Основы высшей математики

Тип работы:
Контрольная
Предмет:
Физико-математические науки


Узнать стоимость

Детальная информация о работе

Выдержка из работы

Контрольная работа

Основы высшей математики

Оглавление

Введение

1 Операция умножения (деления) матрицы любого размера на произвольное число

2 Произведение матриц

3 Транспонированная матрица

4 Задача

Список использованных источников

Введение

Понятие Матрица (в математике) было введено в работах У. Гамильтона и А. Кэли в середине 19 века. Основы теории созданы К. Вейерштрассом и Ф. Фробениусом (2-я половина 19 века и начало 20 века). И.А. Лаппо-Данилевский разработал теорию аналитических функций от многих матричных аргументов и применил эту теорию к исследованию систем дифференциальных уравнений с аналитическими коэффициентами. Матричные обозначения получили распространение в современной математике и её приложениях. Исчисление Матрица (в математике) развивается в направлении построения эффективных алгоритмов для численного решения основных задач.

С помощью матриц удобно решать системы линейных уравнений, выполнять многие операции с векторами, решать различные задачи компьютерной графики и другие инженерные задачи.

1 Операция умножения (деления) матрицы любого размера на произвольное число

Матрицей называется прямоугольная таблица из чисел, содержащая некоторое количество m строк и некоторое количество п столбцов. Числа т и п называются порядками матрицы. В случае, если т = п, матрица называется квадратной, а число m = n -- ее порядком.

Все числа, входящие в матрицу называются ее элементами. Если все элементы состоят их нулей, то это нулевая матрица, она играет роль нуля в матричном исчислении.

Единичной матрицей называется квадратная матрица любого размера, где по главной диагонали стоят единицы, а все остальные элементы равны нулю.

играет роль единицы в матричном исчислении.

Если такую матрицу умножить на другую матрицу (при возможности умножения) даст исходную матрицу.

— дельта Кронекера

Операция умножения (деления) матрицы любого размера на произвольное число сводится к умножению (делению) каждого элемента матрицы на это число. Произведением матрицы, А на число k называется матрица В, такая что bij = k? aij.

В = k? A

bij = k? aij.

Матрица — А = (-1)? А называется противоположной матрице А.

2 Произведение матриц

Операция умножения двух матриц вводится только для случая, когда число столбцов первой матрицы равно числу строк второй матрицы. Произведением матрицы Аm? n на матрицу Вn? p, называется матрица Сm? p такая, что

сik = ai1? b1k + ai2? b2k + … + ain? bnk,

т. е. находиться сумма произведений элементов i — ой строки матрицы, А на соответствующие элементы j — ого столбца матрицы В. Если матрицы, А и В квадратные одного размера, то произведения АВ и ВА всегда существуют. Легко показать, что, А? Е = Е? А = А, где, А квадратная матрица, Е — единичная матрица того же размера.

Свойства умножения матриц:

Умножение матриц не коммутативно, т. е. АВ? ВА даже если определены оба произведения. Однако, если для каких — либо матриц соотношение АВ=ВА выполняется, то такие матрицы называются перестановочными. Самым характерным примером может служить единичная матрица, которая является перестановочной с любой другой матрицей того же размера. Перестановочными могут быть только квадратные матрицы одного и того же порядка.

А? Е = Е? А = А

Умножение матриц обладает следующими свойствами:

1. А? (В? С) = (А? В)? С;

2. А? (В + С) = АВ + АС;

3. (А + В)? С = АС + ВС;

4. б? (АВ) = (бА)? В;

5. А? 0 = 0; 0? А = 0;

6. (АВ)Т = ВТАТ;

7. (АВС)Т = СТВТАТ;

8. (А + В) Т = АТ + ВТ.

3 Транспонированная матрица

Транспонированная матрица — матрица AТ, полученная из исходной матрицы A заменой строк на столбцы.

Формально, транспонированная матрица для матрицы A размеров m*n — матрица AT размеров n*m, определённая как AT[i, j] = A [j, i].

Например,

Свойства транспонированных матриц:

1. (AT)T = A

2. (A + B) T = AT + BT

3. (AB)T = BTAT

4. detA = detAT

4 Задача

Список использованных источников

1. Выгодский М. Я. Справочник по высшей математике. — М.: АСТ, 2005. — 991 с.

2. Высшая математика для экономистов: Учебник для вузов/ под ред. Проф.Н. Ш. Кремера. — М.: ЮНИТИ, 2000.

3. Гусак А. А., Гусак Г. М., Бричкова Е. А. Справочник по высшей математике. — Минск. ТетраСистемс, 2004. — 640 с.

4. Миносцев В. Б. Курс высшей математики. Часть 2.- М.: 2005. — 517 с.

ПоказатьСвернуть
Заполнить форму текущей работой