733 333

2467,221

330,2625

60,425

17,31 169

83,7075

х = = = 3,08;

у = = =0,821.

rxy = = -20,7110 — связь слабая, прямая.

При измерении корреляции между двумя временными рядами следует учитывать возможное существование ложной корреляции, что связано с наличием во временных рядах тенденции, т. е. зависимости обоих рядов от общего фактора времени. Для того чтобы устранить ложную корреляцию, следует коррелировать не сами уровни временных рядов, а их последовательные (первые или вторые) разности или отклонения от трендов (если последние не содержат тенденции).

Таким образом между временными рядами существует прямая слабая взаимосвязь.

Линейная регрессия сводится к нахождению уравнения вида

= a + b*x

Классический подход к оцениванию параметров линейной регрессии основан на методе наименьших квадратов.

Для линейных и нелинейных уравнений, приводимых к линейным, решается следующая система относительно a и b.

,

Можно воспользоваться готовыми формулами, которые вытекают из этой системы

а =;

b = = = 0,008;

а = 0,286 — 0,701*0 = 7,334

Уравнение регрессии по отклонениям от трендов:

= 7,334+ 0,008*х

Список используемой литературы

1. Практикум по эконометрике: Учеб. пособие / И. И. Елисеева, С. В. Курышева, Н. М. Гордеенко и др.; Под ред. И. И. Елисеевой. — М.: Финансы и статистика, 2001. — 192 с.

2. Эконометрика: Учебник / Под ред. И. И. Елисеевой. — М.: Финансы и статистика, 2001. — 344 с.

3. Мхитарян В. С., Архипова М. Ю. Эконометрика Московский международный институт эконометрики, информатики, финансов и права. — М., 2004. — 69 с.

4. Эконометрия — УП — Суслов — Ибрагимов — Талышева — Цыплаков — 2005 — 744 с.

Приложение № 1

Таблица 1.2 Расчетная таблица

y

x

()2

()2

()2

()2

1

35,8

9,4

5,240

27,458

41,559

10,999

120,978

-5,759

33,166

3,930

15,445

2

22,5

2,5

-8,060

64,964

22,248

-8,312

69,089

0,252

0,064

-2,970

8,821

3

28,3

3,9

-2,260

5,108

26,166

-4,394

19,307

2,134

4,554

-1,570

2,465

4

26,0

4,3

-4,560

20,794

27,285

-3,275

10,726

-1,285

1,651

-1,170

1,369

5

18,4

2,1

-12,160

147,866

21,128

-9,432

88,963

-2,728

7,442

-3,370

11,357

6

31,8

6,0

1,240

1,538

32,043

1,483

2,199

-0,243

0,059

0,530

0,281

7

30,5

6,3

-0,060

0,004

32,883

2,323

5,396

-2,383

5,679

0,830

0,689

8

29,5

5,2

-1,060

1,124

29,804

-0,756

0,572

-0,304

0,092

-0,270

0,073

9

41,5

6,8

10,940

119,684

34,282

3,722

13,853

7,218

52,100

1,330

1,769

10

41,3

8,2

10,740

115,348

38,201

7,641

58,385

3,099

9,604

2,730

7,453

У

305,6

54,7

0,000

503,884

305,600

-0,001

389,468

0

114,411

0

49,722

Сред. знач.

30,56

5,47

-

-

-

-

-

-

-

-

-

Приложение 2.

Таблица значений F-критерия Фишера (двусторонний)

