Микроклимат рабочего помещения и его влияние на организм человека

Тип работы:
Контрольная
Предмет:
Безопасность жизнедеятельности


Узнать стоимость

Детальная информация о работе

Выдержка из работы

Содержание

1. Микроклимат и его влияние на организм человека

2. Основные параметры микроклимата

3. Нормирование параметров микроклимата

4. Приборы для исследования параметров микроклимата

Заключение

Библиографический список

1. Микроклимат и его влияние на организм человека

Человек постоянно находится в процессе теплового взаимодействия с окружающей средой. Величина тепловыделений организма человека Q зависит от степени физического напряжения и параметров микроклимата. Для того чтобы физиологические процессы в его организме протекали нормально, выделяемая организмом теплота должна полностью отводиться в окружающую человека среду. Нормальным тепловым ощущениям соответствует равенство между количествами выделяемого организмом человека и отдаваемого в окружающую среду тепла.

Теплообмен между организмом человека и окружающей средой осуществляется с использованием следующих процессов:

теплопередача (теплопроводность) через одежду QТ;

конвекция QК;

тепловое излучение в окружающее пространство QИЗЛ;

испарение влаги (пота) с поверхности кожи QИСП;

дыхание (нагрев вдыхаемого воздуха) QД.

Теплопередача (теплопроводность) состоит в передаче тепла от одной частицы к другой при непосредственном контакте.

Конвекция представляет собой процесс теплообмена между телом человека и средой, осуществляемый движущимся воздухом. Конвективный теплообмен зависит от температуры окружающей среды, скорости движения воздуха, его влажности и барометрического давления.

Тепловое излучение представляет собой процесс теплообмена, осуществляемый путем испускания электромагнитных волн инфракрасного диапазона. Тепловые лучи непосредственно воздух практически не нагревают, но хорошо поглощаются твёрдыми телами и, следовательно, нагревают их. Нагреваясь, твёрдые тела сами становятся источниками тепла и уже путём конвекции нагревают воздух.

При температуре окружающей среды, равной или выше температуры поверхности тела человека, теплоотдача происходит только в виде выделения пота, на испарение 1 г которого затрачивается около 0,6 ккал. В состоянии покоя при температуре окружающего воздуха 18 °C доля QК составляет около 30% всей отводимой теплоты, QИЗЛ 45%, QИСП 20% и QД 5%.

При изменении температуры воздуха, скорости его движения и влажности, при наличии вблизи человека нагретых поверхностей, в условиях физической работы и т. д. эти соотношения существенно изменяются. Так, при высокой температуре воздуха (30 °С и выше), особенно при выполнении тяжёлой физической работы, потоотделение может усиливаться в десятки раз и достигать 1 — 1,5 л/ч.

Нормальное тепловое самочувствие человека (комфортные условия, соответствующие данному виду деятельности) обеспечивается, если выполняется условие теплового баланса:

QЧ = QТ + QК + QИЗЛ + QИСП + QД,

где QЧ — количество тепла, генерируемого организмом человека.

Температура внутренних органов человека поддерживается постоянной на уровне около 36,6 °С. Эта способность человеческого организма поддерживать постоянной температуру при изменении параметров микроклимата и при выполнении различной по тяжести работы называется терморегуляцией. Если тепловое равновесие нарушено (например теплоотдача меньше тепловыделений), то в организме происходит накопление тепла — перегрев. Если теплоотдача больше, чем тепловыделение, то происходит переохлаждение организма.

Комфортные метеорологические условия являются важным фактором обеспечения высокой производительности труда и профилактики заболеваний. При несоблюдении гигиенических норм микроклимата снижается работоспособность человека, возрастает опасность возникновения травм и ряда заболеваний, в том числе профессиональных.

2. Основные параметры микроклимата

Влажность воздуха. Влажность воздуха характеризует степень его насыщения водяными парами. Одна и та же температура воздуха в зависимости от степени его влажности ощущается человеком по-разному. Различают абсолютную и относительную влажность.

