Основные этапы переработки нефти

Тип работы:
Курсовая
Предмет:
Химия


Узнать стоимость

Детальная информация о работе

Выдержка из работы

Министерство образования и науки Российской Федерации

ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Химический факультет

Кафедра химии высокомолекулярных соединений и нефтехимии

Курсовая работа

Основные этапы переработки нефти

Хохлова Мария Александровна

Томск 2011

Содержание

Введение

1. Задачи и цели переработки нефти

1.1 Варианты переработки нефти

2. Переработка нефти

2.1 Подготовка нефти к переработке

2.2 Первичная переработка

2.3 Вторичная переработка

2.4 Очистка нефтепродуктов

3. Продукты переработки нефти

3.1 Средние выходы продуктов на НПЗ (%)

Заключение

Список литературы

Введение

Современные процессы переработки нефти направлены на использование богатейшего химического потенциала нефти, обусловленного широким групповым составом углеводородов и гетероатомных соединений. Для получения нужных органических веществ, повышения качества моторных топлив и их очистки от вредных примесей в промышленности нефтяные фракции и индивидуальные углеводороды подвергают термическому (термический крекинг, пиролиз, коксование), термокаталитическому (каталитический крекинг, каталитический риформинг, изомеризация, алкилирование) воздействию и гидрогенизации (гидроочистка и гидрокрекинг).

1. Задачи и цели переработки нефти

нефть переработка перегонка

Цель переработки нефти — производство нефтепродуктов, прежде всего, различных топлив и сырья для последующей химической переработки.

Современные процессы переработки направлены на использование богатейшего химического потенциала нефти, обусловленного широким групповым составом углеводородов и гетероатомных соединений.

Выбор направления переработки нефти и ассортимента получаемых нефтепродуктов определяется физико-химическими свойствами нефти, уровнем развития техники нефтепереработки и потребностями в товарных нефтепродуктах данного экономического района.

1.1 Варианты переработки нефти

Различают 3 основных варианта переработки нефти

1. Топливный.

По топливному варианту нефть перерабатывают в основном на моторные и котельные топлива. При одной и той же мощности завода по нефти топливный вариант переработки отличается наименьшим числом технологических установок и низкими капиталовложениями.

2. Топливно-масляной.

По топливно-масляному варианту переработки нефти наряду с топливами получают смазочные масла. Для производства смазочных масел обычно подбирают нефти с высоким потенциальным содержанием масляных фракций (фракции, выкипающие выше 350°С).

3. Нефтехимический (комплексный).

Этот вариант переработки нефти отличается от предыдущих вариантов большим ассортиментом нефтехимических продуктов и в связи с этим наибольшим числом технологических установок и высокими капиталовложениями. Нефтехимический вариант переработки нефти представляет собой сложное сочетание предприятий, на которых помимо выработки высококачественных моторных масел и топлив не только проводится подготовка сырья (олефинов, ароматических, нормальных и изопарафиновых углеводородов и др.) для тяжелого органического синтеза, но и осуществляются сложнейшие физико-химические процессы, связанные с производством азотных удобрений, синтетического каучука, пластмасс, моющих средств, фенола, ацетона, спиртов.

2. Переработка нефти

2.1 Подготовка нефти к переработке

Извлеченная из скважин сырая нефть содержит попутные газы (50--100 м3/т), пластовую воду (200--300 кг/т) и растворенные в воде минеральные соли (10--15 кг/т), которые отрицательно сказываются на транспортировке, хранении и последующей переработке ее. Поэтому, подготовка нефти к переработке обязательно включает следующие операции:

-- удаление попутных (растворенных в нефти) газов или стабилизация нефти;

-- обессоливание нефти;

-- обезвоживание (дегидратация) нефти.

На крупных месторождениях нефти эти операции объединены в единую систему, включающую сбор, транспортировку и обработку нефти, газа и воды. На рис. 7.2 представлена подобная система.

