Операционные системы

Тип работы:
Курсовая
Предмет:
Программирование


Узнать стоимость

Детальная информация о работе

Выдержка из работы

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Государственное образовательное учреждение высшего профессионального образования

«Донской государственный технический университет» ДГТУ

Кафедра «Программное обеспечение вычислительной техники и

автоматизированных систем"

Пояснительная записка к курсовой работе по дисциплине

«Информатика и программирование»

На тему:

Операционные системы

Автор работы Здоровцов Денис Владимирович

Руководитель работы Коротков Д. С.

Ростов-на-Дону

2011 г.

Введение

Операциомнная системма -- комплекс управляющих и обрабатывающих программ, которые, с одной стороны, выступают как интерфейс между устройствами вычислительной системы и прикладными программами, а с другой стороны -- предназначены для управления устройствами, управления вычислительными процессами, эффективного распределения вычислительных ресурсов между вычислительными процессами и организации надёжных вычислений.

Сейчас трудно представить себе компьютер без операционной системы, отвечающей определению, приведенному выше. Без операционной системы, для запуска программы вам придется каждый раз загружать компьютер заново, а для хранения данных придется работать напрямую с носителем. Все стандартные алгоритмы для работы с памятью и устройствами пришлось бы хранить в теле программы. Если учесть разнообразие оборудования, нетрудно представить, что размер программы вырастет в разы. Самым разумным решением всех этих проблем будет объединение основных алгоритмов работы с памятью, устройствами ввода и вывода и прочего в одной программе, которая будет способна запускать другие программы и предоставлять им доступ к стандартным алгоритмам через удобный интерфейс. Именно этим и занимается операционная система.

Функции операционных систем

Основные функции:

Выполнение по запросу программ (ввод и вывод данных, запуск и остановка других программ, выделение и освобождение дополнительной памяти и др.).

Загрузка программ в оперативную память и их выполнение.

Стандартизованный доступ к периферийным устройствам (устройства ввода-вывода).

Управление оперативной памятью (распределение между процессами, организация виртуальной памяти).

Управление доступом к данным на энергонезависимых носителях (таких как жёсткий диск, оптические диски и др.), организованным в той или иной файловой системе.

Обеспечение пользовательского интерфейса.

Сохранение информации об ошибках системы.

Дополнительные функции:

Параллельное или псевдопараллельное выполнение задач (многозадачность).

Эффективное распределение ресурсов вычислительной системы между процессами.

Разграничение доступа различных процессов к ресурсам.

Организация надёжных вычислений (невозможности одного вычислительного процесса намеренно или по ошибке повлиять на вычисления в другом процессе), основана на разграничении доступа к ресурсам.

Взаимодействие между процессами: обмен данными, взаимная синхронизация.

Защита самой системы, а также пользовательских данных и программ от действий пользователей (злонамеренных или по незнанию) или приложений.

Многопользовательский режим работы и разграничение прав доступа (см. аутентификация, авторизация).

История операционных систем

Предыстория

Раньше пользователь получал машину в единоличное пользование; он приходил с программой и данными, обычно записанными на перфокартах или магнитных лентах. Программа загружалась в машину, которая начинала работать, до тех пор пока программа не завершалась или не выдавала ошибку. Отладка программ осуществлялась при помощи панели управления, снабжённой тумблерами и лампочками. Наибольших успехов в этом достиг Алан Тьюринг на ранней машине Манчестерский Марк I, к тому времени он уже разрабатывал основные принципы работы операционных систем.

Более поздние машины имели библиотеки, которые связывались с пользовательской программой для поддержки таких операций как ввод и вывод. Это было началом современных операционных систем. Однако машины всё ещё выполняли одну задачу за один промежуток времени.

По мере увеличения производительности машин, время на исполнение программ уменьшалось, а время передачи оборудования от одного пользователя другому оставалось прежним. Выстраивались длинные очереди из людей, желающих запустить свою программу, каждый из них имел по несколько магнитных лент с программами и данными. Операторы машин не успевали контролировать все операции, проводимые с компьютерами, поэтому возникла необходимость в автоматическом контроле и выявлении ошибок.

Эти требования были учтены при создании первых операционных систем. Сначала для этого были использованы библиотеки времени исполнения, которые запускались до первой пользовательской задачи, считывали информацию с носителей, контролировали исполнение, записывали результаты и немедленно переключались на исполнение следующей задачи.

Эра мейнфреймов

Первой в мире операционной системой считается GM OS (General Motors Operating System).

Ранние операционные системы были очень разнородными, каждый поставщик или заказчик создавали одну или более систем для конкретного компьютера. Каждая операционная система, даже одного производителя, могла иметь совершенно разные команды и возможности. Обычно с появлением новой машины появлялась и новая операционная система, и приложения приходилось приспосабливать, перекомпилировать, перепикрепивать и перепроверять.

Системы для оборудования IBM

Такое состояние дел продолжалось до 1960-х, когда IBM, лидирующий поставщик оборудования на тот момент, прекратила разработку существующих систем и направила усилия на создание серии машин System/360, все представители которой должны были использовать одинаковые инструкции и архитектуру ввода/вывода. IBM начала разрабатывать единую операционную систему для этих машин, OS/360. Проблемы, возникшие при создании OS/360, стали легендарными и были описаны в книге Мифический человеко-месяц Фредерика Брукса. Из-за различий в производительности и задержек при разработке программного обеспечения, вместо единой OS/360 было представлено семейство операционных систем под таким же названием.

IBM выпустила ещё несколько операционных систем, среди них три оказались наиболее долгоживущими:

OS/MFT для систем среднего класса. Она имела одного преемника, систему OS/VSI, развитие которой продолжалось до 1980-х.

