Область применения полупроводников

Тип работы:
Реферат
Предмет:
Физика


Узнать стоимость

Детальная информация о работе

Выдержка из работы

Министерство образования и науки Российской Федерации

Федеральное государственное автономное образовательное учреждение высшего профессионального образования

Дальневосточный федеральный университет

Школа Экономики и Менеджмента

Кафедра Маркетинга

Реферат

по Концепциям Современного Естествознания

на тему: Полупроводники

г. Владивосток

2011

Введение

Полупроводниками называют вещества, обладающие электронной проводимостью, занимающей промежуточное положение между металлами и изоляторами. От металлов они отличаются тем, что носители электрического тока в них создаются тепловым движением, светом, потоком электронов и т. п. источником энергии. Без теплового движения (вблизи абсолютного нуля) полупроводники являются изоляторами. С повышением температуры электропроводность полупроводников возрастает и при расплавлении носит металлический характер. Полупроводники обязаны своим названием тому обстоятельству, что по величине электропроводности они занимают промежуточное положение между металлами и изоляторами. Однако характерным для них является не величина проводимости, а то, что их проводимость растет с повышением температуры (у металлов она уменьшается). Полупроводниками являются вещества, у которых валентная зона полностью заполнена электронами, а ширина запрещенной зоны невелика (у собственных полупроводников не более 1 эв). Полупроводники — широкий класс веществ, характеризующийся значениями удельной электропроводности, лежащей в диапазоне между удельной электропроводностью металлов и хороших диэлектриков, то есть эти вещества не могут быть отнесены как к диэлектрикам (так как не являются хорошими изоляторами), так и к металлам (не являются хорошими проводниками электрического тока). К полупроводникам, например, относят такие вещества как германий, кремний, селен, теллур, а также некоторые оксиды, сульфиды и сплавы металлов.

1. История открытия

После изобретения в 1904 г. Дж. Флемингом двухэлектродной лампы-диода и Л. Де Форестом в 1906 г. трехэлектродной лампы-триода в радиотехнике произошла революция. Эти изобретения позволили усиливать не только телеграфные сигналы, но и перейти к радиотелефонии -- передаче по радио человеческого голоса. Помимо этого, они позволили усиливать высокочастотные колебания. Началось бурное развитие радиотехники. Но одновременно с ним выявились недостатки применения вакуумных электронных приборов. Электронная лампа имеет небольшой срок службы. Приняв средний срок службы лампы за 500 часов, при количестве ламп в одном устройстве 2000 штук в среднем каждые 15 минут следовало бы ожидать отказа по крайней мере 1 лампы. Для обнаружения неисправности следовало проверить как минимум несколько сотен ламп. Недостатки электронных ламп особенно остро выявились в конце 40-х--начале 50-х гг. прошлого века с появлением первых электронно-вычислительных машин. Их надежность и размеры определялись именно размерами, энергетической емкостью и надежностью используемых в них вакуумных ламп. Выход из кризиса открыли полупроводниковые приборы, которые, несмотря на свои недостатки, имели явные преимущества по сравнению с лампами: небольшие размеры, мгновенная готовность к работе ввиду отсутствия нити накала, отсутствие хрупких стеклянных баллонов. Эти необходимые в то время свойства побудили к поиску способов устранения недостатков полупроводников. Исследования проводимости различных материалов начались непосредственно в XIX в. сразу после открытия гальванического тока. В 1929 г. советский ученый А. Ф. Иоффе высказал мысль о возможности получения с помощью термоэлектрического генератора из полупроводников электроэнергии с КПД в 2,5--4%. Уже в 1940--1941 гг. в Советском Союзе были получены полупроводниковые термоэлементы с КПД в 3%. Во второй половине 20-х гг. XX в. были созданы твердые выпрямители переменного тока, представлявшие собой окисленную медную пластинку. Позже их стали делать из селена. Серьезным недостатком первых твердых выпрямителей были большие тепловые потери. Использование новых веществ, в частности германия, позволило резко их снизить. Полупроводниковые выпрямители удобны в эксплуатации, поскольку они миниатюрны и прочны, не требуют тока накала, потребляют немного энергии и долговечны. То, что вещества по-разному проводят электричество, людям было известно еще 190 лет назад. В 1821 году английский химик Хэмфри Дэви установил, что электропроводность металлов уменьшается с ростом температуры.

