Методы научно-технического прогнозирования

Тип работы:
Курсовая
Предмет:
Экономика


Узнать стоимость новой

Детальная информация о работе

Выдержка из работы

МИНИСТЕРСТВО СПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ

ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«волгоградская государственная академия физической культуры»

КАФЕДРА ГОСТИНИЧНОГО И ТУРИСТИЧЕСКОГО МЕНЕДЖМЕНТА

КУРСОВАЯ РАБОТА

на тему:

Методы научно-технического прогнозирования

Работу выполнил:

студент 4-го курса, 401-М группы

Репников И.В.

Научный руководитель:

Полякова Т.В.

Волгоград 2013

Оглавление

Введение

Глава 1. ПОНЯТИЕ И ТИПОЛОГИЯ ПРОГНОЗИРОВАНИЯ

1.1 Задачи и принципы прогнозирования

1.2 Классификация экономических прогнозов

Глава 2. МЕТОДЫ НАУЧНО-ТЕХНИЧЕСКОГО ПРОГНОЗИРОВАНИЯ

2.1 Классификация методов прогнозирования

2.2 Экстраполяционные методы прогнозирования

2.3 Статистические методы

2.4 Экспертные методы

Глава 3. ФОРСАЙТ И ОРГАНИЗАЦИЯ НАУЧНО-ТЕХНОЛОГИЧЕСКОГО ПРОГНОЗИРОВАНИЯ В ВУЗЕ (Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

3.1 Опыт организации систем прогнозирования

3.2 Форсайт как современная практика управления

Заключение

Список использованной литературы

техническое прогнозирование экспертный форсайт

Введение

Процесс прогнозирования достаточно актуален в настоящее время. Широка сфера его применения. Прогнозирование широко используется в экономике, а именно в управлении. В менеджменте понятие «планирование» и «прогнозирование» тесно переплетены. Они не идентичны и не подменяют друг друга. Планы и прогнозы различаются между собой временными границами, степенью детализации содержащихся в них показателей, степенью точности и вероятности их достижения, адресностью и, наконец, правовой основой. Прогнозы, как правило, носят индикативный характер, а планы обладают силой директивного характера. Не подмена и противопоставление плана и прогноза, а их правильное сочетание — таков путь планомерного регулирования экономики в условиях рыночной экономики и перехода к ней.

В промышленности методы прогнозирования также играют первостепенную роль. Используя экстраполяцию и тенденцию, можно делать предварительные выводы относительно разных процессов, явлений, реакций, операций.

Определённую нишу прогнозирование занимает и в военных дисциплинах. Используя методы прогнозирования, можно определить (оценить) радиоактивную обстановку местности и т. д.

Существует много методов прогнозирования. Продифференцировав их общее число, необходимо выбрать оптимальный из них для использования в каждой конкретной ситуации.

Анализ методов прогнозирования, изучение этих методов, использование их в разных сферах деятельности является мероприятием рационализаторского характера. Степень достоверности прогнозов можно затем сравнить с действительно реальными показателями, и, сделав выводы, приступить к следующему прогнозу уже с существующими данными, т. е. имеющейся тенденцией. Опираясь на полученные данные, можно во временном аспекте переходить на более высокую ступень и т. д.

Цель исследования — выделить понятие, типологию и концептуалистику научно-технического прогноза и прогнозирования, выявить сущностные черты изучаемого явления. Курсовая работа предполагает освещение общепринятых определений и классификаций, что лишает работу новизны, но позволяет сосредоточиться на реализации поставленной цели с помощью использования общепринятых определений и классических теорий.

Объект исследования — феномен научно-технического прогнозирования, его сущностные черты и типология. Предмет исследования — совокупность методов научно-технического прогнозирования.

Исследование использует следующие методы: аналитический (анализ литературы), дескриптивный (описание основных характеристик феномена научно-технического прогнозирования), классификационный.

ГЛАВА 1. ПОНЯТИЕ И ТИПОЛОГИЯ ПРОГНОЗИРОВАНИЯ

1.1 Задачи и принципы прогнозирования

Прогноз — конкретное предсказание, суждение о состоянии какого-либо явления в будущем на основе специально научного исследования. Классификация прогнозов осуществляется, как правило, по двум признакам- временному и функциональному. По временному признаку различают прогнозы: кратко-, средне-, долгосрочные и сверхдолгосрочные. Функциональная классификация прогнозов предполагает их деление на исследовательские, программные и ресурсные.

Прогнозирование — процесс разработки прогнозов. В зависимости от вида прогноза различают нормативное, поисковое, оперативное.

Прогнозная модель — модель объекта прогнозирования, исследование которой позволяет получить информацию о возможных состояниях объектах в будущем и (или) путях и сроках их осуществления.

Чтобы получить информацию о будущем, нужно изучить законы развития народного хозяйства, определить причины, движущие силы его развития — это основная задача планирования и прогнозирования. В качестве основных движущих сил развития производства выступают социальные потребности, технические возможности и экономическая целесообразность. В соответствии с этим можно указать на три основные задачи планирования и прогнозирования: установление целей развития хозяйства; изыскание оптимальных путей и средств их достижения; определение ресурсов, необходимых для достижения поставленных целей.

Выбор целей является результатом анализа социально-политических задач, которые необходимо решить в обществе и которые отображают объективный характер действия экономических законов.

Выбору целей предшествует разработка альтернатив целей, построение иерархической системы или «дерева целей», ранжирование целей, выбор ведущих звеньев. Исходными предпосылками выбора целей являются, с одной стороны, реальная возможность решения данной альтернативы, а с другой ее оптимальность по критерию эффективности.