Сырая нефть из скважин 1 под собственным давлением направляется к групповым замерным установкам (ГЗУ) 2, в которых нефтяной газ отделяется от жидкости и замеряются количества этих продуктов. Затем газ вновь смешивается с нефтью и водой и полученная смесь подается по коллектору (длиной до 8 км) 3 в дожимную насосную станцию 4, где газ отделяется от нефти. Газ поступает на газоперерабатывающий завод (ГПЗ) 5, а частично дегазированная нефть направляется на установку подготовки нефти (УПН) 6. На УПН проводятся операции окончательной дегазации, обессоливания и обезвоживания нефти. Газ далее направляется на ГПЗ, а вода -- на установку очистки 7. Очищенная вода закачивается насосами 8 в нефтяной пласт через нагнетательные скважины 9. Обессоленная и обезвоженная нефть из УПН поступает в герметизированные резервуары 10, из которых насосами перекачивается в установку «Рубин» 11 для определения качества и количества нефти. При удовлетворительном результате нефть подается в товарные резервуары 12 и из них в магистральный нефтепровод 13, транспортирующий нефть на нефтеперерабатывающие заводы. При неудовлетворительном качестве подготовки нефти она возвращается из установки «Рубин» в УПН.

В настоящее время разрабатываются методы магистральной транспортировки газонасыщенных нефтей, то есть доставки потребителю нефти и газа по одному трубопроводу. Это позволяет уменьшить расход энергии на перекачку продукта за счет снижения его вязкости и более полно утилизировать попутные нефтяные газы.

Стабилизация нефти. Сырая нефть содержит значительное количество растворенных в ней легких углеводородов C1 -- C4. При транспортировке и хранении нефти они могут выделяться, вследствие чего состав нефти будет меняться. Чтобы избежать потери газа и вместе с ним легких бензиновых фракций и предотвратить загрязнение атмосферы, эти продукты должны быть извлечены из нефти до ее переработки. Подобный процесс выделения легких углеводородов из нефти в виде попутного газа называется стабилизацией нефти. В зависимости от условий стабилизацию нефти осуществляют методом сепарации непосредственно в районе ее добычи на замерных установках, дожимных станциях и УПН (рис. 1), или на газоперерабатывающих заводах (рис. 1).

В первом случае попутный газ отделяют от нефти многоступенчатой сепарацией в сепараторах-газоотделителях (траппах), в которых последовательно снижаются давление и скорость потока нефти. В результате происходит десорбция газов, совместно с которыми удаляются и затем конденсируются летучие жидкие углеводороды, образуя «газовый конденсат». При сепарационном методе стабилизации в нефти остается до 2% углеводородов состава C1 -- C4.

Обессоливание и обезвоживание нефти. Удаление из нефти солей и воды происходит на промысловых установках подготовки нефти и непосредственно на нефтеперерабатывающих заводах (НПЗ).

В обоих случаях процессы обессоливания и обезвоживания нефти связаны с необходимостью разрушения эмульсий, которые образует с нефтью вода. При этом, на промыслах разрушаются эмульсии естественного происхождения, образовавшиеся в процессе добычи нефти, а на заводе -- искусственные эмульсии, полученные при многократной промывке нефти водой для удаления из нее солей. После обработки содержание воды и хлоридов металлов в нефти снижается на первой стадии до 0,5-- 1,0% и 100--1800 мг/л соответственно, и на второй стадии до 0,05--0,1% и 3--5 мг/л.

Для разрушения нефтяных эмульсий используются механические (отстаивание), термические (нагревание), химические и электрические методы. При химическом методе обезвоживания нагретую нефтяную эмульсию обрабатывают деэмульгаторами. В качестве последних используются различные неиногенные ПАВ типа защитных коллоидов: оксиэтилированные жирные кислоты, метил- и карбоксиметилцеллюлоза, лигносульфоновые кислоты и др. Наиболее эффективное удаление солей и воды достигается при электротермохимическом методе обессоливания, в котором сочетаются термохимическое отстаивание и разрушение эмульсии в электрическом поле.

