Расчет элементов и узлов аппаратуры связи

Тип работы:
Курсовая
Предмет:
Коммуникации, связь, цифровые приборы и радиоэлектроника


Узнать стоимость

Детальная информация о работе

Выдержка из работы

Курсовая работа

«Расчет элементов и узлов аппаратуры связи»

Оглавление

1. Введение

2. Техническое задание на устройство

3. Расчет автогенератора

4. Расчет спектра сигнала на выходе нелинейного преобразователя

5. Расчет развязывающего устройства

6. Расчет электрических фильтров

7. Расчет выходного усилителя

8. Общая принципиальная схема

9. Спецификация

Заключение

Литература

колебание устройство сигнал фильтр

1. Введение

Цель работы: в процессе данной работы необходимо спроектировать широко распространенное в аппаратуре связи устройство, вырабатывающее так называемую «сетку частот», то есть несколько гармонических колебаний. Подобное устройство содержит автогенератор, вырабатывающий исходное (задающее) колебание; нелинейный преобразователь, искажающий форму сигнала; набор активных фильтров, выделяющих требуемые гармоники, и масштабирующие усилители предназначенные для согласования входных и выходных сопротивлений устройств, а так же для поддержания необходимого уровня формируемого сигнала.

В качестве задающего автогенератора в работе используются схемы на биполярных транзисторах с пассивной лестничной RC-цепью обратной связи. При расчете автогенератора необходимо рассчитать: значения всех элементов схемы, амплитуду стационарного колебания на выходе генератора.

Нелинейный преобразователь строится на основе биполярных, полевых транзисторов или полупроводниковых диодах. Анализ схемы нелинейного преобразователя включает в себя аппроксимацию ВАХ нелинейного элемента и расчет спектрального состава выходного тока и напряжения.

В качестве активных фильтров используются активные полосовые RC-фильтры на основе операционных усилителях с полиномиальной аппроксимацией частотной характеристики полиномами Чебышева. Развязывающие (усилительные) устройства представляют собой масштабирующие усилители на интегральных микросхемах.

2. Техническое задание на устройство

Технические требования к устройству

Заданные параметры

Обозначения

Требования к автогенератору

Тип автогенератора

Схема 1

Тип транзистора

КТ301

Частота генерации

fГ=100 кГц

Напряжение питания

Uпит авт=12 В

Сопротивление коллекторной цепи

Rк=2 кОм

Требования к нелинейному элементу

Тип нелинейного преобразователя

Схема 1

Тип нелинейного элемента

КТ203А

Напряжение питания

12 В

Напряжение смещения

U0=-1 В

Напряжение на входе

Um=1,8 В

Требования к электрическим фильтрам

Тип операционного усилителя

К140УД17

Напряжение питания

Uпит Ф=12 В

Набор выделяемых частот

1 гармоника

Выходное напряжение

Um вых=4 В

Ослабление полезных гармоник (неравномерность ослабления в полосе пропускания)

ДА=0,5 дБ

Степень подавления мешающих гармоник (ослабления в полосе пропускания)

Аmin=18 дБ

Требования к развязывающим и усилительным устройствам

Напряжение питания

Uпит ус=12 В

Тип активного элемента

К140УД17

3. Расчет автогенератора

Рассчитаем RC-автогенератор на биполярных транзисторах КТ301, схема 1.

Частота генерации fГ=100 кГц

Напряжение питания Uпит авт=12 В

Сопротивление нагрузки в коллекторной цепи Rк=2 кОм

Схема 1

В стационарном режиме работы автогенератора на частоте генерации должны выполняться условия баланса амплитуд и баланса фаз:

где — модули передаточных функций;

— аргументы этих передаточных функций.

Для данной схемы

Отсюда видно, что, следовательно, для выполнения условия баланса фаз необходимо, чтобы цепь обратной связи вносила сдвиг фаз, равный.

Получаем выражение для частоты генерации

и коэффициент передачи цепи обратной связи на частоте генерации

Входное сопротивление Rн составного транзистора

где — коэффициент усиления транзистора по току (для VT1);

— входное сопротивление транзистора VT2

Для определения нужно выбрать рабочую точку транзистора.