OS/MVT для крупных машин. Она была сходна с OS/MFT (программы могли переноситься между ними без перекомпилирования), но имела более продвинутое управление памятью и систему разделения времени, TSO. MVT имела несколько наследников, включая z/OS.

DOS/360 для низших моделей System/360 имела несколько преемников, включая z/VSE, используемую до настоящего времени. Она значительно отличалась от OS/MFT и OS/MVT.

IBM поддерживает полную совместимость, поэтому разработанные в шестидесятых программы всё ещё можно запускать под z/VSE (если они создавались для DOS/360) или z/OS (если создавались для OS/MFT или OS/MVT) без изменений.

IBM разрабатывала, но официально не выпустила TSS/360, операционную сиcтему с разделением времени для S/360 Model 67.

Несколько операционных систем для архитектур IBM S/360 и S/370 были разработаны третьими фирмами, включая Michigan Terminal System (MTS) и MUSIC/SP.

Другие операционные системы для мейнфреймов

Control Data Corporation разработала операционную систему SCOPE в 1960-х для обработки пакетных заданий. В сотрудничестве с Университетом Миннесота были созданы операционные системы KRONOS и NOS в 1970-х, которые поддерживали одновременный запуск заданий и разделение времени.

В конце 1970-х Control Data и Университет Иллинойс разработали машину PLATO, привнесшей множество инноваций для своего времени. Система использовала язык программирования TUTOR, что позволило создавать такие программы, как чат в реальном времени и многопользовательские графические игры.

UNIVAC, первый производитель коммерческих компьютеров, создала серию операционных систем EXEC. Как большинство ранних операционных систем для мейнфреймов, это были операционные системы, ориентированные на обработку пакетных заданий. В 1970-х UNIVAC выпустила систему Real-Time Basic.

Burroughs Corporation представила машину B5000 в 1961 с операционной системой MCP (Master Control Program). B5000 поддерживала исключительно языки высокого уровня и не поддерживала машинные языки или ассемблер; таким образом, MCP стала первой операционной системой, написанной только на высокоуровневом языке (ESPOL, диалект Алгола). MCP также представила несколько инноваций, включая первую коммерческую реализацию виртуальной памяти. MCP по сей день используется на компьютерах Unisys ClearPath/MCP.

Project MAC разработал Multics и General Electric Comprehensive Operating Supervisor (GECOS), в которых была введена концепция уровней привилегий.

Digital Equipment Corporation разработала множество операционных систем для своих различных линеек компьютеров, включая системы TOPS-10 и TOPS-20 с разделением времени для 36-битных машин PDP-10. До широкого рапространения UNIX, TOPS-10 пользовалась большой популярностью в университетах и раннем сообществе ARPANET.

Миникомпьютеры и развитие UNIX

Начальные версии операционной системы UNIX были разработаны в AT&T Bell Laboratories в конце 1960-х. Будучи абсолютно бесплатной в первых версиях и легко модифицируемой, эта система завоевала большую популярность. Так как UNIX была написана на языке высокого уровня Си, её можно легко было перенести на новую аппаратную архитектуру. Эта переносимость позволила ей стать основной системой для второго поколения миникомпьютеров и первого поколения рабочих станций.

В то же время Digital Equipment Corporation создала простую операционную систему RT-11 для серии 16-битных машин PDP-11, и систему VMS для 32-битных компьютеровVAX.

Классификация операционных систем

В зависимости от алгоритмов управления процессором, операционные системы можно делить на:

Однозадачные и многозадачные

Однопользовательские и многопользовательские

Однопроцессорные и многопроцессорные системы

Локальные и сетевые.

Однозадачные и многозадачные операционные системы

Однозадачные операционные системы в отличие от многозадачных не позволяют выполнять несколько задач параллельно, в качестве хорошего примера простой однозадачной ОС можно привести MS-DOS.

MS-DOS-- коммерческая операционная система фирмы Microsoft для IBM PC-совместимых персональных компьютеров. MS-DOS -- самая известная ОС из семейства DOS, ранее устанавливавшаяся на большинство IBM PC-совместимых компьютеров. Со временем она была вытеснена ОС семейства Windows 9x и Windows NT.

MS-DOS была создана в 1981 году и в ходе её развития было выпущено восемь крупных версий (1. 0, 2.0 и т. д.) и два десятка промежуточных (3. 1, 3.2 и т. п.), пока в 2000 году Microsoft не прекратила её разработку. Это был ключевой продукт фирмы, дававший ей существенный доход и маркетинговый ресурс в ходе развития Microsoft от разработчика языка программирования до крупной компании, производящей самое разнообразное программное обеспечение.

Последней коробочной версией стала 6. 22, однако MS-DOS продолжала служить загрузчиком для Windows 95 (версии 7.0 и 7. 1), Windows 98 (версия 7. 1) и Windows ME (версия 8. 0).

Минимальный набор файлов MS-DOS:

Файлы ядра:

BOOT. MBR -- загрузчик, находящийся на нулевом секторе и передающий управление на IO. SYS

IO. SYS -- расширение BIOS

MSDOS. SYS -- обработка прерываний

Командный процессор:

COMMAND. COM -- командный процессор (поддержка интерфейса командной строки).

Строго говоря, для запуска MS-DOS наличие файла COMMAND. COM не является необходимым. Его можно заменить другим командным процессором, способным выполнять нужные вам команды. Делается это добавлением в CONFIG. SYS строки shell=c: mymyprog. com. В своё время сторонними разработчиками было выпущено множество командных процессоров. Наиболее распространённый командный процессор, выпущенный сторонней фирмой, был NDOS. COM (лицензированный 4DOS) из пакета Norton Utilities фирмы Symantec. Новые версии командного процессора 4DOS продолжают выпускаться до сих пор.