Проводя дальнейшие эксперименты, его ученик Майкл Фарадей в 1833 году обнаружил, что у сернистого серебра электропроводность с ростом температуры не падает, а возрастает. Затем он открыл еще несколько веществ с необычной зависимостью проводимости от температуры. В то время, однако, это не заинтересовало научный мир, пока в 1873 году не обнаружили, что сопротивление селена (Se) меняется при освещении. Селеновые фотосопротивления сразу нашли применение в разных оптических приборах. И первым полупроводниковым прибором стал фоторезистор, представляющий собой обычный селеновый столбик, электрическое сопротивление которого в темноте ниже, чем на свету. 1 июля 1948 г. в газете «Нью-Йорк тайм» появилась заметка о демонстрации фирмой «Белл телефон лабораториз» прибора под названием «транзистор». Он представлял собой полупроводниковый триод, несколько напоминавший по конструкции кристаллические детекторы 20-х годов. Транзистор создали физики Дж. Бардин и У. Браттейн. Его устройство было простым: на поверхности пластинки из германия, с одним общим электродом-основанием, были помещены два близко расположенных металлических стержня, один из которых был включен в пропускном, а другой -- в запорном направлении. Бурное развитие полупроводниковой электроники началось с изобретением сначала точечного, (1948г.), а затем и плоскостного (1951г) транзистора — основы любой современной микросхемы.

2. Основные теоретические сведения и положения

Граница между полупроводниками и диэлектриками условна, так как диэлектрики при высоких температурах могут вести себя как полупроводники, а чистые полупроводники при низких температурах ведут себя как диэлектрики. В металлах концентрация электронов практически не зависит от температуры, а в полупроводниках носители заряда возникают лишь при повышении температуры или при поглощении энергии от другого источника. Типичными полупроводниками являются углерод I ©, германий (Gе) и кремний (Si). Германий — это хрупкий серовато-белый элемент, открытый в 1886 г. I Источником порошкообразной двуокиси германия, из которой получают твердый чистый германий, являются золы некоторых сортов угля.

Кремний является наиболее широко используемым полупроводниковым материалом;

Рассмотрим подробнее образование электронов проводимости в полупроводниках на примере кремния. Атом кремния имеет порядковый номер Z = 14 в периодической системе Менделеева. Поэтому в состав его атома входят 14 электронов. Однако только четыре из них находятся на незаполненной внешней оболочке и являются слабо связанными. Эти электроны называются валентными и обусловливают четыре валентности кремния.

Атомы кремния способны объединять свои валентные электроны с другими атомами кремния с помощью, так называемой ковалентной связи. При ковалентной связи валентные электроны совместно используются различными атомами, что приводит к образованию кристалла.

При повышении температуры кристалла тепловые колебания решетки приводят к разрыву некоторых валентных связей. В результате этого часть электронов, ранее участвовавших в образовании валентных связей, отщепляется и становится электронами проводимости. При наличии электрического поля они перемещаются против поля и образуют электрический ток. В отличие от проводников, носителями тока в полупроводниках могут быть не только электроны, но и «дырки» -- места на орбите положительно заряженных частиц -- ионов, образовавшихся после потери электрона. Положительный заряд этих частиц стремится захватить недостающий электрон у одного из соседних атомов. Таким образом, «дырка» путешествует по полупроводнику, переходя от атома к атому. Вместе с ней путешествует и положительный заряд, равный по значению отрицательному заряду электрона. Один и тот же полупроводник может обладать либо электронной, либо дырочной проводимостью. Все зависит от химического состава введенных в него примесей. Так, небольшая добавка в германий примесей, богатых электронами, например мышьяка или сурьмы, позволяет получить полупроводник с электронной проводимостью, так называемый полупроводник n-типа (от лат. negativus -- отрицательный). Добавка же алюминия, галлия или индия приводит к избытку «дырок» и образованию дырочной проводимости. Такие проводники называются проводниками р-типа (от лат. positivus -- положительный). Все полупроводниковые материалы имеют отрицательный температурный коэффициент сопротивления. Чистые полупроводники являются объектом главным образом теоретического интереса. Основные исследования полупроводников связаны с влиянием добавления примесей в чистые материалы. Без этих примесей не было бы большинства полупроводниковых приборов.