Абсолютная влажность (РАБС) — это количество водяного пара, содержащегося в 1 м3 воздуха, т. е. плотность пара (г/м3). Абсолютную влажность характеризуют также давлением водяного пара (гПа), т. е. парциальным давлением, которое оказывал бы водяной пар на стенки сосуда, если из данного сосуда удалить все другие компоненты воздуха.

Воздух с предельным содержанием водяного пара при данной температуре характеризуется давлением насыщенного пара (РНАС), которое увеличивается с повышением температуры воздуха. После достижения РНАС начинается конденсация водяного пара.

Абсолютная влажность сама по себе не указывает на то, в насыщенном или ненасыщенном состоянии находится водяной пар, поэтому введено понятие относительной влажности.

Относительная влажность (ц) определяется выражением:

ц = (PАБС /PНАС)·100, %. (1)

Относительная влажность влияет на теплообмен человека, например на интенсивность испарения влаги с поверхности кожи.

Температура воздуха оказывает большое влияние на состояние организма человека. Высокая температура окружающего воздуха повышает утомляемость, может привести к перегреву организма или вызвать тепловой удар. При небольшом перегреве возникают небольшое повышение температуры тела человека, обильное потоотделение, появляется ощущение жажды, учащаются дыхание и пульс. В более тяжёлых условиях может случиться тепловой удар, сопровождающийся повышением температуры до 40 — 41 °C, слабым и учащённым пульсом, потерей сознания. Характерным признаком наступления теплового удара является почти полное прекращение потоотделения. Тепловой удар может привести к смертельному исходу. Низкая температура окружающего воздуха может вызвать местное или общее переохлаждение организма человека, стать причиной простудных заболеваний или обморожения.

Скорость движения воздуха имеет большое значение для создания благоприятных условий жизнедеятельности. При большой скорости движения воздуха увеличивается интенсивность конвективного теплообмена. Если воздушные потоки имеют температуру ниже температуры поверхности кожи (30 — 33 °С), они оказывают освежающее действие на организм человека, а при температуре свыше 37 °C действуют угнетающе. Организм человека начинает ощущать воздушные потоки при скорости около 0,15 м/с.

Тепловое излучение от нагретых поверхностей играет немаловажную роль в создании неблагоприятных микроклиматических условий. Действие лучистого тепла не ограничивается изменениями, происходящими на облучаемом участке кожи, — на облучение реагирует весь организм. В организме возникают биохимические изменения, нарушения в сердечно-сосудистой и нервной системах. При длительном воздействии инфракрасных лучей может возникнуть катаракта глаз (помутнение хрусталика).

Тепловые ощущения человека зависят от сочетания микроклиматических параметров и от напряженности физической работы.

Для оценки комплексного влияния параметров микроклимата на организм человека при малых энергозатратах используется метод эквивалентно-эффективных температур. Этот метод позволяет на основании данных о параметрах микроклимата судить о тепловом состоянии человека. Для его использования введено понятие эквивалентно-эффективной температуры (ЭЭТ), которая характеризует тепловое ощущение человека при одновременном воздействии температуры, влажности и скорости движения воздуха. ЭЭТ оценивается температурой неподвижного воздуха 100% -ой относительной влажности, при которой тепловое ощущение человека такое же, как и при заданном сочетании температуры, влажности и скорости движения воздуха.

Область ЭЭТ в интервале температур от 17 до 22 °C соответствует зоне комфорта, внутри которой можно выделить линию комфорта, соответствующую ЭЭТ = 19 °C, при которой почти у всех исследуемых людей возникает ощущение комфорта.

На рисунке приведена номограмма, позволяющая определить влияние параметров микроклимата на тепловое ощущение человека.

