Использование активных моделей внешнего вида при исследовании степени поврежденности микроструктуры поверхности металлов и сплавов

Тип работы:
Реферат
Предмет:


Узнать стоимость

Детальная информация о работе

Выдержка из работы

УДК 681. 3
ИСПОЛЬЗОВАНИЕ АКТИВНЫХ МОДЕЛЕЙ ВНЕШНЕГО ВИДА ПРИ ИССЛЕДОВАНИИ СТЕПЕНИ ПОВРЕЖДЕННОСТИ МИКРОСТРУКТУРЫ ПОВЕРХНОСТИ МЕТАЛЛОВ И СПЛАВОВ
Андреева О. В. 1, Дмитриев Д. В. 1
ФГБОУ ВПО «Нижегородский государственный технический университет им. Р.Е. Алексеева» Нижний Новгород, Россия (603 950, Нижний Новгород, ГСП-41, ул. Минина, д. 24), e-mail: _andreevaov@gmail. com Статья посвящена совершенствованию методов автоматизации контроля качества материалов. Рассматривается классический способ прогнозирования отдельных показателей сопротивления усталости на основе количественной оценки степени поврежденности микроструктуры поверхности. На основе существующих методик был предложен вариант повышения качества работы системы прогнозирования ресурсных характеристик металлов и сплавов. Представлен алгоритм оценки поврежденности микроструктуры с использованием активных моделей внешнего вида. Алгоритм позволяет упростить измерительную схему, методику измерений и сделать ее доступной для экспресс-контроля степени поврежденности микроструктуры поверхности металлов и сплавов в заводских и лабораторных условиях. Полученные результаты свидетельствует о достаточно хорошей согласованности разработанного алгоритма и экспертных оценок. Использование данного алгоритма позволяет повысить точность и объективность оценок ресурсных характеристик металлов и сплавов. Ключевые слова: изображение микроструктуры металла, поврежденность поверхности, предварительная обработка изображений, активные модели внешнего вида.
DAMAGE DEGREE INVESTIGATION OF THE METALS AND ALLOYS MICROSTRUCTURE SURFACE USING THE ACTIVE APPEARANCE MODELS
Andreeva O.V. 1, Dmitriev D.V. 1
1 & quot-Nizhny Novgorod State Technical University n.a. R.E. Alekseev& quot- Nizhny Novgorod, Russia (603 950, Nizhny Novgorod, street Minin, 24), e-mail: andreevaov@gmail. com
Paper is aim to improve methods for automation of quality control materials. Classic method for predicting individual indicators of fatigue resistance based on quantifying the degree of damage the surface microstructure was considered. Based on the existing techniques the option of increasing the quality of the forecasting system resource characteristics of metals and alloys was offered. The algorithm estimates the damage microstructure using active appearance models presented. The algorithm analysis was performed. The algorithm allows to simplify the measuring circuit, the measurement procedure and make it available to express the degree of damage control surface microstructure of metals and alloys in the factory and laboratory conditions. The results indicate a good consistency of the algorithm and expert estimates. Presented algorithm can improve the accuracy and objectivity of the assessment the lifetime characteristics of metals and alloys.
Keywords: the metal microstructure image, the surface damage, images pre-processing, active appearance models.
Машиностроение является одной из базовых отраслей экономики. Оно определяет развитие таких комплексов, как топливно-энергетический, транспортный, строительный, химический, нефтехимический и ряда других. Уровень развития машиностроения непосредственно влияет на удельные показатели валового внутреннего продукта страны, а значит, и на конкурентоспособность выпускаемой продукции. Одним из главных показателей уровня машиностроительного производства является степень его автоматизации. Очевидно, что повышение степени автоматизации производства позволяет снизить затраты и повысить качество выпускаемой продукции. Увеличение долговечности и повышение надежности выпускаемой продукции в значительной степени определяется применением высококачественных материалов, что требует проведения их достоверного контроля.