Многозадачные операционные системы управляют разделением совместно используемых ресурсов, таких как процессор, оперативная память, файлы и внешние устройства.

Многозадачность -- свойство операционной системы или среды программирования обеспечивать возможность параллельной (или псевдопараллельной) обработки нескольких процессов. Истинная многозадачность операционной системы возможна только в распределённых вычислительных системах.

Существует 2 типа многозадачности[1]:

Процессная многозадачность (основанная на процессах -- одновременно выполняющихся программах). Здесь программа -- наименьший элемент кода, которым может управлять планировщик операционной системы.

Поточная многозадачность (основанная на потоках). Наименьший элемент управляемого кода -- поток (одна программа может выполнять 2 и более задачи одновременно).

Свойства многозадачной среды

Примитивные многозадачные среды обеспечивают чистое «разделение ресурсов», когда за каждой задачей закрепляется определённый участок памяти, и задача активизируется в строго определённые интервалы времени.

Более развитые многозадачные системы проводят распределение ресурсов динамически, когда задача стартует в памяти или покидает память в зависимости от её приоритета и от стратегии системы. Такая многозадачная среда обладает следующими особенностями:

Каждая задача имеет свой приоритет, в соответствии с которым получает процессорное время и память

Система организует очереди задач так, чтобы все задачи получили ресурсы, в зависимости от приоритетов и стратегии системы

Система организует обработку прерываний, по которым задачи могут активироваться, деактивироваться и удаляться

По окончании положенного кванта времени ядро временно переводит задачу из состояния выполнения в состояние готовности, отдавая ресурсы другим задачам. При нехватке памяти страницы невыполняющихся задач могут быть вытеснены на диск (своппинг), а потом через определённое системой время, восстанавливаться в памяти

Система обеспечивает защиту адресного пространства задачи от несанкционированного вмешательства других задач

Система обеспечивает защиту адресного пространства своего ядра от несанкционированного вмешательства задач

Система распознаёт сбои и зависания отдельных задач и прекращает их

Система решает конфликты доступа к ресурсам и устройствам, не допуская тупиковых ситуаций общего зависания от ожидания заблокированных ресурсов

Система гарантирует каждой задаче, что рано или поздно она будет активирована

Система обрабатывает запросы реального времени

Система обеспечивает коммуникацию между процессами

Типы псевдопараллельной многозадачности:

Невытесняющая многозадачность

Тип многозадачности, при котором операционная система одновременно загружает в память два или более приложений, но процессорное время предоставляется только основному приложению. Для выполнения фонового приложения оно должно быть активизировано. Подобная многозадачность может быть реализована не только в операционной системе, но и с помощью программ-переключателей задач. В этой категории известна программа DESQview, работавшая под DOS и выпущенная первый раз в 1985 году.

Совместная или кооперативная многозадачность

Тип многозадачности, при котором следующая задача выполняется только после того, как текущая задача явно объявит себя готовой отдать процессорное время другим задачам. Как частный случай, такое объявление подразумевается при попытке захвата уже занятого объекта mutex (ядро Linux), а также при ожидании поступления следующего сообщения от подсистемы пользовательского интерфейса (Windows версий до 3. x включительно, а также 16-битные приложения в Windows 9x).

Кооперативную многозадачность можно назвать многозадачностью «второй ступени» поскольку она использует более передовые методы, чем простое переключение задач, реализованное многими известными программами (например, DOS Shell из MS-DOS 5.0 при простом переключении активная программа получает все процессорное время, а фоновые приложения полностью замораживаются. При кооперативной многозадачности приложение может захватить фактически столько процессорного времени, сколько оно считает нужным. Все приложения делят процессорное время, периодически передавая управление следующей задаче.

Преимущества кооперативной многозадачности: отсутствие необходимости защищать все разделяемые структуры данных объектами типа критических секций и mutex’ов, что упрощает программирование, особенно перенос кода из однозадачных сред в многозадачные.

Недостатки: неспособность всех приложений работать в случае ошибки в одном из них, приводящей к отсутствию вызова операции «отдать процессорное время». Крайне затрудненная возможность реализации многозадачной архитектуры ввода-вывода в ядре ОС, позволяющей процессору исполнять одну задачу в то время, как другая задача инициировала операцию ввода-вывода и ждет её завершения.

Реализована в таких ОС, как:

В пользовательском режиме ОС Windows версий до 3. х включительно

Mac OS версий до Mac OS X внутри ядер многих UNIX-подобных ОС, таких, как FreeBSD

Linux в течение долгого времени.

Вытесняющая или приоритетная многозадачность (режим реального времени)

Вид многозадачности, в котором операционная система сама передает управление от одной выполняемой программы другой в случае завершения операций ввода-вывода, возникновения событий в аппаратуре компьютера, истечения таймеров и квантов времени, или же поступлений тех или иных сигналов от одной программы к другой. В этом виде многозадачности процессор может быть переключен с исполнения одной программы на исполнение другой без всякого пожелания первой программы и буквально между любыми двумя инструкциями в её коде. Распределение процессорного времени осуществляется планировщиком процессов. К тому же каждой задаче может быть назначен пользователем или самой операционной системой определенный приоритет, что обеспечивает гибкое управление распределением процессорного времени между задачами (например, можно снизить приоритет ресурсоёмкой программе, снизив тем самым скорость её работы, но повысив производительность фоновых процессов). Этот вид многозадачности обеспечивает более быстрый отклик на действия пользователя.

Преимущества: возможность полной реализации многозадачного ввода-вывода в ядре ОС, когда ожидание завершения ввода-вывода одной программой позволяет процессору тем временем исполнять другую программу. Сильное повышение надежности системы в целом, в сочетании с использованием защиты памяти -- идеал в виде «ни одна программа пользовательского режима не может нарушить работу ОС в целом» становится достижимым хотя бы теоретически, вне вытесняющей многозадачности он не достижим даже в теории. Возможность полного использования многопроцессорных и многоядерных систем.