3. Нормирование параметров микроклимата

Нормируемыми параметрами микроклимата в производственных помещениях являются: температура воздуха; относительная влажность воздуха; скорость движения воздуха; температура поверхностей помещения (стены, потолок, пол) и технологического оборудования; интенсивность теплового облучения. При нормировании параметров микроклимата учитывают интенсивность энергозатрат работающих (категорию работ по тяжести), период года, время пребывания на рабочих местах [4, 5].

При этом различают оптимальные и допустимые микроклиматические условия.

Оптимальные микроклиматические условия представляют такие сочетания параметров микроклимата, которые обеспечивают ощущение теплового комфорта в течение 8-часовой рабочей смены при минимальном напряжении механизмов терморегуляции

Допустимые микроклиматические условия могут приводить к ощущению теплового дискомфорта, напряжению механизмов терморегуляции, ухудшению самочувствия и работоспособности. При условии 8-часовой рабочей смены они не вызывают повреждений или нарушений состояния здоровья. Допустимые значения параметров микроклимата устанавливают в случаях, когда по технологическим требованиям, техническим и экономически обоснованным причинам не могут быть обеспечены оптимальные значения.

Номограмма эквивалентно-эффективных температур

В зависимости от энергозатрат в единицу времени работы подразделяются на следующие категории.

Лёгкие физические работы (категория I) — виды деятельности с интенсивностью энергозатрат до 174 Вт.

К категории Iа относятся работы, производимые сидя и сопровождающиеся незначительным физическим напряжением с интенсивностью энергозатрат до 139 Вт.

К категории Iб относятся работы, производимые сидя, стоя или связанные с ходьбой и сопровождающиеся некоторым физическим напряжением с интенсивностью энергозатрат 140 — 174 Вт.

Физические работы средней тяжести (категория II) — виды деятельности с интенсивностью энергозатрат 175 — 290 Вт.

К категории IIa относятся работы, связанные с постоянной ходьбой, перемещением мелких (до 1 кг) изделий или предметов в положении стоя или сидя и требующие определенного физического напряжения с интенсивностью энергозатрат 175 — 232 Вт.

К категории IIб относятся работы, связанные с ходьбой, перемещением и переноской тяжестей до 10 кг и сопровождающиеся умеренным физическим напряжением с интенсивностью энергозатрат 233 — 290 Вт.

Тяжёлые физические работы (категория III) — виды деятельности с интенсивностью энергозатрат с расходом энергии более 290 Вт. Эти работы связаны с постоянными передвижениями, перемещением и переноской значительных (свыше 10 кг) тяжестей и требующие больших физических усилий.

При нормировании различают два периода года: холодный (со среднесуточной температурой наружного воздуха +10 °С и ниже) и тёплый (со среднесуточной температурой наружного воздуха выше +10 °С).

В табл. 1 приведены оптимальные (в скобках — допустимые) значения параметров микроклимата на постоянных рабочих местах производственных помещений.

Интенсивность теплового облучения учитывается, если в производственных помещении имеются источники тепла, нагретые до высокой температуры [4].

Таблица 1 Оптимальные (допустимые) параметры микроклимата

Период года

Категория работы

Температура, °С

Относительная влажность, %

Скорость движения воздуха, м/c

Температура поверхностей, °С

Холодный

22 — 24

(20 — 25)

40 — 60

(15 — 75)

0,1

21−25 (19−26)

21 — 23

(19 — 24)

40 — 60

(15 — 75)

0,1

(0,2)

20−24 (18−25)

IIа

19 — 21

(17 — 23)

40 — 60

(15 — 75)

0,2

(0,3)

18−22 (16−24)

IIб

17 — 19

(15 — 22)

40 — 60

(15 — 75)

0,2

(0,4)

16−20 (14−23)

III

16 — 18

(13 — 21)

40 — 60

(15 — 75)

0,3

(0,4)

15−19 (12−22)

Тёплый

23 — 25

(21 — 28)

40 -60

(15 — 75)