Пути и средства достижения целей определяются на основе анализа развития народного хозяйства и научно-технического прогресса. При этом в. процессе прогнозирования происходит ограничение области альтернативных вариантов путей и средств достижения поставленных целей, т. е. определяется область оптимальных решений. В процессе разработки плана (принятия решения) определяется единственное решение, оптимальное по принятому вектору критериев.

В зависимости от того, какая задача решается в первую очередь, различают два вида прогнозирования: исследовательское (или поисковое) и нормативное. Формирование прогноза объективно существующих тенденций развития на основе анализа исторических тенденций называется исследовательским или поисковым прогнозированием. Этот вид прогнозирования основан на использовании принципа инерционности развития, при котором ориентация прогноза во времени происходит по схеме «от настоящего к будущему».

Исследовательский прогноз — это картина состояния объекта прогноза в определенный момент будущего, полученная в результате рассмотрения процесса развития как движения по инерции от настоящего времени до горизонта прогноза. Прогнозирование тенденций развития объекта прогноза, которые должны обеспечивать достижение в установленный момент будущего определенных социально-политических, экономических и оборонных целей, называется нормативным. В этом случае ориентация прогноза во времени происходит по схеме «от будущего к настоящему».

Рассогласование нормативных и исследовательских оценок объекта прогноза в каждый момент времени будущего является следствием противоречия «потребности возможности». Комплексный прогноз строится на основе композиции исследовательского и нормативного прогнозов.

Выбор целей и средств для их достижения непременно должен сочетаться с определением потребности в ресурсах. При определении этой потребности следует рассматривать плановые и прогнозные матрицы ресурсов (финансовых, трудовых, материальных и энергетических), а также матрицы производственных мощностей и ресурсов времени. Оценке подлежат как потребные ресурсы, так и вероятные ограничения на их величину в диапазоне времени упреждения плана или прогноза. Матрицы ресурсов прогноза являются важнейшими исходными данными при составлении балансов народного хозяйства при перспективном планировании.

Движущие силы развития не действуют изолированно, они взаимосвязаны и взаимообусловлены и могут быть представлены в виде связного треугольника графа.

Вершины этого «причинного, треугольника» идентифицируют движущие силы развития производства, его ребра обоюдные связи между ними.

Поэтому задачи планирования и прогнозирования нельзя рассматривать изолированно. В процессе прогнозирования и разработки плана обязательно производится анализ взаимодействия целей, способов и технических средств их достижения, ресурсов, необходимых для их реализации, и определяются по принятым критериям эффективности оптимальные пути развития народного хозяйства.

Несмотря на общность задач, их постановка при прогнозировании и планировании различна. При планировании действует следующая схема: «цель — директивная, пути и средства ее достижения — детерминированные, ресурсы — ограниченные». При прогнозировании схема иная: «цели теоретически достижимые, пути и средства их достижения — возможные, ресурсы — вероятные». Задачи прогнозирования отличаются широтой охвата. Задачи прогнозирования надо оценивать как глобальные. К ним можно отнести: анализ ситуации, определение уровней достоверности информации, определение степени вероятности, выработка текущих, средне- и долгосрочных прогнозов. Принципы прогнозирования: сочетание социально-политических и хозяйственных целей; демократический централизм; системность; непрерывность и обратная связь; пропорциональность и оптимальность; реальность и объективность; выделение ведущего звена.

Прогнозирование должно носить системный характер. Необходимость системного подхода в прогнозировании вытекает из особенностей развития науки и техники, народного хозяйства в период научно-технической революции. Научно-техническая революция привела к принципиальному изменению свойств, характеристик и структуры современной техники и народного хозяйства. Рост количества элементов, объектов различной природы, усложнение связей между ними и поведения объекта во внешней среде привели к созданию больших технических и производственных (организационно-экономических) систем.

Современные машины обладают высокой конструктивно-функциональной сложностью, представляют собой технические комплексы, включающие огромное количество деталей, узлов, агрегатов и готовых изделий, объединенных конечной функциональной целостностью. Конструктивно-функциональная сложность обусловливает высокую материалоемкость, трудоемкость, энергоемкость и стоимость технических комплексов. Развитие техники привело к созданию сложных иерархических структурных построений — больших технических систем. Это свойство технических комплексов потребовало системного подхода к ее созданию, системного проектирования. В разрабатываемых технических комплексах конструкции отдельных входящих элементов должны быть подчинены общей цели, ради которой создается система, т. е. должна быть обеспечена единая стратегия поведения технической системы. Создание больших технических систем вызвало в свою очередь появление больших организационно-экономических (производственных) систем, охватывающих множество предприятий, объединенных выпуском определенного технического комплекса. Возникает иерархия в структуре управления производственными предприятиями. Неуклонно нарастающие темпы развития науки и техники, создание современных организационно-экономических систем привели к лавинообразному росту информации и увеличению степени нерегулярности ее поступления. Все это потребовало совершенствования методов планирования, создания системы планирования.

Важнейшими требованиями системного подхода являются комплексность прогнозов и планов и непрерывный характер процесса планирования.

Комплексный подход предусматривает составление прогнозов и планов во взаимосвязи как в пространстве (в отраслевом и территориальном разрезе), так и во времени. Взаимосвязь в пространстве означает установление рациональных отношений между отраслями народного хозяйства, экономическими районами, установление оптимальных соотношений между темпами развития науки, техники и промышленного производства, сбалансированность потребностей и ресурсов на всех уровнях иерархии. 3]

Взаимосвязь прогнозов и планов во времени обеспечивается реализацией принципа непрерывности планирования. Корректировка планов и прогнозов должна носить дискретный характер с заранее установленными сроками (режим функционирования). Относительно частое изменение планов, обусловливающее изменение производственных программ, может привести к дезорганизации работы отраслей и предприятий в силу сложности структуры производственных связей в народном хозяйстве, большой трудоемкости и материалоемкости процессов подготовки промышленного производства.