Рис. 1. Схема сбора нефти, газа и воды на нефтяных промыслах:

1 -- скважины; 2 -- групповая замерная установка; 3 -- коллектор; 4 -- дожимная насосная станция; 5 -- газоперерабатывающий завод; 6 -- установка подготовки нефти; 7 -- установка очистки воды; 8 -- насосы; 9 -- нагнетательные скважины; 10 -- герметизированные резервуары, 11 -- установка «Рубин»; 12 -- товарные резервуары; 13 -- магистральный нефтепровод.

Установки электротермохимического удаления солей и воды или электрообессоливающие установки (ЭЛОУ) используются как на промыслах, так и на нефтеперегонных заводах. В этом методе разрушение нефтяной эмульсии происходит в аппаратах -- электродегидрататорах под воздействием переменного тока напряжением 30--45 кВ, что вызывает передвижение и слипание капель воды, содержащих соли, и ее отделение от нефти. На рис. 2 представлена принципиальная схема ЭЛОУ.

Нефть из сырьевого резервуара 1 с добавками деэмульгатора и слабого щелочного или содового раствора проходит через теплообменник 2, подогревается в подогревателе 3 и поступает в смеситель 4, в котором к нефти добавляется вода. Образовавшаяся эмульсия последовательно проходит электродегидрататоры 5 и 6, в которых от нефти отделяется основная масса воды и растворенных в ней солей, вследствие чего содержание их снижается в 8--10 раз. Обессоленная нефть проходит теплообменник 2 и после охлаждения в холодильнике 7 поступает в сборнике 8. Отделившаяся в электродегидрататорах вода отстаивается в нефтеотделителе 9 и направляется на очистку, а отделившаяся нефть присоединяется к нефти, подаваемой в ЭЛОУ.

Рис. 2. Принципиальная схема ЭЛОУ:

1 -- резервуар нефти; 2 -- теплообменник; 3 -- подогреватель; 4 -- смеситель; 5 -- электродегидрататор I ступени; 6 -- электродегидрататор II ступени; 7 -- холодильник; 8 -- сборник обессоленной нефти; 9 -- нефтеотделитель.

Обессоливание и обезвоживание нефти увеличивает сроки межремонтной работы установок гонки нефти и снижает расход тепла, а также уменьшает расход реагентов и катализаторов в процессах вторичной переработки нефтепродуктов.

2.2 Первичная переработка нефти

Переработка нефти начинается с ее первичной перегонки. Этот процесс является изобретением технологов-нефтяников и основан на свойстве нефти. Нефть — сложная смесь взаимно растворимых углеводородов, имеющих различные температуры начала кипения. В упрощенном виде: чем длиннее молекула углеводорода, тем выше его точка кипения.

Сырьем для установок первичной перегонки служат нефть и газовый конденсат. Их разделяют на фракции для последующей переработки или использования как товарных продуктов. При первичной переработке нефти проводят ее атмосферную перегонку и вакуумную перегонку мазута. Эти процессы осуществляют на атмосферных трубчатых (АТ) установках и вакуумных трубчатых (ВТ) установках.

На АТ-установках осуществляют неглубокую переработку нефти с получением бензиновых, керосиновых, дизельных фракций и мазута. ВТ-установки предназначены для углубления переработки нефти. На этих установках из мазута получают газойлевые, масляные фракции и гудрон, которые используют в качестве сырья в процессах вторичной переработки нефти.

Процесс перегонки происходит в ректификационной колонне, представляющей собой вертикальный цилиндрический аппарат высотой до 30 м и диаметром до 4 м. Внутреннее пространство колонны разделено на отсеки большим количеством горизонтальных дисков (тарелок), в которых имеются отверстия для прохождения через них паров нефти.