Для этого вначале строим проходную характеристику транзистора Iк=F (Uбэ) зависимость действующего значения тока в выходной цепи от входного напряжения Uбэ.
Исходными данными для построения проходной характеристики являются:

— входная характеристика транзистора Iб=F (Uбэ) (Рис. 1)

— выходная характеристика транзистора Iк=F (Uкэ) (Рис. 2)

На семействе выходных характеристик транзистора КТ301, (Рис. 2) проводим нагрузочную прямую через точки с координатами (0, Uпит) и (Uпит / Rк, 0)

По точкам пересечения нагрузочной прямой с выходными характеристиками строим промежуточную характеристику Iк=F (Iб) (рис 3)

Рис 1

Рис 2

?Iб = 25 мкА

Iб. mА

0

0,025

0,05

0,075

0,1

0,125

Iк. mА

0,1

1,1

2,1

3,1

4,05

4,85

Рис 3

Используя полученную зависимость (Рис. 3) и входную характеристику Iб=F (Uбэ) (Рис. 1), определяем требуемую зависимость Iк=F (Uбэ) (Рис. 4)

Uбэ, В

0. 3

0. 4

0. 5

0. 55

0. 61

0,62

Iб. mА

0

0,025

0,05

0,075

0,1

0,125

Iк. mА

0,1

1,1

2,1

3,1

4,05

4,85

Рис 4

По проходной характеристике определяют положение рабочей точки. Зададимся значением Uбэ0 = 0,55В — это середина линейного участка проходной ВАХ

Тогда по входной ВАХ транзистора определяют в рабочей точке

=

Коэффициент усиления транзистора по току

Зная, можно рассчитать сопротивление составного транзистора:

Из ряда номинальных значений резистор

Из условия выберем значение.

Определим амплитуду стационарного колебания на выходе генератора. Для этого построим колебательную характеристику.

Значение средней крутизны для разных значений Uбэ определим по методу 3-х ординат по формуле:

U1(бэ). В

0,05

0,1

0,15

0,2

0,25

Iк мАx. мА

3,9

4,85

4,9

4,9

4,9

Iк мин. мА

2,1

1,6

1,1

0,6

0

Sср. мА/В

18

16,25

12,7

10,75

9,8

По этой таблице построим колебательную характеристику Рис. 5.

Рис 5

Для определения по колебательной характеристике стационарного действующего значения Uбэ необходимо рассчитать значение средней крутизны в стационарном режиме. Известно, что.

Но из баланса амплитуд. Тогда

Определим значение для рассчитанных значений Rн и R

Для этого значения средняя стационарная крутизна располагается ниже колебательной характеристики, и поэтому в схеме будет происходить генерация колебаний.

Используем колебательную характеристику и ее значение средней крутизны в стационарном режиме, найдем действующее значение напряжения. Оно равно. Тогда напряжение на выходе генератора в стационарном режиме найдем из соотношения:

Определим значение емкости в цепи обратной связи. Из выражения для частоты найдем

Емкость CР разделительного конденсатора выберем из условия. Возьмем СР=15 нФ

Определим значение сопротивления Rб, задающего рабочую точку Uбэ0, Iбэ0. Рассчитаем по формуле:

Выберем резистор с номиналом Rб=6,2 кОм.

R

кОм

Rк кОм

кОм

C

нФ

C р

нФ

10

2

6,2

0,15

15

4. Расчет спектра сигнала выходе нелинейного преобразователя

Требуется рассчитать спектр тока и напряжения на выходе нелинейного преобразователя

Схема нелинейного преобразователя (схема 2)

Тип нелинейного элемента КТ203А

Напряжение на входе Um=1,8 В

Напряжение смещения U0=-1 В

Rк=600 Ом

R1

R2

10 Ом

4,7 кОм

Так как Um вх=1,8 В, а Um вых ген=3,9 м В, тогда

4.1 Расчет развязывающего устройства.

Амплитуда напряжения на выходе автогенератора меньше амплитуды напряжения, которое следует подать на вход нелинейного преобразователя, следовательно, его необходимо ослабить. Для этого используем схему 3, которую подключим между генератором и нелинейным преобразователем.

Схема 3

Для расчета тока и напряжения на выходе нелинейного преобразователя необходимо сделать аппроксимацию ВАХ. Амплитуда выходного сигнала достаточно велика, поэтому выберем кусочно-линейную аппроксимацию

По ВАХ определяем Uотс=0,65 В

Для расчета крутизны S выбираем любую точку на прямой, аппроксимирующей ВАХ,;, тогда:

Рассчитаем угол отсечки

Вычислим функции Берга

;;;

Постоянные составляющие и амплитуды гармоник спектра тока IВЫХ рассчитаем по формуле, где к=0,1,2,3, …

Ограничимся третьей гармоникой

;;;

Напряжение на выходе нелинейного преобразователя считаем по формуле

;

Амплитуды гармоник выходного напряжения

Um0=0,156 В; Um1=0,306 В; Um2=0,408 В; Um3=0,019 В

Спектры амплитуд тока и напряжения на (Рис 7) (Рис 8)

Рис 7

Рис 8

5. Расчет полосового фильтра

Рассчитать полосовой фильтр для выделения первой гармоники при частоте генерируемых колебаний fГ=100 кГц. Неравномерность ослабления в ПЭН, минимально допустимое ослабление в ПЕН: Аmin=18 дБ.