Чувствительность прогноза и планов к изменениям зависит от уровня иерархии, сроков упреждения и периодичности корректировок. Чем ниже уровень, тем чувствительность выше, тем должны быть короче периоды корректировки.

Важнейшим моментом внедрения и использования непрерывных систем планирования является определение качества работы таких систем и на основе этого нахождение оптимального режима функционирования.
Непрерывность планирования обеспечивается путем реализации принципа обратной связи. Корректировка планов и прогнозов проводится на основании информации обратной связи, содержащей данные о результатах реализации планов, и прогнозов, уточнения потребностей, об изменении тенденции развития объекта и внешней среды (социально-политического, научно-технического и экономического фона).

Различная степень неопределенности вырабатываемой информации о будущем влияет на характер применяемых методов, способов и приемов прогнозирования и планирования. Если при разработке планов предпочтение отдается детерминированным методам, то при прогнозировании — стохастическим. При составлении планов преимущественное применение имеют регулярные методы, при прогнозировании эвристические.
Специфика стадий и этапов планирования влияет также на количество и уровень агрегирования плановых и прогнозных показателей, степень их детерминированности, соотношения директивных и расчетных показателей.

1.2 Классификация экономических прогнозов

Экономические прогнозы разрабатываются с различными целями и для разных уровней народного хозяйства. Каждый вид прогнозов имеет свои особенности.

Прогноз основных направлений научно-технического прогресса содержит следующие направления научно-технического прогресса:

В области орудий труда: создание комплексов механизмов для завершения механизации труда в основных производственных процессах в ряде отраслей промышленности, строительстве, сельском хозяйстве; повышение уровня автоматизации производства с прерывными процессами и немассовым выпуском продукции путем внедрения оборудования с программным управлением и других электронных средств; обновление и модернизация оборудования, сокращение сроков его замены и т. д.

В области предметов труда: изменение структуры конструкционных материалов за счет повышения доли алюминия и пластмасс; создание новых видов сырья и материалов на базе традиционных их видов (металлические сплавы, материалы на основе химической переработки древесины и т. п.).

В области электроэнергетики: наращивание мощностей атомных электростанций; начало строительства электростанций промышленного назначения с магнитно-гидродинамическими (МГД) установками и т. д.
В области техники управления: увеличение количества автоматизированных систем управления предприятиями и отраслями; начало формирования общегосударственной автоматизированной системы сбора и обработки информации. 7]

Объектом экономического прогнозирования научно-технического прогресса являются как натурально-вещественные, так и стоимостные показатели. При этом исходной стадией является научно-технический прогноз. На его основе прогнозируются общественно необходимые затраты труда на достижение определенных результатов и ожидаемые индивидуальные затраты этого труда. Сопоставляя общественно необходимые затраты с индивидуальными, можно исключать как заведомо неприемлемые те варианты развития, в которых индивидуальные затраты превосходят общественно необходимые.

Среди оставшихся определяются эффективные варианты, которые при прочих равных условиях дают наибольшую экономию.
Как известно, на уровне предприятий, объединении, министерств экономические результаты выражаются в различных хозрасчетных показателях, а также в показателе народнохозяйственного экономического эффекта от создания и использования определенных потребительных стоимостей. Совершенствование потребительных стоимостей может стать самостоятельным объектом экономического прогнозирования.

Развитие экономики порождает новые потребности, которые выражаются как в натурально-вещественных, так и в стоимостных показателях и могут выступать в форме платежеспособного, неудовлетворенного, отложенного спроса на сырье, материалы, рабочую силу, капитальные вложения и т. д. Эти потребности также являются объектом экономического прогнозирования научно-технического прогресса.

Экономический прогноз научно-технического прогресса может быть представлен в разных формах. Так, прогнозы могут различаться по периодичности их составления (периодические и разовые), по степени информированности исследователя и т. п.

Предварительный прогноз составляется при выборе объекта экономического прогнозирования научно-технического прогресса в целях первоначального выяснения его значимости, а также получается при последовательном уточнении исходных данных в процессе составления прогноза.

Описательный прогноз содержит качественные характеристики наиболее вероятных направлений научно-технического прогресса и его влияния па показатели экономической эффективности. В нем содержатся указания на наиболее перспективные направления научно-технического прогресса; предвидение последствий осуществления этих направлений, их влияния на внешнюю по отношению к нему среду; сравнительная оценка значимости изучаемых достижений научно-технического прогресса для народного хозяйства; описание необходимых условий реализации рассматриваемых достижений и др.

Описательный прогноз может содержать и количественные оценки: гипотезы о времени научного решения проблемы или широкого распространения нового метода производства; числовые данные о существующих в народном хозяйстве тенденциях, показывающие необходимость совершенствования производительных сил в данном направлении и т. п. Этот вид описательного прогноза отличается от количественного прогноза только тем, что не содержит числовой оценки экономического эффекта. Количественный прогноз может содержать целый ряд качественных оценок: гипотезы о конкретном характере хозрасчетных отношений в будущем, о государственной политике цен, о влиянии рассматриваемого достижения на неэкономические цели и т. п.