Перед закачкой в колонну нефть нагревают в трубчатой печи до температуры 360−390°

С. При этом бензин, нафта (лигроин), керосин, легкий и тяжелый газойль переходят в парообразное состояние, а жидкая фаза с более высокой температурой кипения представляет собой мазут. После ввода горячей смеси в колонну мазут стекает вниз, а углеводороды в парообразном состоянии поднимаются вверх.

Смесь горячей жидкости и пара, поднимаясь по колонне и остывая, постепенно конденсируется. Вначале отделяются и опускаются на дно специальных тарелок тяжелые тугоплавкие фракции нефти, выше последовательно конденсируются и оседают на дно тарелок пары более легких фракций. Особенность процесса ректификации заключается в том, что горячие пары, поднимаясь, поочередно проходят через слои горячего конденсата. Количество тарелок в колонне должно быть таким, чтобы общий расход сливающихся с них готовых продуктов перегонки был равен расходу сырой нефти, подаваемой внутрь колонны. Несконденсировавшиеся пары углеводородов направляются на газофракционирование, где из них получают сухой газ, пропан, бутан и бензиновую фракцию.

При первичной перегонке нефти получают широкий ассортимент фракций и нефтепродуктов, различающихся по границам температур кипения, углеводородному и химическому составу, вязкости, температурам вспышки, застывания и другим свойствам.

В зависимости от технологии перегонки нефти пропан-бутановую фракцию получают в сжиженном или газообразном состоянии. Ее используют в качестве сырья, на газофракционирующих установках с целью производства индивидуальных углеводородов, бытового топлива, компонента автомобильного бензина. Фракцию именуют нефтепродуктом, если ее свойства отвечают нормам стандарта или техническим условиям на товарный продукт, не требующий дополнительного передела.

Бензиновая фракция с пределами выкипания 28−180°С преимущественно подвергается вторичной перегонке для получения узких фракций (28−63, 62−85, 85−105°С). Эти фракции служат сырьем для процессов изомеризации, каталитического риформинга с целью получения индивидуальных ароматических углеводородов (бензола, толуола, ксилолов), высокооктановых компонентов автомобильных и авиационных бензинов, а также в качестве сырья для пиролиза при получении этилена.

Керосиновая фракция с температурами выкипания 120−230°С используется как топливо для реактивных двигателей; фракцию 150−280°С из малосернистых нефтей используют как осветительные керосины; фракцию 140−200 С — как растворитель для лакокрасочной промышленности.

Дизельная фракция с температурами выкипания 140−320°С используется в качестве дизельного топлива зимнего, фракция 180−360°С — в качестве летнего. Фракция 200−320°С из высокопарафиновой нефти используется как сырье для получения жидких парафинов.

Мазут применяется как котельное топливо или в качестве сырья установок вакуумной перегонки, а также термического, каталитического крекинга и гидрокрекинга.

Вакуумный газойль (350−500°С) используется в качестве сырья каталитического крекинга и гидрокрекинга.

Узкие масляные фракции с пределами выкипания (320−400°С, 320−420,…, 450−500°С) используют как сырье для производства минеральных масел различного назначения и твердых парафинов.

Гудрон — остаток вакуумной перегонки мазута — подвергают деасфальтизации, коксованию, используют в производстве битума.

2.3 Вторичная переработка нефти

Полученные при перегонке с помощью физических процессов нефтепродукты отправляются на другие пределы, в которых используются различные химические реакции. Химические процессы, составляющие основу вторичной переработки, позволяют максимально использовать энергетический и химический потенциал углеводородов. Классификация методов вторичной переработки нефти приведена ниже.

Методы вторичной переработки нефти

Термические:

Каталитические:

Термический крекинг

Каталитический крекинг

Коксование

Риформинг

Пиролиз

Гидрогенизационные процессы

На ранних стадиях развития нефтепереработки потребности в бензине росли быстрей, чем потребности в тяжелом (например, дизельном) топливе. Опережающее производство бензина привело к затовариванию рынка тяжелым топливом. Чтобы справиться с этой проблемой, инженеры предложили несколько крекинг-процессов.