0,1

(0,2)

22−26 (20−29)

22 — 24

(20 — 28)

40 -60

(15 — 75)

0,1

(0,3)

21−25 (19−29)

IIа

20 — 22

(18 — 27)

40 -60

(15 — 75)

0,2

(0,4)

19−23 (17−28)

IIб

19 — 21

(16 — 27)

40 -60

(15 — 75)

0,2

(0,5)

18−22 (15−28)

III

18 — 20

(15 — 26)

40 -60

(15 — 75)

0,3

(0,5)

17−21 (14−27)

4. Приборы для исследования параметров микроклимата

Требования к организации контроля и методам измерения параметров микроклимата приведены в СанПиН [4]. При этом могут использоваться следующие приборы.

Термометры — применяются для измерения температуры воздуха и поверхностей. Могут быть жидкостными (ртутные и спиртовые) и электронными. В зависимости от выполняемых функций различают обычный, максимальный, минимальный и парный жидкостные термометры.

Максимальный термометр (ртутный) применяется для определения наивысшей температуры, которая была в помещении между сроками наблюдений. В этом термометре имеется сужение капилляра в месте сочленения его с резервуаром. Здесь столбик ртути, поднявшийся при повышении температуры, при последующем охлаждении воздуха отрывается от общей массы ртути в резервуаре и, таким образом, остается зафиксированным на достигнутом уровне шкалы. Для проведения последующих измерений термометр необходимо расположить резервуаром вниз и сильно встряхнуть, чтобы протолкнуть ртуть из капилляра до соединения со ртутью в резервуаре.

Минимальный термометр (спиртовой) применяется для фиксации самой низкой температуры, которая была в помещении между сроками наблюдений. Минимальный термометр имеет внутри капилляра свободно передвигающийся стеклянный штифтик. Перед измерением температуры термометр переворачивают резервуаром кверху, и штифтик под действием силы тяжести опускается до конца столбика спирта (дальнейшему движению его мешает поверхностная пленка, ограничивающая мениск), затем термометр располагают горизонтально. При понижении температуры и укорачивании столбика спирта штифтик будет увлечен спиртом, а при повышении температуры спирт свободно обтекает его. Таким образом, по грани штифтика, обращенной к мениску спирта, можно судить о минимальной температуре.

Парный термометр применяется для измерения температуры воздуха в помещениях, имеющих источники значительных тепловых излучений. При замерах температуры в таких помещениях показания термометров обычных типов могут не соответствовать истинной температуре воздуха, т. к. они показывают температуру поверхности самого термометра, нагреваемого тепловыми излучениями. Парный же термометр состоит из двух термометров, у одного из которых резервуар со спиртом посеребрён, а у другого зачернён. Поэтому один отражает основную часть лучистого тепла, а другой поглощает его. Истинная температура воздуха при этом определяется по формуле:

tТЕПЛ = tБ — К (tЧ — tБ), (2)

где tБ — показания «блестящего» термометра;

tЧ — показания «чёрного» термометра;

К — градуировочный коэффициент, определяемый заводом.

Электронные термометры используют различные типы датчиков, реагирующих на температуру. Они позволяют ускорить и автоматизировать процесс измерения, получить результат в цифровой форме, могут сопрягаться с ПЭВМ.

Психрометры и гигрометры применяются для определения влажности воздуха. Наиболее распространенными при измерениях относительной влажности воздуха в рабочих помещениях являются психрометры Августа и Ассмана, волосяные и электронные гигрометры.

Психрометр Августа состоит из двух одинаковых ртутных термометров с ценой деления до 0,2 °С, укрепленных рядом на штативе. Резервуар одного из термометров обернут марлей или батистом, смоченным в дистиллированной воде. С рабочей поверхности смачиваемого («влажного») термометра вода испаряется тем сильнее, чем суше воздух, и тем сильнее охлаждает его. Поэтому показания «влажного» термометра всегда ниже показаний «сухого» (за исключением случая, когда относительная влажность равна 100% и показания обоих термометров одинаковы).