Исследовательский прогноз показывает возможные направления научно-технического прогресса, обеспеченные народнохозяйственными ресурсами и научно-техническими разработками. По длительности прогнозного периода исследовательские прогнозы подразделяются на срочные (составляемые на заданный период). краткосрочные, среднесрочные и долгосрочные. К краткосрочным относятся прогнозы, охватывающие период, на один год превышающий время начала удовлетворения потребностей в рассматриваемых достижениях научно-технического прогресса. Среднесрочные прогнозы составляются на срок, начиная с которого полностью удовлетворяются потребности в этих достижениях. Долгосрочные прогнозы охватывают весь экономический горизонт в исследуемой области народного хозяйства. Деление прогнозов на краткосрочные, среднесрочные и долгосрочные таким способом не является общепринятым в прогностической литературе. Тем не менее оно представляется удачным, поскольку учитывает специфику каждого конкретного объекта прогнозирования.

Нормативный прогноз рассматривает необходимые ресурсы и целесообразные направления деятельности для обеспечения выполнения поставленных нормативных целей. Эти цели чаще всего связаны с необходимостью решения неэкономических задач общества.

Нормативные прогнозы делятся на оперативные, тактические и стратегические в соответствии с тем, к какой из этих категорий относятся нормативные цели, положенные в основу их разработки. 8]
В однофакторных прогнозах в качестве объекта прогнозирования выбирается либо какой-то один элемент новой технологии, либо один показатель, характеризующий взаимодействие технологий (труд определенной квалификации, машины одного вида, количество новых научных трудов по одной тематике, фондоемкость национального дохода и т. п.). Объектами многофакторных прогнозов являются структура занятости, ряды машин, соотношения между несколькими факторами общественного производства.

Односекторным считается прогноз, рассматривающий процессы в одной из хозяйственных ячеек, многосекторным во взаимодействующей группе таких ячеек. Многоуровневые прогнозы рассматривают научно-технический прогресс и его влияние на эффективность общественного производства в иерархической подсистеме народного хозяйства.

Построение системного прогноза основывается на системном подходе к исследованию научно-технического прогресса.

При построении системного прогноза производства новой техники деревом целей может служить иерархическая система конкретных потребностей, непосредственно связанная с рассматриваемыми направлениями научно-технического прогресса. Системный прогноз должен содержать также варианты достижения целей, обеспеченные народнохозяйственными ресурсами, систему организационных мер для реализации каждого из этих вариантов в хозяйственной практике и описывать информационные потоки, обеспечивающие рассматриваемую систему необходимой информацией.

Прогноз называется условным, если при его построении исходят из каких-то конкретных гипотез о ситуации, в которой осуществляются прогнозируемые события.

Управляемый прогноз есть специальный вид условного прогноза, в котором некоторые из условий выделены как управляемые переменные (т. е. переменные, значения которых могут быть регулируемы в процессе целенаправленной хозяйственной деятельности). Условный прогноз, не содержащий управляемых переменных, называется неуправляемым. Управляемый прогноз является вариантным, если он содержит несколько вариантов изменения управляемых переменных и последствий этих изменений. Если при этом не рассматриваются варианты управления, которые заведомо менее удовлетворительны с точки зрения достижения поставленных целен, то такие прогнозы мы называем эффективными.

Прогноз является оптимальным, если из множества прогнозных вариантов научно-технического развития выбираются оптимальные по некоторому критерию.

По методу построения прогнозы подразделяются на экспертные, экстраполяционные, модельные и дедуктивные.

Если рассмотреть использование рассмотренных выше методов прогнозирования на современном этапе, то можно прийти к выводу, что наиболее ярким примером может служить ситуация на валютном рынке, а также показатели биржевой активности фирм, предприятий, организаций.

Аналогичную ситуацию мы можем наблюдать и на таком явлении, как стоимость одного американского доллара на «чёрном рынке» и курс НБУ. Если в начале 90-х годов это сравнение сильно отличалось, то в середине и в конце 90-х годов такая тенденция наблюдалась всё меньше и меньше.
Можно сделать прогноз, что в Украине, в государстве, которое пытается построить действительно демократическое общество, проявится тенденция, характерная для большинства западных стран, когда рыночная стоимость иностранной валюты и курс национальных банков почти идентичны, либо же стремятся друг к другу.

Вывод: Таким образом, прогнозирование — это разработка прогноза; в узком значении — специальное научное исследование конкретных перспектив развития какого-либо процесса. Необходимость прогноза обусловлена желанием знать события будущего, что невозможно на 100% в принципе, исходя из статистических, вероятностных, эмпирических, философских принципов.

Глава 2. МЕТОДЫ НАУЧНО-ТЕХНИЧЕСКОГО ПРОГНОЗИРОВАНИЯ

2.1 Классификация методов прогнозирования

Прежде всего приведем определение метода прогнозирования как способа теоретического и практического действия, направленного на разработку прогнозов. Это определение является достаточно общим и позволяет понимать термин «метод прогнозирования» весьма широко: от простейших экстраполяционных расчетов до сложных процедур многошаговых экспертных опросов.

Для изучения методического аппарата прогностики целесообразно с самого начала детализировать это широкое понятие. Далее будем различать простые методы прогнозирования и комплексные методы прогнозирования. При этом под простым методом прогнозирования будем понимать метод, неразложимый на еще более простые методы прогнозирования, и соответственно под комплексным — метод, состоящий из взаимосвязанной совокупности нескольких простых.

В настоящее время наряду со значительным числом опубликованных методов прогнозирования известны многочисленные способы их классификации. Тем не менее, считать этот вопрос удовлетворительно решенным нельзя, так как единой, полезной и полной классификации сейчас еще не создано. Вероятно, прогностика, как молодая наука, еще не достигла такого уровня развития, когда возможно создание классификации, удовлетворяющей всем этим требованиям. Итак, каковы же цели классификации методов прогностики? Можно указать две такие основные цели. Это, во-первых, обеспечение процесса изучения и анализа методов и, во-вторых, обслуживание процесса выбора метода при разработке прогнозов объекта. На современном этапе трудно предложить единую классификацию, в равной степени удовлетворяющую обеим из указанных целей.