Чистые полупроводниковые материалы, такие как германий и кремний, содержат при комнатной температуре небольшое количество электронно-дырочных пар и поэтому могут проводить очень маленький ток. Для увеличения проводимости чистых материалов используется легирование. Легирование — это добавление примесей в полупроводниковые материалы. Используются два типа примесей. Примеси первого типа — пятивалентные -состоят из атомов с пятью валентными электронами, например, мышьяк и сурьми. Примеси второго типа трехвалентные — состоят из атомов с тремя валентными электронами, например, индий и галлий. Когда чистый полупроводниковый материал легируется пятивалентным материалом, таким как мышьяка (Аs), то некоторые атомы полупроводника замещаются атомами мышьяка.

Атом мышьяка вводит четыре своих валентных электрона в ковалентные связи с соседними атомами. Его пятый электрон слабо связан с ядром и легко может стать свободным. Атом мышьяка называется донорским, поскольку он отдает свой лишний электрон. В легированном полупроводниковом материале находится достаточное количество донорских атомов, а следовательно, и свободных электронов для поддержания тока. При комнатной температуре количество дополнительных свободных электронов превышает количество электронно-дырочных пар. Это означает, что в материале больше электронов, чем дырок. Поэтому электроны называют основными носителями. Дырки называют неосновными носителями. Поскольку основные носители имеют отрицательный заряд, такой материал называется полупроводником n-типа.

Когда полупроводниковый материал легирован трехвалентными атомами, например атомами индия, то атомы разместят свои три валентных электрона среди трёх соседних атомов.

Это создаст в ковалентной связи дырку. Наличие дополнительных дырок позволит электронам легко дрейфовать от одной ковалентной связи к другой. Так как дырки легко принимают электроны, атомы, которые вносят в полупроводник дополнительные дырки, называются акцепторными. При обычных условиях количество дырок в таком материале значительно превышает количество электронов. Следовательно, дырки являются основными носителями, а электроны — неосновными. Поскольку основные носители имеют положительный заряд, материал называется полупроводником р-типа. Полупроводниковые материалы n и р-типов имеют значительно более высокую проводимость, чем р чистые полупроводники. Эта проводимость может быть увеличена или уменьшена путем изменения количества примесей. Чем сильнее полупроводниковый материал легирован, тем меньше его электрическое сопротивление. Контакт двух полупроводников с различными типами проводимости называется р-л-переходом и обладает очень важным свойством — его сопротивление зависит от направления тока. Отметим, что такой контакт нельзя получить, прижимая друг к другу два полупроводника, р-л-переход создается в одной пластине полупроводника путем образования в ней областей с различными типами проводимости.

Электросопротивление различных полупроводников при комнатной температуре составляет 10−6… 109 ОмЧм. В отличие от металлов полупроводники, как правило, характеризуются отрицательным температурным коэффициентом удельного электросопротивления.

Электрофизические параметры полупроводников очень сильно зависят от содержания примесей, даже в малых количествах присутствующих в кристалле. Поэтому концентрация примесей в исходных промышленных полупроводниковых материалах, применяемых для изготовления полупроводниковых приборов, как правило, не превышает 10−3%, что соответствует содержанию примесных атомов в единице объема полупроводника около 1024 м-3. Для большинства практических применений полупроводниковые материалы должны обладать высоким структурным совершенством. В связи с этим их получают и используют в виде монокристаллов.

Технические трудности, связанные с синтезом полупроводниковых материалов высокой степени чистоты и структурного совершенства, явились одной из главных причин того, что длительное время, более 100 лет после открытия (1833 г., М. Фарадей), потенциальные возможности полупроводников не использовались в технике. Лишь значительный прогресс в технологии получения cверхчистых веществ и выращивания полупроводниковых монокристаллов позволил устранить принципиальные барьеры на пути целенаправленного изучения специфических свойств полупроводников и их широкого практического применения.

Одним из основных промышленных способов выращивания монокристаллов полупроводников стал метод, разработанный Чохральским (рис. 4). В этом методе врашающийся кристаллоноситель 1 с затравочным кристаллом 6 медленно поднимается, вытягивая за собой расплав 3, кристаллизующийся в кристалл 7. В зависимости от варианта метода Чохральского полученные монокристаллы имеют диаметр от 20 до 150 мм и массу 0,07…1,8 кг.

Классификация полупроводниковых материалов. Полупроводниковые материалы по химическому составу и кристаллической структуре подразделяют на неорганические и органические полупроводники. Широкое практическое применение получили неорганические полупроводниковые материалы, к которым относятся кристаллические и аморфные (стеклообразные) полупроводники.

К классу кристаллических полупроводников относятся элементарные полупроводники, а также химические соединения и твердые растворы на основе химических соединений.