Относительная влажность воздуха при измерении психрометром Августа определяется по формуле:

ц = [PНАС. В — б(tС — tВ)PАТМ]*100/PНАС. С , %, (3)

где PНАС. В — давление насыщенного пара при температуре «влажного» термометра (табл. 2), гПа;

PНАС. С — давление насыщенного пара при температуре «сухого» термометра (табл. 2), гПа;

PАТМ — атмосферное (барометрическое давление), гПа.

tС — показания «сухого» термометра, °С;

tВ — показания «влажного» термометра, °С;

б — психрометрический коэффициент, зависящий от скорости движения воздуха (табл. 3).

Таблица 2 Давление и плотность насыщенного водяного пара при различных температурах

t, °С

Давление насыщенного пара, гПа

Плотность насыщенного пapa, г/м3

t, °С

Давление насыщенного пара, гПа

Плотность насыщенного пapa, г/м3

-5

4,01

3,24

20

23,38

17,3

0

6,10

4,84

21

24,86

18,3

+5

8,27

6,84

22

26,43

19. 4

8

10,73

8,30

23

28,08

20,0

10

12,28

9,4

24

29,83

21. 8

11

l3,12

10,0

25

31. 67

23,0

12

14,02

10,7

26

33. 60

24. 4

13

14,97

11. 4

27

35. 64

25. 8

14

15,98

12,1

28

37,79

27,2

15

17,05

12,8

29

40,04

28. 7

16

I8,17

13,6

30

42. 42

30,3

17

19,37

14,5

40

73,74

5l. 2

18

20,63

15,4

50

123. 30

83,0

19

21,97

16,3

100

1013

598

Таблица 3 Психрометрический коэффициент

Скорость движения воздуха, м/с

0,13

0,16

0,20

0,40

0. 80

2,3

б

0,98

0,90

0,83

0,68

0. 60

0. 53

Примечание. Для закрытых помещений без вентиляции б = 0,83.

Психрометр Ассмана. Недостатком психрометра Августа является непостоянство скорости движения воздуха вокруг резервуара влажного термометра, вызванное местными воздушными потоками, сквозняками, перемещением людей. Этого недостатка нет у аспирационного психрометра Ассмана. В этом приборе резервуары обоих термометров помещены в двойные латунные трубки, через которые равномерно просасывается исследуемый воздух с помощью маленького заводного вентилятора. Такое устройство психрометра обеспечивает защиту резервуаров термометров от лучистой теплоты и гарантирует постоянную скорость движения воздуха вокруг термометров. Кроме того, благодаря просасыванию значительной массы воздуха показания этого прибора более точные, чем психрометра Августа, который определяет влажность воздуха, находящегося в непосредственной близости от прибора.

Перед работой резервуар правого термометра, обернутый батистом, смачивается дистиллированной водой, заводится пружина вентилятора, и через 4 минуты снимаются показания с термометров. Относительная влажность воздуха определяется по формуле (%):

ц = PНАС. В — 0,497·10-3(tС — tВ)PАТМ ·100/ PНАС. С. (4)

Бытовые психрометры (например, ПБУ-1) аналогичны психрометру Августа. Их применяют для быстрой оценки относительной влажности по показаниям «сухого» и «влажного» термометров с помощью психрометрической таблицы, приведенной на приборе.

Гигрометры являются приборами для непосредственного определения относительной влажности воздуха. Чувствительным элементом гигрометров является обезжиренный в эфире или спирте человеческий волос (или специальная синтетическая плёнка), который определённым образом соединён с легкой стрелкой-указателем. При уменьшении относительной влажности чувствительный элемент укорачивается, а при увеличении удлиняется, перемещая конец указательной стрелки вдоль шкалы с делениями от 0 до 100% относительной влажности. Гигрометр является единственным прибором для определения влажности при отрицательных температурах, однако точность его не превышает 5%.