Существуют два основных типа классификации: последовательная и параллельная. Последовательная классификация предполагает вычленение частных объемов из более общих. Это процесс, тождественный делению родового понятия на видовые. При этом должны соблюдаться следующие основные правила:

1) основание деления (признак) должно оставаться одним и тем же при образовании любого видового понятия;

2) объемы видовых понятий должны исключать друг друга (требование отсутствия пересечения классов);

3) объемы видовых понятий должны исчерпывать объем родового понятия (требование полного охвата всех объектов классификации).

Параллельная классификация предполагает сложное информационное основание, состоящее не из одного, а из целого ряда признаков. Основной принцип такой классификации независимость выбранных признаков, каждый из которых существен, все вместе одновременно присущи предмету и только их совокупность дает исчерпывающее представление о каждом классе.

Последовательная классификация имеет наглядную интерпретацию в виде некоторого генеалогического дерева, охватывает всю рассматриваемую область в целом и определяет место и взаимосвязи каждого класса в общей системе. Поэтому она является более приемлемой для целей изучения, позволяет методически более стройно представлять классифицируемую область знаний.

Каждый уровень классификации характеризуется своим классификационным признаком. Элементы каждого уровня представляют собой наименования принадлежащих им подмножеств элементов ближайшего нижнего уровня, причем подмножеств непересекающихся.

Элементы нижнего уровня представляют собой наименование узких групп конкретных методов прогнозирования (иногда из одного элемента), которые являются модификациями или разновидностями какого-либо одного, наиболее общего из них.

В целом классификация является открытой, так как представляет возможность увеличивать число элементов на уровнях и наращивать число уровней за счет дальнейшего дробления и уточнения элементов последнего уровня.

На первом уровне все методы делятся на три класса по признаку «информационное основание метода». Фактографические методы базируются на фактически имеющемся информационном материале об объекте прогнозирования и его прошлом развитии. Экспертные методы базируются на информации, которую поставляют специалисты-эксперты в процессе систематизированных процедур выявления и обобщения этого мнения. Комбинированные методы выделены в отдельный класс, чтобы можно было относить к нему методы со смешанной информационной основой, в которых в качестве первичной информации используются фактографическая и экспертная. Например, при проведении экспертного опроса участникам представляют цифровую информацию об объекте или фактографические прогнозы, либо, наоборот, при экстраполяции тенденции наряду с фактическими данными используют экспертные оценки.

Не следует относить к комбинированным методам те методы прогнозирования, которые к экспертной исходной информации применяют математические методы обработки или исходную фактографическую информацию оценивают экспертным путем. В большинстве случаев они достаточно хорошо укладываются в первый или второй из перечисленных выше классов. 2]

Эти классы разделяются далее на подклассы по принципам обработки информации. Статистические методы объединяют совокупность методов обработки количественной информации об объекте прогнозирования по принципу выявления содержащихся в ней математических закономерностей развития и математических взаимосвязей характеристик с целью получения прогнозных моделей. Методы аналогий направлены на то, чтобы выявлять сходство в закономерностях развития различных процессов и на этом основании производить прогнозы. Опережающие методы прогнозирования строятся на определенных принципах специальной обработки научно-технической информации, реализующих в прогнозе ее свойство опережать развитие научно-технического прогресса.

Экспертные методы разделяются на два подкласса. Прямые экспертные оценки строятся по принципу получения и обработки независимого обобщенного мнения коллектива экспертов (или одного из них) при отсутствии воздействий на мнение каждого эксперта мнения другого эксперта и мнения коллектива. Экспертные оценки с обратной связью в том или ином виде воплощают принцип обратной связи путем воздействия на оценку экспертной группы (одного эксперта) мнением, полученным ранее от этой группы или от одного из ее экспертов.

Третий уровень классификации разделяет методы прогнозирования на виды по классификационному признаку «аппарат методов». Каждый вид объединяет в своем составе методы, имеющие в качестве основы одинаковый аппарат их реализации. Так, статистические методы по видам делятся на методы экстраполяции и интерполяции; методы, использующие аппарат регрессионного и корреляционного анализа; методы, использующие факторный анализ.

Класс методов аналогий подразделяется на методы математических и исторических аналогий. Первые в качестве аналога для объекта прогнозирования используют объекты другой физической природы, другой области науки, отрасли техники, однако имеющие математическое описание процесса развития, совпадающее с объектом прогнозирования. Вторые в качестве аналога используют процессы одинаковой физической природы, опережающие во времени развитие объекта прогнозирования.

Опережающие методы прогнозирования можно разделить на методы исследования динамики научно-технической информации; методы исследования и оценки уровня техники. В первом случае в основном используется построение количественно-качественных динамических рядов на базе различных видов НТИ и анализа и прогнозирования на их основе соответствующего объекта. Второй вид методов использует специальный аппарат анализа количественной и качественной информации, содержащейся в НТИ, для определения характеристик уровня, качества существующей и проектируемой техники.

Прямые экспертные оценки по признаку аппарата реализации делятся на виды экспертного опроса и экспертного анализа. В первом случае используются специальные процедуры формирования вопросов, организации получения на них ответов, обработки полученных ответов и формирования окончательного результата. Во втором основным аппаратом исследования является целенаправленный анализ объекта прогнозирования со стороны эксперта или коллектива экспертов, которые сами ставят и решают вопросы, ведущие к поставленной цели.