d.f. 2= n — k — 1) степени свободы остаточной дисперсии

степени свободы факторной дисперсии — d.f. 1 = k

k=1

k=2

k=3

k=4

Уровень значимости, б

0,10

0,05

0,01

0,10

0,05

0,01

0,10

0,05

0,01

0,10

0,05

0,01

1

39,9

161,5

4052

49,5

199,5

5000

53,6

215,72

5403

55,8

224,57

5625

2

8,5

18,5

98,5

9,0

19,0

99,00

9,2

19,16

99,2

19,2

19,25

99,30

3

5,54

10,13

34,1

5,46

9,6

30,82

5,39

9,28

29,5

5,34

9,12

28,71

4

4,54

7,71

21,2

4,32

6,9

18,00

4,19

6,59

16,7

4,11

6,39

15,98

5

4,06

6,61

16,3

3,78

5,79

13,27

3,62

5,41

12,1

3,52

5,19

11,39

6

3,78

5,99

13,8

3,46

5,14

10,92

3,29

4,76

9,8

3,18

4,53

9,15

7

3,59

5,59

12,3

3,26

4,74

9,55

3,07

4,35

8,5

2,96

4,12

7,85

8

3,46

5,32

11,3

3,11

4,46

8,65

2,92

4,07

7,6

2,81

3,84

7,01

9

3,36

5,12

10,6

3,01

4,26

8,02

2,81

3,86

7,0

2,69

3,63

6,42

10

3,29

4,96

10,0

2,92

4,10

7,56

2,73

3,71

6,6

2,61

3,48

5,99

11

3,23

4,84

9,7

2,86

3,98

7,20

2,66

3,59

6,2

2,54

3,36

5,67

12

3,18

4,75

9,3

2,81

3,88

6,93

2,61

3,49

6,0

2,48

3,26

5,41

13

3,14

4,67

9,1

2,76

3,80

6,70

2,56

3,41

5,7

2,43

3,18

5,20

14

3,10

4,60

8,9

2,73

3,74

6,51

2,52

3,34

5,6

2,39

3,11

5,03

15

3,07

4,54

8,7

2,70

3,68

6,36

2,49

3,29

5,4

2,36

3,06

4,89

16

3,05

4,49

8,5

2,67

3,63

6,23

2,46

3,24

5,3

2,33

3,01

4,77

17

3,03

4,45

8,4

2,64

3,59

6,11

2,44

3,20

5,2

2,31

2,96

4,67

18

3,01

4,41

8,3

2,62

3,55

6,01

2,42

3,16

5,1

2,29

2,93

4,58

19

2,99

4,38

8,2

2,61

3,52

5,93

2,40

3,13

5,0

2,27

2,90

4,50

20

2,97

4,35

7,9

2,59

3,49

5,72

2,38

3,10

4,9

2,25

2,87

4,31

21

4,32

8,0

3,47

5,78

3,07

4,9

2,84

4,37

22

2,95

4,30

7,9

2,56

3,44

5,72

2,35

3,05

4,8

2,22

2,82

4,31

23

4,28

7,9

3,42

5,66

3,03

4,8

2,80

4,26

24

2,93

4,26

7,8

2,54

3,40

5,61

2,33

3,01

4,7

2,19

2,78

4,22

25

4,24

7,8

3,38

5,57

2,99

4,7

2,76

4,18

26

2,91

4,22

7,7

25,2

3,37

5,53

2,31

2,98

4,6

2,17

2,73

4,14

30

2,88

4,17

7,56

2,49

3,32

5,39

2,28

2,92

4,5

2,14

2,69

4,02

40

2,84

4,08

7,31

2,44

3,23

5,18

2,23

2,84

4,3

2,09

2,61

3,83

60

2,79

4,00

7,08

2,39

3,15

4,98

2,18

2,76

4,1

2,04

2,53

3,65

80

2,77

8,96

6,96

2,37

3,11

4,88

2,16

2,72

4,0

2,02

2,48

3,56

100

2,76

3,94

6,90

2,36

3,09

4,82

2,14

2,70

3,98

2,00

2,46

3,51

?

2,71

3,84

6,63

2,30

3,00

4,61

2,08

2,60

3,78

1,94

2,37

3,32

Шкала атрибутивных оценок тесноты корреляционной зависимости

Значения показателей корреляции ()

Атрибутивная оценка тесноты выявленной зависимости

Значения показателей детерминации, % ()

До 0,3

Слабая

До 10

0,3 — 0,5

Умеренная

10 — 25

0,5 — 0,7

Заметная

25 — 50

0,7 — 0,9

Тесная

50 — 80

0,9 и более

Весьма тесная

80 и более

Приложение 4

Случайная ошибка коэффициента асимметрии для выборок разного объема

Объём выборки,

4

1,014

0,926

5

0,913

0,866

6

0,845

0,816

7

0,794

0,775

8

0,752

0,739

9

0,717

0,707

10

0,687

0,679

11

0,661

0,655

12

0,637

0,632

13

0,616

0,612

14

0,597

0,594

15

0,580

0,577

16

0,564

0,562

17

0,550

0,548

18

0,536

0,535

19

0,524

0,522

20

0,512

0,511

21

0,501

0,500

22

0,491

0,490

23

0,481

0,480

24

0,472

0,471

25

0,464

0,463

ПоказатьСвернуть
Заполнить форму текущей работой