Недостатки: необходимость особой дисциплины при написании кода, особые требования к его реентрантности, к защите всех разделяемых и глобальных данных объектами типа критических секций и mutex’ов.

Реализована в таких ОС, как:

VMS

Linux

в пользовательском режиме (а часто и в режиме ядра) всех UNIX-подобных ОС, включая версии Mac OS X, iOS; Symbian OS

в режиме ядра ОС Windows 3. x -- только при исполнении на процессоре 386 или старше, «задачами» являются только все Windows-приложения вместе взятые и каждая отдельная виртуальная машина ДОС, между приложениями Windows вытесняющая многозадачность не использовалась

Windows 95/98/ME -- без полноценной защиты памяти, что служило причиной крайне низкой, на одном уровне с MS-DOS, Windows 3. x и Mac OS версий до X -- надежности этих ОС

Windows NT/2000/XP/Vista/7 и в режиме ядра, и в пользовательском режиме.

AmigaOS -- все версии, до версии 4.0 без полноценной защиты памяти, что на практике для системных программ почти не сказывалось на надёжности из-за высокой стандартизированности, прозрачных API и SDK. Программы ориентированные на «железо» Амиги, наоборот не отличались надёжностью.

Структура операционной системы

Защищенный режим работы процессора

Современные операционные системы работают преимущественно в защищенном режиме. Впервые защищенный режим появился в микропроцессоре i80286 фирмы Intel. Именно этот режим позволяет полностью использовать все возможности, предоставляемые микропроцессором.

Процессы и потоки

Основными элементами современной многозадачной ОС являются процессы и потоки. Основной задачей операционной системы является работа с этими элементами.

Процесс -- выполнение пассивных инструкций компьютерной программы на процессоре ЭВМ. Стандарт ISO 9000: 2000 Definitions определяет процесс как совокупность взаимосвязанных и взаимодействующих действий, преобразующих входящие данные в исходящие.

Компьютерная программа сама по себе это только пассивная совокупность инструкций, в то время как процесс -- это непосредственное выполнение этих инструкций.

Часто процессом называют выполняющуюся программу и все её элементы: адресное пространство, глобальные переменные, регистры, стек, открытые файлы и т. д.

Процесс является «самой тяжёлой» единицей планирования ядра. Собственные ресурсы для процесса выделяются операционной системой. Ресурсы включают память, дескрипторы файлов, разъёмы, дескрипторы устройств и окна. Процессы используют адресное пространство и файлы ресурсов в режиме разделения времени только через явные методы, такие как наследование дескрипторов файлов и сегментов разделяемой памяти. Процессы, как правило, предварительно преобразованы к многозадачному способу выполнения.

Поток выполнения является наименьшей единицей обработки, исполнение которой может быть назначено операционной системой. Реализация потоков выполнения и процессов в разных операционных системах отличается друг от друга, но в большинстве случаев поток выполнения находится внутри процесса. Несколько потоков выполнения могут существовать в рамках одного и того же процесса и совместно использовать ресурсы, такие как память, тогда как процессы не разделяют этих ресурсов. В частности, потоки выполнения разделяют инструкции процесса (его код) и его контекст (значения переменных, которые они имеют в любой момент времени). В качестве аналогии потоки выполнения процесса можно уподобить нескольким вместе работающим поварам. Все они готовят одно блюдо, читают одну и ту же кулинарную книгу с одним и тем же рецептом и следуют его указаниям, причём не обязательно все они читают на одной и той же странице.

Потоки выполнения ядра относятся к «лёгким» единицам планирования ядра. Внутри каждого процесса существует по крайней мере один поток выполнения ядра. Если в рамках процесса могут существовать несколько потоков выполнения ядра, то они совместно используют общую память и файл ресурсов. Если процесс выполнения планировщика операционной системы является приоритетным, то потоки выполнения ядра тоже являются приоритетно многозадачными. Потоки выполнения ядра не имеют собственных ресурсов, за исключением стека вызовов, копии регистров процессора, включая счётчик команд, и локальную память потока выполнения (если она есть). Ядро может назначить по одному потоку выполнения для каждого логического ядра системы (поскольку каждый процессор разделяет сам себя на несколько логических ядер, если он поддерживает многопоточность, либо поддерживает только одно логическое ядро ??на каждое физическое ядро, если не поддерживает многопоточность), а может выполнять свопинг заблокированных потоков выполнения. Однако потоки выполнения ядра требует гораздо больше времени, чем требуется на свопинг пользовательских потоков выполнения.

Отличие потоков выполнения от процессов:

Потоки выполнения отличаются от традиционных процессов многозадачной операционной системы тем, что:

процессы, как правило, независимы, тогда как потоки выполнения существуют как составные элементы процессов

процессы несут значительно больше информации о состоянии, тогда как несколько потоков выполнения внутри процесса совместно используют информацию о состоянии, а также память и другие вычислительные ресурсы

процессы имеют отдельные адресные пространства, тогда как потоки выполнения совместно используют их адресное пространство

процессы взаимодействуют только через предоставляемые системой механизмы связей между процессами

переключение контекста между потоками выполнения в одном процессе, как правило, быстрее, чем переключение контекста между процессами.

Управление памятью

Память является важнейшим ресурсом, требующим тщательного управления со стороны многозадачной операционной системы. Функциями О С по управлению памятью являются: отслеживание свободной и занятой памяти, выделение памяти процессам и освобождение памяти при завершении процессов.

Функции ОС по управлению памятью

Под памятью (memory) здесь подразумевается оперативная память компьютера. В отличие от памяти жесткого диска, которую называют внешней памятью (storage), оперативной памяти для сохранения информации требуется постоянное электропитание.