Элементарными (или простыми) полупроводниками являются двенадцать элементов периодической системы Д. И. Менделеева:

элементы 3 группы — В (бор);

элементы 4 группы — С (углерод), Si (кремний), Ge (германий), Sn (олово);

элементы 5 группы — Р (фосфор), As (мышьяк), Sb (сурьма);

элементы 6 группы — S (сера), Se (селен), Te (теллур);

элементы 7 группы — J (йод).

В современной микроэлектронике наиболее широкое практическое применение получили Si и Ge, используемые для изготовления транзисторов и других полупроводниковых приборов.

Двойные и тройные полупроводниковые химические соединения. Структурная формула двойных соединений записывается в виде АmВn, где индексы m и n представляют номер группы таблицы Менделеева. Полупроводниковые свойства проявляются у тринадцати классов бинарных соединений:

A1B5 (KSb, K3Sb, CsSb, Cs3Sb);

A1B6 (CuO, Cu2O, CuS, Cu2S, Cu2Se, Cu2Te, AgTe);

A1B7 (CuCl, CuBr, CuJ, AgCl, AgBr, AgJ);

A2B4 (Mg2Si, Mg2Ge, Mg2Sn, Ca2Si, Ca2Sn, Ca2Pb);

A2B5 (ZnSb, CdSb, Mg3Sb2, Zn3As2, Cd3P2, Cd3As2);

A2B6 (ZnO, ZnS, ZnSe, ZnTe, CdO, CdS, CdSe, CdTe, HgS, HgSe, HgTe);

A2B7 (ZnCl2, ZnJ2, CdCl2, CdJ2);

A3B5 (AlP, AlSb, AlAs, GaP, GaSb, GaAs, InP, InSb, InAs);

A5B6 (GaS, GaSe, InS, InSe, In2O3, In2S3, In2Se3, In2Te3, Te2S);

A4B4 (SiC, SiGe);

A4B6 (GeO2, PbS, PbSe, PbTe, TiO2, GeTi, SnTe, GeS);

A6B6 (MoO3, WO3);

A8B6 (Fe2O3, NiO).

Широкое практическое применение получили полупроводниковые химические соединения классов A3B5 (GaAs, GaP, InP и др.), A2B6 (CdS, CdSe, ZnO и др.), A4B4 (SiC), A4B6 (PbS, PbSe, TiO2). Например, для изготовления оптоэлектронных приборов применяют твердые растворы замещения на основе бинарных полупроводниковых соединений A3B5, такие как AlxGa1-xAs, GaxIn1-xP, GaxIn1-xSb и другие, где x и 1-x представляют относительное содержание компонентов 3 группы.

К тройным химическим полупроводниковым соединениям относятся пять классов полупроводников:

A1B3B26 (CuAlS2, CuInS2, CuInSe2, CuInTe2, AgInSe2, AgInTe2, CuGaSe2, CuGaTe2);

A1B5B26 (CuSbS2, CuAsS2, AgSbSe2, AgSbTe2, AgBiS2, AgBiSe2, AgBiTe2);

A1B8B26 (CuFeSe2, AgFeSe2, AgFeTe2);

A2B4B25 (ZnSiAs2, ZnGeAs2);

A4B5B26 (PbBiSe2).

полупроводник электронный радиотехника проводимость

Аморфными полупроводниками являются соединения класса A5B6 (наиболее известны As2S3 и As2Se3).

3. Распространенность полупроводников в природе и человеческой практике

К числу полупроводников относятся многие химические элементы (германий, кремний, селен, теллур, мышьяк и др.), огромное количество сплавов и химических соединений. Почти все неорганические вещества окружающего нас мира — полупроводники. Самым распространенным в природе полупроводником является кремний, составляющий около 30% земной коры. Кремний — полупроводник, находящий большое применение. Электрические свойства Кремния очень сильно зависят от примесей. Специально легированный Кремний широко применяется как материал для изготовления полупроводниковых приборов (транзисторы, термисторы, силовые выпрямители тока, тиристоры; солнечные фотоэлементы, используемые в космических кораблях, и т. д.). Поскольку Кремний прозрачен для лучей с длиной волны от 1 до 9 мкм, его применяют в инфракрасной оптике.