Скорость движения воздуха измеряется кататермометрами и анемометрами (крыльчатыми, чашечными и термоэлектрическими).

Кататермометр предназначен для измерения малых скоростей движения воздуха (от 0,04 до 2 м/с) в служебных и бытовых помещениях. Принцип работы прибора основан на определении охлаждающей силы воздушной среды. Кататермометр представляет собой спиртовой термометр со шкалой от 35 до 38 °C. Количество тепла, теряемое кататермометром при его охлаждении от 38 до 35 °C, постоянное, а продолжительность охлаждения зависит от действия всех метеорологических факторов.

Для подготовки кататермометра к измерениям его резервуар со спиртом осторожно нагревают в воде (60 — 70 °С) до тех пор, пока спирт не заполнит 1/5 — 1/3 объема верхнего расширения капилляра, затем прибор вытирают насухо, подвешивают в исследуемом месте (возможно дальше от излучающих тепло приборов) и по секундомеру замеряют время охлаждения кататермометра от 38 до 35 °C. Таким образом, по существу прибор измеряет охлаждающую способность воздуха при температуре человеческого тела. Скорость движения воздуха (V, м/с) определяется по эмпирическим формулам:

V = 6,25 (f /?t — 0,5)2 при f /?t < 0,6; (5)

V = 4,53(f /?t — 0,13)2 при f /?t ? 0,6, (6)

Где f = F/Tк — охлаждающая способность воздуха, кал/см2•с;

F = 472 кал/см2 — параметр кататермометра, определяющий количество тепла, теряемого с 1 см2 резервуара кататермометра (указывается заводом-изготовителем на приборе);

Tк — замеряемое по секундомеру время охлаждения кататермометра (от 38 до 35 °С), с;

?t — разность между средней температурой кататермометра (36,5 °С) и температурой окружающего воздуха.

Крыльчатый и чашечный анемометры состоят из воспринимающей части, вращающейся под действием воздушного потока, и счётного механизма. Крыльчатый анемометр применяется для определения скоростей свободного воздушного потока от 0,3 до 5 м/с, а чашечный — от 1 до 20 м/с. Для определения скорости воздушного потока с помощью анемометров определяют скорость вращения воспринимающей части за определённое время по показаниям счётного механизма (число делений в секунду) и по специальному графику переводят её в линейную скорость воздуха, м/с.

Барометры — приборы для измерения атмосферного давления. Наиболее распространен барометр-анероид, принцип действия которого основан на использовании упругих деформаций мембран анероидных коробок под влиянием изменений атмосферного давления.

микроклимат рабочий гигрометр температура

Заключение

Микроклимат — это совокупность параметров среды, влияющих на тепловые ощущения человека: температуры, влажности и скорости движения воздуха и интенсивности теплового излучения от окружающих поверхностей, характерных для конкретного помещения.

Микроклимат оказывает существенное влияние на работоспособность человека, его самочувствие и здоровье.

Необходимость учёта параметров микроклимата предопределяется условиями теплового баланса между организмом человека и окружающей средой помещений.

Библиографический список

1. Безопасность жизнедеятельности: Учебник для вузов /Под ред. С. В. Белова. М.: Высшая школа, 2004.

2. Безопасность жизнедеятельности: Учебник для вузов /Под ред. Э. А. Арустамова. М.: И Д Дашков и Ко, 2003.

3. Раздорожный А. А. Безопасность производственной деятельности: Учеб. пособие для вузов. М.: Инфра-М, 2003.

4. СанПиН 2.2.4. 548−96 «Гигиенические требования к микроклимату производственных помещений».

5. ГОСТ 12.1. 005−88. ССБТ. Общие санитарно-гигиенические требования к воздуху рабочей зоны.

ПоказатьСвернуть
Заполнить форму текущей работой