Память является важнейшим ресурсом, требующим тщательного управления со стороны мультипрограммной операционной системы. Особая роль памяти объясняется тем, что процессор может выполнять инструкции протравы только в том случае, если они находятся в памяти. Память распределяется как между модулями прикладных программ, так и между модулями самой операционной системы.

В ранних ОС управление памятью сводилось просто к загрузке программы и ее данных из некоторого внешнего накопителя (перфоленты, магнитной ленты или магнитного диска) в память. С появлением мультипрограммирования перед ОС были поставлены новые задачи, связанные с распределением имеющейся памяти между несколькими одновременно выполняющимися программами.

Функциями ОС по управлению памятью в мультипрограммной системе являются:

отслеживание свободной и занятой памяти;

выделение памяти процессам и освобождение памяти по завершении процессов;

вытеснение кодов и данных процессов из оперативной памяти на диск (полное или частичное), когда размеры основной памяти не достаточны для размещения в ней всех процессов, и возвращение их в оперативную память, когда в ней освобождается место;

настройка адресов программы на конкретную область физической памяти.

Помимо первоначального выделения памяти процессам при их создании ОС должна также заниматься динамическим распределением памяти, то есть выполнять запросы приложений на выделение им дополнительной памяти во время выполнения. После того как приложение перестает нуждаться в дополнительной памяти, оно может возвратить ее системе. Выделение памяти случайной длины в случайные моменты времени из общего пула памяти приводит к фрагментации и, вследствие этого, к неэффективному ее использованию. Дефрагментация памяти тоже является функцией операционной системы.

Во время работы операционной системы ей часто приходится создавать новые служебные информационные структуры, такие как описатели процессов и потоков, различные таблицы распределения ресурсов, буферы, используемые процессами для обмена данными, синхронизирующие объекты и т. п. Все эти системные объекты требуют памяти"" В некоторых ОС заранее (во время установки) резервируется некоторый фиксированный объем памяти для системных нужд. В других же ОС используется более гибкий подход, при котором память для системных целей выделяется динамически. В таком случае разные подсистемы ОС при создании своих таблиц, объектов, структур и т. п. обращаются к подсистеме управления памятью с запросами.

Защита памяти -- это еще одна важная задача операционной системы, которая состоит в том, чтобы не позволить выполняемому процессу записывать или читать данные из памяти, назначенной другому процессу. Эта функция, как правило, реализуется программными модулями ОС в тесном взаимодействии с аппаратными средствами.

Алгоритмы распределения памяти

Следует ли назначать каждому процессу одну непрерывную область физической памяти или можно выделять память «кусками»? Должны ли сегменты программы, загруженные в память, находиться на одном месте в течение всего периода выполнения процесса или можно ее время от времени сдвигать? Что делать, если сегменты программы не помещаются в имеющуюся память? Разные О С по-разному отвечают на эти и другие базовые вопросы управления памятью. Далее будут рассмотрены наиболее общие подходы к распределению памяти, которые были характерны для разных периодов развития операционных систем. Некоторые из них сохранили актуальность и широко используются в современных ОС, другие же представляют в основном только познавательный интерес, хотя их и сегодня можно встретить в специализированных системах.

Все алгоритмы распределения памяти разделены на два класса: алгоритмы, в которых используется перемещение сегментов процессов между оперативной памятью и диском, и алгоритмы, в которых внешняя память не привлекается.

Ввод и вывод информации

Подсистема ввода-вывода (Input-Output Subsystem) мультипрограммной ОС при обмене данными с внешними устройствами компьютера должна решать ряд общих задач, из которых наиболее важными являются следующие:

организация параллельной работы устройств ввода-вывода и процессора;

согласование скоростей обмена и кэширование данных;

разделение устройств и данных между процессами;

обеспечение удобного логического интерфейса между устройствами и остальной частью системы;

поддержка широкого спектра драйверов с возможностью простого включения в систему нового драйвера;

динамическая загрузка и выгрузка драйверов;

поддержка нескольких файловых систем;

поддержка синхронных и асинхронных операций ввода-вывода.

Рассмотрим некоторые задачи детально.

Организация параллельной работы устройств ввода-вывода и процессора

Каждое устройство ввода-вывода вычислительной системы -- диск, принтер, терминал и т. п. -- снабжено специализированным блоком управления, называемым контроллером. Контроллер взаимодействует с драйвером -- системным программным модулем, предназначенным для управления данным устройством. Контроллер периодически принимает от драйвера выводимую на устройство информацию, а также команды управления, которые говорят о том, что с этой информацией нужно сделать (например, вывести в виде текста в определенную область терминала или записать в определенный сектор диска). Под управлением контроллера устройство может некоторое время выполнять свои операции автономно, не требуя внимания со стороны центрального процессора. Это время зависит от многих факторов -- объема выводимой информации, степени интеллектуальности управляющего устройством контроллера, быстродействия устройства и т. п. Даже самый примитивный контроллер, выполняющий простые функции, обычно тратит довольно много времени на самостоятельную реализацию подобной функции после получения очередной команды от процессора. Это же справедливо и для сложных контроллеров, так как скорость работы любого устройства ввода-вывода, даже самого скоростного, обычно существенно ниже скорости работы процессора.

Процессы, происходящие в контроллерах, протекают в периоды между выдачами команд независимо от ОС. От подсистемы ввода-вывода требуется спланировать в реальном масштабе времени (в котором работают внешние устройства) запуск и приостановку большого количества разнообразных драйверов, обеспечив приемлемое время реакции каждого драйвера на независимые события контроллера. С другой стороны, необходимо минимизировать загрузку процессора задачами ввода-вывода, оставив как можно больше процессорного времени на выполнение пользовательских потоков.