Кремний имеет разнообразные и расширяющиеся области применения. В металлургии Кремний используется для удаления растворенного в расплавленных металлах кислорода (раскисления). Кремний является составной частью большого числа сплавов железа и цветных металлов. Обычно Кремний придает сплавам повышенную устойчивость к коррозии, улучшает их литейные свойства и повышает механическую прочность; однако при большем его содержании Кремний может вызвать хрупкость. Наибольшее значение имеют железные, медные и алюминиевые сплавы, содержащие Кремний. Все большее количество Кремния идет на синтез кремнийорганических соединений и силицидов. Кремнезем и многие силикаты (глины, полевые шпаты, слюды, тальки и т. д.) перерабатываются стекольной, цементной, керамической, электротехнической и другими отраслями промышленности.

Идеально чистые полупроводники в природе не встречаются, а изготовить их искусственно необычайно трудно. Малейшие следы примесей коренным образом меняют свойства полупроводников.

По химической природе современные полупроводниковые материалы можно разделить на следующие четыре главные группы:

1. Кристаллические полупроводниковые материалы, построенные из атомов или молекул одного элемента. Такими материалами являются широко используемые в данное время германий, кремний, селен, бор, карбид кремния и др.

2. Окисные кристаллические полупроводниковые материалы, т. е. материалы из окислов металлов. Главные из них: закись меди, окись цинка, окись кадмия, двуокись титана, окись никеля и др. В эту же группу входят материалы, изготовляемые на основе титаната бария, стронция, цинка, и другие неорганические соединения с различными малыми добавками.

3. Кристаллические полупроводниковые материалы на основе соединений атомов третьей и пятой групп системы элементов Менделеева. Примерами таких материалов являются антимониды индия, галлия и алюминия, т. е. соединения сурьмы с индием, галлием и алюминием. Они получили наименование интерметаллических соединений.

4. Кристаллические полупроводниковые материалы на основе соединений серы, селена и теллура с одной стороны и меди, кадмия и свинца с другой. Такие соединения называются соответственно: сульфидами, селенидами и теллуридами.

Рассмотрим широко применяемые полупроводниковые материалы.

Германий — элемент четвертой группы периодической системы элементов Менделеева. Германий имеет ярко-серебристый цвет. Температура плавления германия 937,2° С. В природе он встречается часто, но в весьма малых количествах. Присутствие германия обнаружено в цинковых рудах и в золах разных углей. Основным источником получения германия является зола углей и отходы металлургических заводов.

Полученный в результате ряда химических операций слиток германия еще не представляет собой вещества, пригодного для изготовления из него полупроводниковых приборов. Он содержит нерастворимые примеси, не является еще монокристаллом и в него не введена легирующая примесь, обусловливающая необходимый вид электропроводности.

Германий обладает большой твердостью, но чрезвычайно хрупок и раскалывается на мелкие куски при ударах. Однако при помощи алмазной пилы или других устройств его можно распилить на тонкие пластинки. Отечественной промышленностью изготовляется легированный германий с электронной электропроводностью различных марок с удельным сопротивлением от 0,003 до 45 ом х см и германий легированный с дырочной электропроводностью с удельным сопротивлением от 0,4 до 5,5 ом х см и выше. Удельное же сопротивление чистого германия при комнатной температуре с = 60 ом х см.

Германий как полупроводниковый материал широко используется не только для диодов и триодов, из него изготовляются мощные выпрямители на большие токи, различные датчики, применяемые для измерения напряженности магнитного поля, термометры сопротивления для низких температур и др.