Частота первой гармоники равна 100 кГц, тогда, f0=100 кГц.

Характеристика ослабления фильтра должна обладать геометрической симметрией относительно выделяемой гармоники (Рис 9)

Рис 9

По заданным данным ДА и Аmin определим вспомогательную функцию D (Рис 10)

Рис 10

Затем, задавшись приемлемым значением порядка фильтра-прототипа n=2, для полученного значения D=28(рис. 13) определим нормированную частоту, соответствующую границе ПЭН НЧ-прототипа: Щ3= 3,5

Находим граничные частоты ПЭП и ПЭН.

Так как, то задавшись f3=110 кГц, т. е., найдем.

Учитывая соотношение, определим

Решим совместно систему

Получаем:

Отсюда получаем граничные частоты:

Полюса передаточной функции НЧ-прототипа:

Для отыскания полюсов передаточной функции ПФ, используем соотношение:

где;.

Номер полюса

Полюсы Н (р) полосового фильтра

1,2

3,4

0. 7891

0. 6462

6. 2122

7. 0041

Запишем передаточную функцию ПФ в виде произведения трех сомножителей второго порядка

где

Коэффициенты при р в знаменателях сомножителей, а свободные члены

.

Номер Сомножителя

Значения коэффициентов

1

2

3,064

3,064

0. 9982

1. 2324

0. 39 598

0. 49 429

Тогда передаточная функция искомого ПФ запишется:

Для реализации полученной передаточной функции выберем тип звеньев, для чего вначале найдем добротности полюсов соответствующих сомножителей, пользуясь соотношением

В результате получим: Q1=6. 3, Q2=5,7

Выберем для обоих звеньев схему 4. Для поиска элементов звена, соответствующего первому сомножителю H (p), составим систему уравнений:

Зададимся С3=4 нФ, С4=5 нФ,

Решая систему относительно элементов R1, R2, R5, получаем:

R1= 8,16 кОм, R2=300 Ом, R3=45,1 кОм

Схема 4

Элементы 1-го звена

R1 кОм

R2 Ом

R3 кОм

C1 нФ

C2 нФ

8,2

300

47

4

5

Поступая аналогичным образом находим элементы второго звена.

Элементы 2-го звена

R1 кОм

R2 Ом

R3 кОм

C1 нФ

C2 нФ

8,2

300

36

4

5

Для расчета АЧХ и ослабления фильтра в выражении H (p) сделаем замену p=jщ тогда |H (jщ)| запишется:

Ослабление фильтра связано с АЧХ выражением

Найдем частоты ПЭП, при которых, А и АЧХпринимают максимальные и минимальные значения. Щ1 мАx=0, Щ2 мАx=1, Щ1 min=0,707

Для нахождения соответствующих частот ПФ используем соотношение

570 900

611 100

617 300

622 980

628 000

639 900

645 400

690 800

90,1

97,31

98,3

99,2

100

101,9

102,8

110

0,237

0,495

1,104

0,761

0,761

1,267

1,267

0,523

0,64

1,773

0,807

1,127

1,127

0,717

0,717

0,331

11,505

5,488

-0,859

1,532

1,072

-2,056

-2,086

9,63

6,476

-4,974

0,863

-1,038

-1,038

1,736

2,636

8,603

0,05

0,89

0,99

0,86

1

0,86

0,91

0,07

18

0,51

0

0,5

0

0,3

0,505

18

График АЧХ (Рис 11), зависимость ослабления от частоты полосового фильтра (Рис 12)

Рис 11

Рис 12

6. Расчет выходного усилителя

Напряжение устройства выделения первой гармоники, Uвых треб= 4 В, амплитуда напряжения первой гармоники Um1=0,306 В, напряжение на выходе фильтра будет:

0,306•1=0,306 В

требуемый коэффициент усиления

13,1

Возьмем схему 5

Схема 5

Зададим R1=10 Ом, тогда 131 Ом

R1

R2

10 Ом

130 Ом

Заключение

В данной курсовой работе было рассчитано устройства применяемое в системах связи. Я научил пользоваться справочниками, а также искать подходящие каскады для построения устройств в радиоаппаратуре, и системах связи. Рассчитывать параметры этих устройств, и элементов входящих в их состав.

Литература

В.П. Бакалов, А. А. Игнатов, Б. И. Крук. Основы теории электрических цепей и электроники: Учебник для высших учебных заведений. — М.: Радио и связь, 2009 — 525 с.

С.И. Баскаков. Радиотехнические цепи и сигналы: М.: Высшая школа, 2008 — 448 с.

Б.И. Крук, О. Б. Журавлёва, М. И. Сметанина. Методические указания к курсовой работе. СибГАТИ. — Новосибирск 2010

ПоказатьСвернуть
Заполнить форму текущей работой