Экспертные оценки с обратной связью в своём аппарате имеют три вида методов: экспертный опрос; генерацию идей; игровое моделирование. Первый вид характеризуется процедурами регламентированного неконтактного опроса экспертов перемежающимися обратными связями в рассмотренном выше смысле. Второй построен на процедурах непосредственного общения экспертов в процессе обмена мнениями по поставленной проблеме. Он характеризуется отсутствием вопросов и ответов и направлен на взаимное стимулирование творческой деятельности экспертов. Третий вид использует аппарат теории игр и ее прикладных разделов. Как правило, реализуется на сочетании динамического взаимодействия коллективов экспертов и вычислительной машины, имитирующих объект прогнозирования в возможных будущих ситуациях.

Наконец, последний, четвертый, уровень классификации подразделяет виды методов третьего уровня на отдельные методы и группы методов по некоторым локальным для каждого вида совокупностям классификационных признаков, из которых указать один общий для всего уровня в целом невозможно.

2.2 Экстраполяционные методы прогнозирования

Методы экстраполяции тенденций являются, пожалуй, самыми распространенными и наиболее разработанными среди всей совокупности методов прогнозирования. Использование экстраполяции в прогнозировании имеет в своей основе. предположение о том, что рассматриваемый процесс изменения переменной представляет собой сочетание двух составляющих--регулярной и случайной:

Считается, что регулярная составляющая f (a, х) представляет собой гладкую функцию от аргумента (в большинстве случаев-- времени), описываемую конечномерным вектором параметров а, которые сохраняют свои значения на периоде упреждения прогноза. Эта составляющая называется также трендом, уровнем, детерминированной основой процесса, тенденцией. Под всеми этими терминами лежит интуитивное представление о какой-то очищенной от помех сущности анализируемого процесса. Интуитивное, потому что для большинства экономических, технических, природных процессов нельзя однозначно отделить тренд от случайной составляющей. Все зависит от того, какую цель преследует это разделение и с какой точностью его осуществлять.

Случайная составляющая n (х) обычно считается некоррелированным случайным процессом с нулевым математическим ожиданием. Ее оценки необходимы для дальнейшего определения точностных характеристик прогноза.

Экстраполяционные методы прогнозирования основной упор делают на выделение наилучшего в некотором смысле описания тренда и на определение прогнозных значений путем его экстраполяции. Методы экстраполяции во многом пересекаются с методами прогнозирования по регрессионным моделям. Иногда их различия сводятся лишь к различиям в терминологии, обозначениях или написании формул. Тем не менее, сама по себе прогнозная экстраполяция имеет ряд специфических черт и приемов, позволяющих причислять ее к некоторому самостоятельному виду методов прогнозирования.

Специфическими чертами прогнозной экстраполяции можно назвать методы предварительной обработки числового ряда с целью преобразования его к виду, удобному для прогнозирования, а также анализ логики и физики прогнозируемого процесса, оказывающий существенное влияние как па выбор вида экстраполирующей функции, так и на определение границ изменения ее параметров.

2.3 Статистические методы

Прежде чем приступить к анализу статистических методов прогнозирования, рассмотрим некоторые общие понятия и определения, относящиеся к корреляционным и регрессионным моделям. Две случайные величины являются корреляционно связанными, если математическое ожидание одной из них меняется в зависимости от изменения другой.

Применение корреляционного анализа предполагает выполнение следующих предпосылок:

а) Случайные величины y (y1, у2, …, Уn) и x (x1, x2, …, Хn) могут рассматриваться как выборка из двумерной генеральной совокупности с нормальным законом распределения.

б) Ожидаемая величина погрешности и равна нулю

в) Отдельные наблюдения независимы, т. е. значение данного наблюдения не должно зависеть от значения предыдущего и последующего наблюдений.

г) Ковариация между ошибкой, связанной с одним значением зависимой переменной у, и ошибкой, связанной с любым другим значением y, равна нулю.

д) Дисперсия ошибки, связанная с одним значением у, равна дисперсии ошибки, связанной с любым другим значением.

е) Ковариация между погрешностью и каждой из независимых переменных равна нулю.

ж) Непосредственная применимость этого метода ограничивается случаями, когда уравнение кривой является линейным относительно своих параметров bo, bi, …, bk Это, однако, не означает, что само уравнение кривой относительно переменных должно быть линейным. Если эмпирические уравнения наблюдений не являются линейными, то во многих случаях оказывается возможным привести их к линейной форме и уже. после этого применять метод наименьших квадратов.

з) Наблюдения независимых переменных производятся без погрешности.

Перед началом корреляционного анализа необходимо проверить выполнение этих предпосылок.

Связь между случайной и неслучайной величинами называется регрессионной, а метод анализа таких связей — регрессионным анализом. Применение регрессионного анализа предполагает обязательное выполнение предпосылок (б-г) корреляционного анализа. Только при выполнении приведенных предпосылок оценки коэффициентов корреляции и регрессии, получаемые с помощью способа наименьших квадратов, будут несмещенными и иметь минимальную дисперсию.

Регрессионный анализ тесно связан с корреляционным. При выполнении предпосылок корреляционного анализа выполняются предпосылки регрессионного анализа. В то же время регрессионный анализ предъявляет менее жесткие требования к исходной информации." Так, например, проведение регрессионного анализа возможно даже в случае отличия распределения случайной величины от нормального, как это часто бывает для технико-экономических величин. В качестве зависимой переменной в регрессионном анализе используется случайная переменная, а в качестве независимой неслучайная переменная.