Данная задача является классической задачей планирования систем реального времени и обычно решается на основе многоуровневой приоритетной схемы обслуживания по прерываниям. Для обеспечения приемлемого уровня реакции все драйверы (или части драйверов) распределяются по нескольким приоритетным уровням в соответствии с требованиями ко времени реакции и временем использования процессора. Для реализации приоритетной схемы обычно задействуется общий диспетчер прерываний ОС.

Разделение устройств и данных между процессами

Устройства ввода-вывода могут предоставляться процессам как в монопольное, так и в совместное (разделяемое) использование. При этом ОС должна обеспечивать контроль доступа теми же способами, что и при доступе процессов к другим ресурсам вычислительной системы -- путем проверки прав пользователя или группы пользователей, от имени которых действует процесс, на выполнение той или иной операции над устройством. Например, определенной группе пользователей последовательный порт разрешено захватывать в монопольное владение, а другим пользователям это запрещено.

Операционная система может контролировать доступ не только к устройству в целом, но -и к отдельным порциям данных, хранимых или отображаемых этим устройством. Диск является типичным примером устройства, для которого важно контролировать доступ не к устройству в целом, а к отдельным каталогам и файлам. При выводе информации на графический дисплей отдельные окна экрана также представляют собой ресурсы, к которым необходимо обеспечить тот или иной вид доступа для протекающих в системе процессов. При этом для каждой порции данных или части устройства могут быть заданы свои права доступа, не связанные прямо с правами доступа к устройству в целом. Так, в файловой системе обычно для каждого каталога и файла можно задать индивидуальные права доступа. Очевидно, что для организации совместного доступа к частям устройства или частям данных, хранящихся на нем, непременным условием является задание режима совместного использования устройства в целом.

Одно и то же устройство в разные периоды времени может использоваться как в разделяемом, так и в монопольном режимах. Тем не менее существуют устройства, для которых обычно характерен один из этих режимов, например последовательные порты и алфавитно-цифровые терминалы чаще используются в монопольном режиме, а диски -- в режиме совместного доступа. Операционная система должна предоставлять эти устройства в обоих режимах, осуществляя отслеживание процедур захвата и освобождения монопольно используемых устройств, а в случае совместного использования оптимизируя последовательность операций ввода-вывода для различных процессов в целях повышения общей производительности, если это возможно. Например, при обмене данными нескольких процессов с диском можно так упорядочить последовательность операций, что непроизводительные затраты времени на перемещение головок существенно уменьшаются (при этом для отдельных процессов возможно некоторое замедление операции ввода-вывода).

При разделении устройства между процессами может возникнуть необходимость в разграничении порции данных двух процессов друг от друга. Обычно такая потребность возникает при совместном использовании так называемых последовательных устройств, данные в которых в отличие от устройств прямого доступа не адресуются. Типичным представителем такого рода устройства является принтер, который не выделяется в монопольное владение процессам, и в то же время каждый документ должен быть напечатан в виде последовательного набора страниц. Для подобных устройств организуется очередь заданий на вывод, при этом каждое задание представляет собой порцию данных, которую нельзя разрывать, например документ для печати. Для хранения очереди заданий используется спул-файл, который одновременно согласует скорости работы принтера и оперативной памяти и позволяет организовать разбиение данных на логические порции. Так как спул-файл находится на разделяемом устройстве прямого доступа, то процессы могут одновременно выполнять вывод на принтер, помещая данные в свой раздел спул-файла.

Обеспечение удобного логического интерфейса между устройствами и остальной частью системы

Разнообразие устройств ввода-вывода делают особенно актуальной функцию ОС по созданию экранирующего логического интерфейса между периферийными устройствами и приложениями. Практически все современные операционные системы поддерживают в качестве основы такого интерфейса файловую модель периферийных устройств, когда любое устройство выглядит для прикладного программиста последовательным набором байт, с которым можно работать с помощью унифицированных системных вызовов (например, read и write), задавая имя файла-устройства и смещение от начала последовательности байт. Для поддержания такого интерфейса подсистема ввода-вывода должна проделать немалую работу, учитывая разницу в организации операций обмена данными, например, с жестким диском и графическим терминалом.

Привлекательность модели файла-устройства состоит в ее простоте и унифицированности для устройств любого типа, однако во многих случаях для программирования операций ввода-вывода некоторого устройства она является слишком бедной. Поэтому данная модель часто используется только в качестве базиса, над которым подсистема ввода-вывода строит более содержательную модель устройств конкретного типа. Подсистема ввода-вывода предоставляет, как правило, специфический интерфейс для вывода графической информации на дисплей или принтер, для программирования операций сетевого обмена и т. п. При этом разработчик специфического интерфейса всегда может опираться на имеющийся базовый интерфейс.

Динамическая загрузка и выгрузка драйверов

Кроме проблемы разработки новых драйверов существует также проблема включения драйвера в состав модулей работающей ОС, то есть динамической загрузки-выгрузки драйвера. Так как набор потенциально поддерживаемых данной ОС периферийных устройств всегда существенно шире набора устройств, которыми ОС должна управлять при установке на конкретной машине, то ценным свойством ОС является возможность динамически загружать в оперативную память требуемый драйвер (без останова ОС) и выгружать его после того, как потребность в поддержке устройства миновала, что может существенно сэкономить системную область памяти.

Альтернативой динамической загрузке драйверов при изменении текущей конфигурации внешних устройств компьютера является повторная компиляция кода ядра с требуемым набором драйверов, что создает между всеми компонентами ядра статические связи вместо динамических. Например, таким образом решалась данная проблема в ранних версиях операционной системы UNIX. При статических связях между ядром и драйверами структура ОС упрощается, но этот подход требует наличия исходных кодов модулей операционной системы, доступность которых скорее является исключением (для некоммерческих версий UNIX), а не правилом. Кроме того, в этом варианте работающую предыдущую версию операционной системы необходимо остановить и заменить новой, а перерывы в работе ОС в некоторых применениях могут и не допускаться.