Термический крекинг — высокотемпературная переработка углеводородов нефти с целью получения высококачественного топлива. Различают несколько видов термического крекинга.

Неглубокий термический крекинг при температурах 480−490°С и давлении 1,5−2,0 МПа для получения котельного топлива из высоковязкого исходного сырья: мазута и гудрона.

Глубокий (жидкофазный) крекинг при температурах 500−540°С и давлении выше 5,0 МПа применяется для получения бензина с антидетонационными характеристиками из лигроиновых, керосиновых и газойлевых фракций. Крекинг-бензины содержат в своем составе значительное количество непредельных и ароматических углеводородов.

Высокотемпературный (парофазный) крекинг при температурах 580- 600 °C и давлении 0,2−0,3 МПа применяется для получения бензина с высокими октановыми числами из керосино-газойлевых фракций. Попутно получают газ, содержащий значительное количество непредельных углеводородов.

Побочными продуктами термического крекинга являются газ, крекинг-остаток, обогащенный высокомолекулярными углеводородами, и тяжелая смола.

Пиролиз используется для разложения углеводородов при 700−900°С и давлении 1,0−1,2 МПа. С его помощью получают газообразные непредельные углеводороды, в основном этилен и пропилен. Побочными продуктами пиролиза являются смолы пиролиза и предельные газы метан и этан. Из смолы пиролиза извлекают ароматические углеводороды бензол, толуол, и ксилолы. Другим направлением высокотемпературного пиролиза

(1200−2000 °С) является получение сажи (технического углерода) из углеводородных фракций, содержащий более 60% ароматических углеводородов.

Коксование — высокотемпературный (490−520°С и 0,2−0,6 МПа) процесс получения электродного или топливного кокса из нефтяных остатков. Это пек, полученный из смолы пиролиза, мазут и гудрон.

Термическая деструкция углеводородов — это их расщепление на части под воздействием температуры. Однако при температурах 500−900° С протекают не только реакции распада вещества, но одновременно и реакции синтеза.

Реакции распада протекают с увеличением числа молекул, объема системы и поглощением тепла. Очевидно, что для разрыва химических связей в молекуле необходимо затратить некоторое количество энергии. Энергия связей в молекулах неравноценны. Наименьшей энергией связи обладает связь типа углерод-гетероатом (например, энергия связи сульфида C — S равна 138 кДж/моль). Следовательно, при термическом воздействии эта связь будет разрываться в первую очередь. Следом будут разрываться связи углерод-углерод в парафинах, нафтенах (310 кДж/моль) и ацетиленовые связи.

Неравноценны также связи одного типа в пределах одной молекулы. Так, для отрыва первого атома водорода от молекулы метана требуется больше энергии, чем для отрыва последующих водородных атомов.

Алканы в условиях термического крекинга распадаются с образованием парафина и олефина. Метан в условиях крекинга не распадается. Низкомолекулярные алканы могут подвергаться реакции дегидрирования:

С4Н10- СН4 + С3Н6(0,6)

С2Н6 +С2Н4 (0,3)

С4Н8 + Н2 (0,1)

Здесь в скобках рядом с реакциями приводится доля продукта по данному направлению. При распаде молекулы на неравные осколки углеводород с меньшим молекулярным весом получается предельным, а с большим — непредельным.

Для нафтенов характерны следующие группы реакций: укорочение боковых парафиновых цепей; дегидрирования нафтенового кольца с образованием циклоолефинов и ароматических углеводородов; распад моноциклических нафтенов на олефины.

Олефины в термических реакциях претерпевают распад на алкены и алкины с меньшей молекулярной массой, но возможны реакции полимеризации и конденсации.

Ароматические углеводороды с низким числом углеродных атомов в цепи термически устойчивы и поэтому накапливаются в продуктах термических процессов. В условиях термических процессов они способны конденсироваться с выделением водорода. В результате получается твердый углеродистый осадок — кокс или сажа.