4. Общенаучное значение полупроводников

Важнейшая область применения полупроводниковых материалов -- микроэлектроника. Полупроводниковые материалы составляют основу современных больших и сверхбольших интегральных схем, которые делают главным образом на основе Кремния. Дальнейший прогресс в повышении быстродействия и в снижении потребляемой мощности связан с созданием интегральных схем на основе GaAs, InP и их твёрдых растворов с др. соединениями типа АIIIВV. В больших масштабах используют полупроводниковые материалы для изготовления «силовых» полупроводниковых приборов (вентили, тиристоры, мощные транзисторы). Здесь также основным материалом является Кремний, а дальнейшее продвижение в область более высоких рабочих температур связано с применением GaAs, SiC и др. широкозонных полупроводниковых материалов. С каждым годом расширяется применение полупроводниковых материалов в солнечной энергетике. Основными полупроводниковыми материалами для изготовления солнечных батарей являются Si, GaAs, гетероструктуры GaxAl1-xAs/GaAs, Cu2S/CdS, б-Si: H, гетероструктуры б-Si: H/б-SixC1-x:H. С применением в солнечных батареях некристаллических гидрированных полупроводниковых материалов связаны перспективы резкого снижения стоимости солнечных батарей. Полупроводниковые материалы используют для создания полупроводниковых лазеров и светодиодов. Лазеры делают на основе ряда прямозонных соединений типа AIIIBV, AIIBIV, AIVBVI и др. Важнейшими материалами для изготовления лазеров являются гетероструктуры: GaxAl1-xAs/GaAs, GaxIn1-xAsyP1-y/InP, GaxIn1-xAs/InP, GaxIn1-xAsyP1-y/GaxAs1-xPx, GaN/AlxGa1-xN. Для изготовления светодиодов широко используют: GaAs, GaP, GaAs1-xPx, GaxIn1-xAs, GaxAl1-xAs, GaN и др. Полупроводниковые материалы составляют основу современных приемников оптического излучения (фотоприемников) для широкого спектрального диапазона. Их изготовляют на основе Ge, Si, GaAs, GaP, InSb, InAs, GaxAl1-xAs, GaxIn1-xAs, GaxIn1-xAsyP1-y, CdxHg1-xТе, PbxSn1-xTe и ряда др. полупроводниковых материалов. Полупроводниковые лазеры и фотоприемники -- важнейшие составляющие элементной базы волоконно-оптической линий связи. Полупроводниковые материалы используются для создания различных СВЧ приборов (биполярных и полевых транзисторов, транзисторов на «горячих» электронах, лавинопролетных диодов и др.). Другие важные области применения полупроводниковых материалов: детекторы ядерных излучений (используют особо чистые Ge, Si, GaAs, CdTe и др.), изготовление термохолодильников (теллуриды и селениды висмута и сурьмы), тензодатчиков, высокочувствительных термометров, датчиков магнитных полей и др.

Развитие современной полупроводниковой электроники и переход к наноэлектронике связаны с использованием полупроводниковых наноматериалов и нанотехнологий. Ожидается, что их применение в наноэлектронике приведет к созданию наноструктурных микропроцессоров, увеличению пропускной способности каналов связи, появлению нового поколения роботизированных систем, новые возможности представятся при объединении устройств наноэлектроники с наноструктурными сенсорами и т. д. Развитие наноэлектроники предусматривает использование в достижениях физики квантоворазмерных систем и включает применение нанотехнологий, которые обладают атомной точностью при получении полупроводниковых наноструктур с необходимым химическим составом и конфигурацией и включают методы комплексной диагностики наноструктур, в том числе контроль в процессе изготовления и управление на этой основе технологическими процессами.

Вывод

Область применения полупроводников не ограничивалась радиотехникой. Еще в 1932 г. А. Ф. Иоффе создал из закиси меди, а затем из селена фотоэлементы, вырабатывавшие при их освещении электрический ток без помощи внешних источников энергии. Однако их КПД при использовании солнечной энергии не превышал 0,05--0,1%. Но уже перед Великой Отечественной войной в СССР были созданы фотоэлементы из сернистого таллия и сернистого серебра с КПД до 1%. В 1954 г. был создан кремниевый фотоэлемент. В этом же году впервые была построена солнечная батарея, состоявшая из большого числа кремниевых фотоэлементов. В начале 1955 г. были созданы фотоэлементы с КПД до 6%. Современные фотоэлементы имеют КПД до 20% и выше. Располагая полупроводниковый диод рядом с радиоактивным материалом, получают атомную батарею, которая может вырабатывать электрическую энергию на протяжении многих лет. На основе полупроводников были созданы фотодиоды. В сочетании с электрическими счетчиками они ведут учет движущихся объектов -- от производимых деталей до пассажиров в метро. Приборы, созданные с применением фотодиодов, могут определять бракованные изделия на конвейере и выключать оборудование, если в его опасную зону попадают руки рабочих. Создание приборов на основе полупроводников произвело в середине XX в. техническую революцию. Дальнейшее их развитие привело к созданию интегральных микросхем, появлению новых поколений электронно-вычислительных машин и персональных компьютеров. Сейчас ни одна область науки и техники не обходится без их применения.

Список Интернет-ресурсов

1) http: //myrt. ru/history/print:page, 1,981-poluprovodniki. html

2) http: //gete. ru/post_1 172 774 080. html

3) http: //www. alhimik. ru/read/stones15. html

4) http: //www. vsya-elektrotehnika. ru/glava11/g17. html

ПоказатьСвернуть
Заполнить форму текущей работой