Поддержка динамической загрузки драйверов является практически обязательным требованием для современных универсальных операционных систем.

Поддержка нескольких файловых систем

Диски представляют особый род периферийных устройств, так как именно на них хранится большая часть как пользовательских, так и системных данных. Данные на дисках организуются в файловые системы, и свойства файловой системы во многом определяют свойства самой ОС -- ее отказоустойчивость, быстродействие, максимальный объем хранимых данных. Популярность файловой системы часто приводит к ее миграции из «родной» ОС в другие операционные системы -- например, файловая система FAT появилась первоначально в MS-DOS, но затем была реализована в OS/2, семействе MS Windows и многих реализациях UNIX. Ввиду этого поддержка нескольких популярных файловых систем для подсистемы ввода-вывода также важна, как и поддержка широкого спектра периферийных устройств. Важно также, чтобы архитектура подсистемы ввода-вывода позволяла достаточно просто включать в ее состав новые типы файловых систем, без необходимости переписывания кода. Обычно в операционной системе имеется специальный слой программного обеспечения, отвечающий за решение данной задачи, например слой VFS (Virtual File System) в версиях UNIX на основе кода System V Release 4.

Поддержка синхронных и асинхронных операций ввода-вывода

Операция ввода-вывода может выполняться по отношению к программному модулю, запросившему операцию, в синхронном или асинхронном режимах. Смысл этих режимов тот же, что и для рассмотренных выше системных вызовов, -- синхронный режим означает, что программный модуль приостанавливает свою работу до тех пор, пока операция ввода-вывода не будет завершена, а при асинхронном режиме программный модуль продолжает выполняться в мультипрограммном режиме одновременно с операцией ввода-вывода. Отличие же заключается в том, что операция ввода-вывода может быть инициирована не только пользовательским процессом -- в этом случае операция выполняется в рамках системного вызова, но и кодом ядра, например кодом подсистемы виртуальной памяти для считывания отсутствующей в памяти страницы.

Подсистема ввода-вывода должна предоставлять своим клиентам (пользовательским процессам и кодам ядра) возможность выполнять как синхронные, так и асинхронные операции ввода-вывода, в зависимости от потребностей вызывающей стороны. Системные вызовы ввода-вывода чаще оформляются как синхронные процедуры в связи с тем, что такие операции длятся долго и пользовательскому процессу или потоку все равно придется ждать получения результатов операции для того, чтобы продолжить свою работу. Внутренние же вызовы операций ввода-вывода из модулей ядра обычно выполняются в виде асинхронных процедур, так как кодам ядра нужна свобода в выборе дальнейшего поведения после запроса операции ввода-вывода. Использование асинхронных процедур приводит к более гибким решениям, так как на основе асинхронного вызова всегда можно построить синхронный, создав дополнительную промежуточную процедуру, блокирующую выполнение вызвавшей процедуры до момента завершения ввода-вывода. Иногда и прикладному процессу требуется выполнить асинхронную операцию ввода-вывода, например при микроядерной архитектуре, когда часть кода работает в пользовательском режиме как прикладной процесс, но выполняет функции операционной системы, требующие полной свободы действий и после вызова операции ввода-вывода.

Менеджер ввода-вывода

В подсистеме ввода-вывода наряду с модулями, отражающими специфику внешних устройств и образующими вертикальные подсистемы, существуют модули универсального назначения. Эти модули организуют согласованную работу всех остальных компонентов подсистемы ввода-вывода и взаимодействие с пользовательскими процессами и другими подсистемами ОС. Так же как и функции управления устройствами, эти организующие функции распределены по всем уровням, образуя оболочку. Эта оболочка иногда называется менеджером ввода-вывода. Задачи такого менеджера довольно разнообразны.

Верхний слой менеджера составляют системные вызовы ввода-вывода, которые принимают от пользовательских процессов запросы на ввод-вывод и переадресуют их отвечающим за определенный класс устройств модулям и драйверам, а также возвращают процессам результаты операций ввода-вывода. Таким образом этот слой поддерживает пользовательский интерфейс ввода-вывода, создавая для прикладных программистов максимум удобств по манипулированию внешними устройствами и расположенными на них данными.

Нижний слой менеджера реализует непосредственное взаимодействие с контроллерами внешних устройств, экранируя драйверы от особенностей аппаратной платформы компьютера -- шины ввода-вывода, системы прерываний и т. п. Этот слой принимает от драйверов запросы на обмен данными с регистрами контроллеров в некоторой обобщенной форме с использованием независимых от шины ввода-вывода адресации и формата, а затем преобразует эти запросы в зависящий от аппаратной платформы формат. Диспетчер прерываний, рассмотренный выше, может входить в состав менеджера ввода-вывода или же представлять собой отдельный модуль ядра. В последнем случае менеджер ввода-вывода выполняет для диспетчера прерываний первичную обработку запросов прерываний, передавая диспетчеру обобщенные сведения об источнике запроса.

Важной функцией менеджера ввода-вывода является создание некоторой среды для остальных компонентов подсистемы, которая бы облегчала их взаимодействие друг с другом. Эта задача может быть решена за счет создания некоторого стандартного внутреннего интерфейса взаимодействия модулей ввода-вывода между собой, который бы дополнял внешние интерфейсы подсистемы с прикладными процессами, другими модулями ядра и аппаратурой. Наличие такого интерфейса существенно облегчает включение новых драйверов и файловых систем в состав ОС. Кроме того, разработчики драйверов и других программных компонентов освобождаются от написания общих процедур, таких как буферизация данных и синхронизация нескольких модулей между собой при обмене данными. Все эти функции берет на себя менеджер ввода-вывода.