По степени комплексности статистические исследования можно разделить на двумерные и многомерные. Первые касаются рассмотрения парных взаимосвязей между переменными (парные корреляции и регрессии) и направлены в прогнозных исследованиях на решение таких задач, как установление количественной меры тесноты связи между двумя случайными величинами, установление близости этой связи к линейной, оценки достоверности и точности прогнозов, полученных экстраполяцией регрессионной зависимости. Многомерные методы статистического анализа направлены в основном на решение задачи системного анализа многомерных стохастических объектов прогнозирования. Целью такого анализа является, как правило, выяснение внутренних взаимосвязей между переменными комплекса, построение многомерных функций связи переменных, выделение минимального числа характеристик, описывающих объект с достаточной степенью точности. Одной из основных задач здесь является сокращение размерности описания объекта прогнозирования.

Таким образом, статистические методы используются в основном для подготовки данных, приведения их к виду, пригодному для производства прогноза. Как правило, после их применения используется один из методов экстраполяции или интерполяции для получения непосредственно прогнозного результата.

2.4 Экспертные методы

Область применения экспертных методов.

Методы экспертных оценок в прогнозировании и перспективном планировании научно-технического прогресса применяются в следующих случаях:

а) в условиях отсутствия достаточно представительной и достоверной статистики характеристики объекта (например, лазеры, голографические запоминающие устройства, рациональное использование водных ресурсов на предприятиях);

б) в условиях большой неопределенности среды функционирования объекта (например, прогнозов человеко-машинной системы в космосе или учет взаимовлияния областей науки и техники);

в) при средне- и долгосрочном прогнозировании объектов новых отраслей промышленности, подверженных сильному влиянию новых открытий в фундаментальных науках (например, микробиологическая промышленность, квантовая электроника, атомное машиностроение);

г) в условиях дефицита времени или экстремальных ситуациях.
Экспертная оценка необходима, когда нет надлежащей теоретической основы развития объекта. Степень достоверности экспертизы устанавливается по абсолютной частоте, с которой оценка эксперта в конечном итоге подтверждается последующими событиями. Существует две категории экспертов — это узкие специалисты и специалисты широкого профиля, обеспечивающие формулирование крупных проблем и построение моделей. Выбор экспертов для прогноза производится на основе их репутации среди определенной категории специалистов. Однако не следует забывать и того обстоятельства, что первоклассный специалист не всегда может достаточно квалифицированно рассмотреть и понять общие, глобальные, вопросы. Для этой цели нужно привлекать экспертов хотя и недостаточно узко информированных, но обладающих способностью к дерзанию и воображению.

«Эксперт» в дословном переводе с латинского языка означает «опытный». Поэтому и в формализованном, и в неформализованном способах определения эксперта значительное место занимают профессиональный опыт и развитая на его основе интуиция. Условия необходимости и достаточности отнесения специалиста к категории экспертов вводятся следующим образом.

Важно установить не абсолютную степень надежности экспертной оценки, а степень надежности по сравнению с оценкой среднего специалиста, а также корреляцию между вероятностью его прогнозной оценки и надежностью класса тех гипотез, которыми оперирует эксперт. В общем, нужно определить, что такое эксперт. Перечислим некоторые требования, которым должен удовлетворять эксперт:

1) оценки эксперта должны быть стабильны во времени и транзитивны;

2) наличие дополнительной информации о прогнозируемых признаках лишь улучшает оценку эксперта;

3) эксперт должен быть признанным специалистом в данной области знаний;

4) эксперт должен обладать некоторым опытом успешных прогнозов в данной области знаний.

Характеризуя экспертов, следует иметь в виду, что в результате выработки оценок могут иметь место ошибки двух видов. Ошибки первого вида известны в технике измерений как систематические, ошибки второго вида как случайные. Эксперт, склонный к ошибкам первого вида, выдает значения, которые устойчиво отличаются от истинного в сторону увеличения или уменьшения. Полагают, что ошибки этого вида связаны со складом ума экспертов. Для коррекции систематических ошибок можно применять поправочные коэффициенты или же использовать специально разработанные тренировочные игры. Ошибки второго вида характеризуются величиной дисперсии. Исходя из анализа основных видов ошибок при вынесении экспертных суждений, можно добавить к рассмотренному ранее перечню требований к экспертам еще одно. Смысл его состоит в том, что следует предпочесть эксперта, оценки которого имеют малую дисперсию и систематическое отклонение средней ошибки от нуля, эксперту со средней ошибкой, равной нулю, но с большей дисперсией. К сожалению, априори определить способность человека делать правильные экспертные оценки невозможно. Важным средством подготовки экспертов являются специальные тренировочные игры.

Организация форм работы эксперта может быть программированной или непрограммированной, а деятельность эксперта может осуществляться в устной (интервью) либо в письменной форме (ответ на вопросы специальных таблиц экспертных оценок или свободное изложение по заданной теме).

Программирование формы работы эксперта предполагает:

— построение графмодели объекта на базе ретроспективного анализа;

— определение структуры таблиц экспертных оценок (ТЭО) или программы интервью на базе графмодели объекта и целей экспертизы;

— определение типа и формы вопросов в ТЭО или в интервью;
определение типа шкалы для вопросов в ТЭО;

— учет психологических особенностей экспертизы при определении последовательности вопросов в ТЭО;

— учет верифицирующих вопросов;

— разработка логических приемов для последующего синтеза прогнозных оценок в комплексных прогнозах объекта.

Организация стимуляции работы эксперта состоит в разработке:

эвристических приемов и способов, облегчающих поиск прогнозной экспертной оценки; правовых норм, гарантирующих эксперту оформление приоритета и авторства, а также неразглашения всех научно-технических идей, выдвигаемых им в процессе экспертизы;

форм моральной, профессиональной и материальной заинтересованности эксперта в экспертных оценках;

организационных форм работы эксперта (включение в план работы и т. п.).