Влиять на состав продуктов термического процесса можно изменением температуры, давлением и временем контакта. При повышении температуры в продуктах накапливаются газообразные и твердые вещества и снижается доля жидких продуктов. При этом жидкие продукты обогащаются ароматическими соединениями, а газ — водородом и низшими углеводородами.

Снижение давления благоприятствует реакциям дегидрирования, большему выходу водорода и газообразных продуктов непредельного характера. Продолжительность контакта увеличивает долю высоковязких жидкостей (смол), твердых (кокса) и газообразных веществ.

С учетом вышеизложенного жидкофазный крекинг, целью которого является получение автомобильных бензинов, следует проводить при невысоких температурах, повышенном давлении во-избежании сильного газообразования, с постоянным отводом целевого продукта для предотвращения вторичных реакций синтеза.

Полностью использовать потенциал нефти удается с помощью катализаторов. Катализаторы характеризуются активностью, стабильностью и селективностью. Активность катализатора — это его производительность. Селективность определяется количеством целевого продукта, образовавшегося из исходного сырья.

Катализаторы термокаталитических процессов состоят из трех компонентов: носителя, основного компонента и добавок. В качестве носителя используются алюмосиликаты, основного компонента — цеолиты. В качестве добавок используются платина, рений, металлоорганические комплексы сурьмы, висмута, фосфора, оксиды кальция и магния. Среди катализаторов риформинга большое значение приобрели платиновый и платино-рениевый катализатор.

Каталитический крекинг — это процесс разложения высокомолекулярных углеводородов при 470−540°С и давлении 0,13−0,15 МПа в присутствии катализаторов. Разработан процесс для производства высокооктанового бензина с октановым числом до 92 и сжиженных газов. В качестве катализаторов используются в основном алюмосиликаты и цеолиты. Сырьем являются дистилляты прямой гонки керосино-соляровая фракция, вакуумный газойль и продукты термического крекинга. В крекинг-установке происходит несколько процессов, основным из которых является превращение тяжелых фракций в бензин. Помимо бензина продуктом крекинга является полный набор углеводородов от метана до тяжелого газойля и остатка, включая кокс.

Риформинг — это каталитический процесс переработки низкооктановых бензиновых фракций при температурах 480−540°С и давлении 2,0−4 МПа. Продуктом является высокооктановый компонент товарного автомобильного бензина с октановым числом до 100 и ароматические углеводороды (бензол, толуол, ксилолы). Сырьем являются бензиновые фракции, содержащие все типы углеводородов.

Температура кипения нефтепродуктов, как и любой другой жидкости, зависит от давления. Нагревание придает молекулам необходимую энергию, чтобы они могли покинуть жидкую фазу. Чем ниже внешнее давление, тем ниже температура парообразования. Этот эффект используют еще в одной разновидности крекинг-процесса, протекающего в условиях вакуума. Сущность этого выгодного процесса такова. Прямогонный остаток подается на установку вакуумной перегонки, где при давлении 0,4 атм и температуре около 400 °C разделяется на вакуумный дистиллят, идущий на получение смазочных масел, и остаток вакуумной перегонки — пек.

Гидрогенизационные процессы переработки нефтяных фракций проводятся в присутствии водорода и катализаторов при 260−430°С и давлении 2−32 МПа. Эти процессы увеличивают выход светлых нефтепродуктов и обеспечивают удаление примесей серы, кислорода и азота.

Алкилирование проводят при низких температурах 0 — 30 °C и давлении 0,4−0,5 МПа. Назначение процесса — получение углеводородной фракции с высоким содержанием парафиновых углеводородов изомерного строения. Сырьем служат газы, состоящие из бутана и бутилена. Как правило, это сжиженный газ каталитического крекинга.