Еще одной функцией менеджера ввода-вывода является организация взаимодействия модулей ввода-вывода с модулями других подсистем ОС, таких как подсистема управления процессами, виртуальной памятью и другими.

Примерами подобного менеджера являются менеджер ввода-вывода ОС Windows NT, а также среда STREAMS, существующая во многих версиях операционной системы UNIX. Менеджер ввода-вывода Windows NT организует взаимодействие между модулями с помощью пакетов запросов ввода-вывода -- IRP (I/O Request Packet). Получив запрос от процедуры системного вызова, менеджер формирует IRP и передает его нужному драйверу. Драйвер после выполнения запрошенной операции возвращает ответ в виде другого IRP менеджеру, а тот, в свою очередь, может при необходимости передать этот IRP другому драйверу. Менеджер позволяет драйверам задавать взаимосвязи (bindings) между собой, и на основании информации о взаимосвязях и происходит передача пакетов IRP. Кроме того, менеджер Windows NT поддерживает динамическую загрузку-выгрузку драйверов без останова системы.

Наличие стандартного внутреннего межмодульного интерфейса повышает устойчивость и улучшает расширяемость подсистемы ввода-вывода, хотя может несколько замедлить ее работу, так как любое разделение на слои и части приводит к дополнительным операциям при взаимодействии по сравнению с монолитной организацией с прямыми передачами управления.

Безопасность

Угрозы безопасности

Знание возможных угроз, а также уязвимых мест защиты, которые эти угрозы обычно эксплуатируют, необходимо для того, чтобы выбирать наиболее экономичные средства обеспечения безопасности.

Считается, что безопасная система должна обладать свойствами конфиденциальности, доступности и целостности. Любое потенциальное действие, которое направлено на нарушение конфиденциальности, целостности и доступности информации, называется угрозой. Реализованная угроза называется атакой.

Конфиденциальная (confidentiality) система обеспечивает уверенность в том, что секретные данные будут доступны только тем пользователям, которым этот доступ разрешен (такие пользователи называются авторизованными). Под доступностью (availability) понимают гарантию того, что авторизованным пользователям всегда будет доступна информация, которая им необходима. И наконец, целостность (integrity) системы подразумевает, что неавторизованные пользователи не могут каким-либо образом модифицировать данные.

Защита информации ориентирована на борьбу с так называемыми умышленными угрозами, то есть с теми, которые, в отличие от случайных угроз (ошибок пользователя, сбоев оборудования и др.), преследуют цель нанести ущерб пользователям ОС.

Умышленные угрозы подразделяются на активные и пассивные. Пассивная угроза — несанкционированный доступ к информации без изменения состояния системы, активная — несанкционированное изменение системы. Пассивные атаки труднее выявить, так как они не влекут за собой никаких изменений данных. Защита против пассивных атак базируется на средствах их предотвращения.

Можно выделить несколько типов угроз. Наиболее распространенная угроза — попытка проникновения в систему под видом легального пользователя, например попытки угадывания и подбора паролей. Более сложный вариант — внедрение в систему программы, которая выводит на экран слово login. Многие легальные пользователи при этом начинают пытаться входить в систему, и их попытки могут протоколироваться. Такие безобидные с виду программы, выполняющие нежелательные функции, называются «троянскими конями». Иногда удается торпедировать работу программы проверки пароля путем многократного нажатия клавиш del, break, cancel и т. д. Для защиты от подобных атак ОС запускает процесс, называемый аутентификацией пользователя (см. лекцию 16, раздел «Идентификация и аутентификация»).

Угрозы другого рода связаны с нежелательными действиями легальных пользователей, которые могут, например, предпринимать попытки чтения страниц памяти, дисков и лент, которые сохранили информацию, связанную с предыдущим использованием. Защита в таких случаях базируется на надежной системе авторизации (см. лекцию 16, раздел «Авторизация. Разграничение доступа к объектам ОС»). В эту категорию также попадают атаки типа отказ в обслуживании, когда сервер затоплен мощным потоком запросов и становится фактически недоступным для отдельных авторизованных пользователей.

Наконец, функционирование системы может быть нарушено с помощью программ-вирусов или программ-«червей», которые специально предназначены для того, чтобы причинить вред или недолжным образом использовать ресурсы компьютера. Общее название угроз такого рода — вредоносные программы (malicious software). Обычно они распространяются сами по себе, переходя на другие компьютеры через зараженные файлы, дискеты или по электронной почте. Наиболее эффективный способ борьбы с подобными программами — соблюдение правил «компьютерной гигиены». Многопользовательские компьютеры меньше страдают от вирусов по сравнению с персональными, поскольку там имеются системные средства защиты.

Таковы основные угрозы, на долю которых приходится львиная доля ущерба, наносимого информационным системам.

Подход к обеспечению информационной безопасности

Проблема информационной безопасности оказалась настолько важной, что в ряде стран были выпущены основополагающие документы, в которых регламентированы основные подходы к проблеме информационной безопасности. В результате оказалось возможным ранжировать информационные системы по степени надежности.

Наиболее известна оранжевая (по цвету обложки) книга Министерства обороны США [DoD, 1993]. В этом документе определяется четыре уровня безопасности — D, C, B и A. По мере перехода от уровня D до A к надежности систем предъявляются все более жесткие требования. Уровни C и B подразделяются на классы (C1, C2, В1, В2, ВЗ). Чтобы система в результате процедуры сертификации могла быть отнесена к некоторому классу, ее защита должна удовлетворять оговоренным требованиям.

ПоказатьСвернуть
Заполнить форму текущей работой