Исходя из полученной в результате анализа модели объекта прогнозирования, определяются научные и технические направления, по которым необходимо привлечь эксперта, выделяются группы экспертов по принадлежности вопроса к области фундаментальных, прикладных наук или к стыковым научным направлениям. 5]

При решении задачи формирования экспертной группы необходимо выявить и стабилизировать работоспособную сеть экспертов. Способ стабилизации экспертной сети заключается в следующем. На основе анализа литературы по прогнозируемой проблеме выбирается любой специалист, имеющий несколько публикаций в данной области. К нему обращаются с просьбой назвать 10 наиболее компетентных, по его мнению, специалистов по данной проблеме. Затем обращаются одновременно к каждому из десяти названных специалистов с просьбой указать 10 наиболее крупных их коллег-ученых. Из полученного списка специалистов вычеркиваются 10 первоначальных, а остальным рассылаются письма, содержащие указанную выше просьбу. Данную процедуру повторяют до тех пор, пока ни один из вновь названных специалистов не добавит новых фамилий к списку экспертов, т. е. пока не стабилизируется сеть экспертов. Полученную сеть экспертов можно считать генеральной совокупностью специалистов, компетентных в области прогнозируемой проблемы. Однако в силу ряда практических ограничений оказывается нецелесообразным привлекать всех специалистов к экспертизе. Поэтому необходимо сформировать репрезентативную выборку из генеральной совокупности экспертов.

Определение специфики процедур для методов класса ПЭО (персональных экспертных оценок) осуществляется на основе анализа требований к экспертам и их оценкам, вытекающим из сущности методов:

а) аналитические записки предъявляют требования структуризации экспериментируемой проблемы, экспликации и ранжирования целей, анализа альтернативных путей достижения цели, оценки затрат на каждую альтернативу и рекомендаций по наиболее эффективным способам решения проблем;

б) парные сравнения, нормирование и ранжирование требуют однородности оцениваемых признаков, наличия логически обоснованных критериев и эталонов, наличие однозначно определенных процедур оперирования с критериями, эталонами и признаками;

в) интервью предъявляют специфические требования как к эксперту, так и к интервьюеру;

г) морфологическая структуризация требует четкого определения функциональных характеристик объекта или проблемы, которые необходимо улучшить, классификации научных принципов, на основе которых возможно улучшение характеристики; анализа все возможных комбинаций этих принципов и отсева заведомо абсурдных; оценки комбинаций по степени осуществимости и затрат на их реализацию; сравнения комбинаций по комплексному критерию «затраты эффективность время».

Вывод: Метод прогнозирования — это способ исследования объекта прогнозирования, направленный на разработку прогноза. Совокупность специальных правил, приемов и методов составляет методику прогнозирования. К наиболее распространенным методам прогнозирования относятся: экспертное прогнозирование, экстраполяционное прогнозирования, статистическое прогнозирование, нормативное прогнозирование.

Глава 3. ФОРСАЙТ И ОРГАНИЗАЦИЯ НАУЧНО-ТЕХНОЛОГИЧЕСКОГО ПРОГНОЗИРОВАНИЯ В ВУЗЕ (Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики)

3.1 Опыт организации систем прогнозирования

Исторически Россия имеет значительный опыт организации систем прогнозирования и их взаимосвязи со стратегическим управлением и планированием. Так в 1915 году Императорская академия наук, следуя предложению В. И. Вернадского, организует Комиссию по изучению естественных производительных сил России (КЕПС), призванную провести инвентаризацию инновационного потенциала страны. КЕПС стала прообразом советских институтов, отвечавших за тотальную модернизацию российской экономики. [2]

В задачи комиссии входила координация исследований, повышение роли вузов в научном потенциале страны, обеспечение правильного взаимоотношения между наукой, техникой и промышленностью, рациональное размещение институтов на территории России. На основе аналитических работ КЕПС были организованы такие проекты как план ГОЭЛРО, курская магнитная аномалия, другие крупные проекты развития, интегрирующие в себе сферы науки, техники, промышленности, управления; подразделения организации впоследствии тесно сотрудничали с Госпланом.

В ходе разработки (1921 — 1929) прогноза перспектив развития СССР на годы первой пятилетки (1928 — 1932), группой ученых по руководством В. А. Базарова были получены две качественно новые исследовательские технологии: «генетическая» (экстраполяция в будущее наметившихся тенденций с целью выявления или уточнения проблем, подлежащих решению средствами управления) и «телеологическая» (оптимизация трендов по заданным критериям и целям для выявления наилучших решений указанных проблем) [3].

Тридцать лет спустя в США при попытке прогноза реализации программы «Аполлон», не зная о выводах русских коллег, пришли к такому же заключению, только «генетический» подход назвали «поисковый», а «телеологический» -- «нормативным». Оба подхода составили «технологическое прогнозирование». С этого момента началось полноценное использование «технологического прогнозирования» по всему миру в виде сотен институтов, специально занятых разработкой поисковых и нормативных прогнозов.

В 60-е годы в СССР активно обсуждались вопросы создания структур по прогнозированию в виде научного совета по научно-технической и социально-экономической прогностике, государственной службы прогнозирования в виде специальной комиссии специалистов способных «взвешивать» последствия принимаемых решений, при Политбюро Ц К КПСС, сети кафедр прогнозирования в важнейших университетах страны и отделов прогнозирования в ведущих исследовательских институтах различного профиля. В обсуждении принимали участие академики и писатели фантасты (академик Д. И. Щербаков, академик А. Я. Берг, профессор И. А. Ефремов (автор «Туманности Андромеды») и др.).

ПоказатьСвернуть
Заполнить форму текущей работой