Вакуумная перегонка прямогонного остатка эквивалентна его перегонке при атмосферном давлении в интервале кипения 540−590°С. Точку выкипания прямогонного остатка, то есть температуру полного выкипания сырой нефти определить невозможно. До температуры 480 °C. нефть за счет эффекта испарения просто разгоняется на составляющие фракции. При более высоких температурах сложные молекулы получают настолько большую энергию, что ее хватает, чтобы расколоть большую молекулу на две или несколько маленьких молекул. Например, молекула парафина С16Н34 может расколоться на 3 части: С8Н18, С6Н12, С2Н4. При этом легкие молекулы образовавшихся углеводородов дают более «рыхлую» по сравнению с исходной структурой жидкости. В результате продукты крекинга занимают объем примерно на 15−18% больше объема исходного сырья.

Прямогонный бензин отправляется на установки для получения автомобильного бензина с заданным октановым числом во избежание его детонации. Запрет на применение тетраэтилсвинца заставляет вводить в бензин высокооктановые компоненты, в частности, продукты изомеризации пентана и гексана. Нормальный пентан характеризуется октановым числом 62, а изопентан — числом 92.

Нафта (лигроин) подается на установку риформинга, где в присутствии катализатора при температуре около 500 °C и давлении до 35 атм получают дистилляты, используемые в качестве высокооктановых компонентов бензинов или для выделения из них индивидуальных ароматических углеводородов.

Керосин и газойли поступают на установку гидроочистки. Назначение этой операции — удалить вредные примеси, присутствие которых в нефтепродуктах ограничивается. Поток горячего нефтепродукта смешивают с водородом и пропускают через слой катализатора. В результате из нефтепродукта удаляются сера, азот и металлы.

Распространены три типа керосинов: осветительный, тракторный и керосин для реактивных двигателей (реактивное топливо). Очищенный газойль направляется на смешение для получения дизельного топлив.

Остатки перегонки нефти и крекинга используются в качестве сырья для получения топочного мазута, битума и кокса. Нефтяные битумы содержат различное количество асфальтенов — сложных полиароматических соединений, в молекулах которых бензольные кольца тесно прилегают друг к другу и каждая молекула содержит более 50 атомов углерода. Чем больше в битумах асфальтенов, тем они тверже. Для получения твердых и резиноподобных дорожных битумов их продувают горячим воздухом.

2.4 Очистка нефтепродуктов

Фракции (дистилляты), получаемые в ходе первичной и вторичной переработки нефти, содержат в своем составе различные примеси. В светлых нефтепродуктах нежелательными примесями являются сернистые соединения, нафтеновые кислоты, непредельные соединения, смолы и твердые парафины.

Присутствие в моторных топливах серы и нафтеновых кислот вызывает коррозию деталей двигателей. Непредельные соединения в топливах образуют осадки, загрязняющих систему топливопроводов. Повышенное содержание смол в топливе приводит к нагарообразованию. Присутствие твердых углеводородов в нефтепродуктах повышает температуру их застывания и ухудшает подачу топлива в цилиндры. Присутствие ароматики в осветительных керосинах образует коптящее пламя.

Для удаления вредных примесей из светлых нефтепродуктов применяются следующие процессы.

Щелочная очистка заключается в обработке топлив водными растворами каустической или кальцинированной соды. При этом из бензинов удаляются сероводород, из керосинов и дизельного топлива — нафтеновые кислоты.

Кислотно-щелочная обработка дистиллятов удаляет из них непредельные и ароматические углеводороды, а также смолы. Заключается она в обработке продукта сначала серной кислотой, затем — водным раствором щелочи.

Депарафинизация используется для понижения температуры застывания дизельных топлив и заключается в их обработке раствором карбамида.

Гидроочистка применяется для удаления из сернистых соединений из топлив. Для этого в присутствии катализатора используют водород, который вытесняет из дистиллятов серу в виде сероводорода.

Ингибирование применяют для подавления реакций окисления и полимеризации непредельных углеводородов в бензинах термического крекинга путем введения специальных добавок.

Смазочные масла очищают селективными растворителями, которые извлекают из нефтепродукта определенные компоненты. Для очистки применяют следующие растворители: ацетон, фурфурол, фенол, пропан, бензол, толуол. С их помощью из масел удаляют смолы, асфальтены, ароматику и парафины. Очистка производится в экстракционных колоннах. В результате селективной очистки образуется рафинат (полезные компоненты масел) и экстракт (примеси).

Депарафинизации подвергаются рафинаты селективной очистки посредством разбавления растворителем и последующей фильтрации.

Гидроочистка масел применяется для их стабилизации, снижения коксуемости и содержания серы.

МОЛЕКУЛА АСФАЛЬТЕНА В СОСТАВЕ НЕФТИ. С57Н32

3. Результаты переработки нефти

3.1 Продукты переработки нефти

Как видно на рис. 1 на первом месте по добычи энергетических минеральных продуктов находится нефть. Нефть и газ являются одной из основ российской экономики, важнейшим источником экспортных поступлений страны.

Рис. 1

На сегодняшний день из нефти производят: жидкое топливо (бензин, керосин, дизельное топливо и топливные масла), газообразное топливо, твердое топливо (нефтяной кокс), машинные масла и смазочные материалы, парафины и церезины, битумы, ароматические соединения, сажа, ацетилен, этилен, нефтяные кислоты и их соли, высшие спирты, пластмассы, моющие средства, взрывчатку, полиэтиленовую пленку, синтетические нитки и ткани (нейлон, капрон), одежду (чулки, шубы, белье, куртки). Нефть используется для приготовления косметики (губная помада, тушь для ресниц, туалетная вода) и парфюмерии. Нефтепродукты идут на изготовление копировальной бумагу, красителей для печатания книг, газет. Асфальт, по которому мы ходим, также изготовляется из нефти. На сегодняшний день одно из самых перспективных направлений в нефтехимии — биохимическая переработка нефтяных углеводородов для получения белковых веществ. Попросту говоря, это попытка создания продуктов питания из нефти.

Обобщенная диаграмма основных продуктов нефти

3.2 Средние выходы продуктов переработки нефти на нефтеперерабатывающих заводах:

Бензин — 46%

Нефтяное топливо — 27%

Реактивное топливо — 10%

Нефтяной кокс — 5%

Сжиженные газы — 4%

Сырье для нефтехимии — 3%

Битум — 3%

Смазочные материалы — 1%

Керосин — 1%

Заключение

Наряду с большим количественным ростом, важной народнохозяйственной задачей нефтеперерабатывающей промышленности в ближайшие годы должно быть резкое улучшение качества бензинов, дизельных топлив, смазочных масел и других нефтепродуктов, а также полное обеспечение промышленности нефтехимического синтеза необходимым и высококачественным сырьем и полупродуктами.

Добыча и переработка нефти — дело непростое. Углубление переработки нефти позволяет выйти на целую гамму синтетических продуктов и материалов — пластмассы, каучуки, шину и др. они являются не только ценными экспортными продуктами, но и создают в ходе переработки сотни тысяч новых рабочих мест.

Список использованной литературы

1. Эрих В. Н. Химия нефти и газа. — Изд-во «Химия», 1969. — 284 с.

2. Тетельмин В. В., Язев В. А. Нефтегазовое дело. Полный курс. — Изд. Дом «Интеллект», 2009. — 800 с.

3. Мстиславская Л. П., Павлинич М. Ф., Филиппов В. П. Основы нефтегазового производства. — М.: ФГУП Изд-во «Нефть и газ», 2005. — 276 с.

4. Вержичинская С. В., Дигуров Н. Г., Синицин С. А. Химия и технология нефти и газа: учебное пособие. — М., 2007. — 400 с.

5. Гуревич И. Л. Технология переработки нефти и газа, — М., 1972. — 360 с.

6. Александрова В. И. Потребление нефти и ее продуктов (научно-технический журнал). — Изд-во МГГУ, — 2009. — 31 с.

7. Классификация продуктов переработки нефти (научно-технический журнал). — Изд-во МГГУ, — 2009. — 300 с.

ПоказатьСвернуть
Заполнить форму текущей работой