Таким образом, совершенствование методов и средств контроля качества материалов является одной из важных проблем машиностроения. Ввиду высокого уровня требований, больших объемов и трудоёмкостью осуществляемой работы актуальной считается задача контроля качества материалов, в том числе контроля качества сплавов. Вариант решения задачи оценки степени поврежденности микроструктуры поверхности металлов и сплавов представлен в настоящей работе.
Количественная оценка степени поврежденности микроструктуры поверхности металлов и сплавов
Усталостные трещины появляются, когда максимальные подповерхностные касательные напряжения превосходят предел выносливости материала. На начальном этапе зарождения трещин повреждения накапливаются в виде полос скольжения. По полосам скольжения качественно можно судить о поведении конструкционного материала при циклической нагрузке. Процесс усталости отображается в повреждениях микроструктуры поверхности и показателе сопротивления усталости [1].
Существуют методы, позволяющие прогнозировать ряд характеристик сопротивления усталости, использующие информацию о степени поврежденности микроструктуры поверхности металлов и сплавов [5]. Некоторые из них используют абсолютные значения характерных элементов поврежденной микроструктуры поверхности, такие как число грубых полос скольжения, их ширина и длина. Рассмотрим один из таких методов подробнее.
Для прогнозирования поведения материала при циклической нагрузки необходимо вычислить значение поврежденности поверхности Ф, которое зависит от многих факторов, таких как число зерен на микроструктуре Пз1, число поврежденных зерен Пз2, разность чисел неповрежденных и поврежденных зерен по всей их площади пз3, число зерен, поврежденных широкими полосами скольжения пз4, общее число полос в поврежденных зернах пп1, число широких, извилистых и прерывистых полос скольжения пп2, фактическая площадь микроструктуры? м и площадь рабочей поверхности образца Г обр т. е. [2].
Ф=/(Пз1, Пз2, Пз3, Пз4, Пп1, Пп2, ?м, Г обр) (1)
Практическое применение данного подхода затруднено многими факторами, среди которых высокая трудоёмкость и стоимость выполняемых работ, а так же относительность точности, обусловленная человеческим фактором [4]. Предлагается рассмотреть метод обработки изображений микроструктуры поверхности металлов и сплавов с целью автоматизировать процедуру формирования оценок ресурсных характеристик металлов и сплавов.
Оценка степени поврежденности производилась на основе изображений трех классов, каждому из которых ставится в соответствие определенное количество циклов нагружения. Всего было исследовано по 100 изображений каждого класса: исходного состояния материала до нагружения, после 100 000 циклов нагружения и после образования трещины
[3].
Предлагаемый метод количественной оценки поврежденности поверхности состоит из трех основных этапов: предобработка изображения, определение числа объектов на изображении и классификация в соответствии со степенью поврежденности микроструктуры.
Цель алгоритма определить значения параметров, влияющих на Ф, путем сравнения изображений из разных классов. В связи с этим возникает необходимость детектировать совершенно конкретные зерна металла на поврежденной микроструктуре. Для решения данной задачи был выбран алгоритм активных моделей внешнего вида (ААМ).
В основе алгоритма ААМ используются статистические модели изображений, которые путем особых преобразований, называемых деформацией, накладываются на реальное изображение. Деформация представлена в виде композиции переноса, поворота и масштабирования конкретной модели.
Для процедуры поиска ключевых точек микроструктуры ААМ использует два типа параметров: параметры внешнего вида и параметры статистической модели, полученные на обучающей выборке. Обучение происходит на размеченных изображениях, которые будут использоваться для адаптации к реальному изображению. Такой подход позволяет гибко учитывать особенности съемки и выполняемые задачи модели, изменяя набор ключевых точек под свои нужды.
Все формы обучающей выборки должны пройти нормализацию, для нивелирования различий в масштабе, наклоне и смещении различных изображений. Для этого используется методика обобщенного Прокрустого анализа. После нормализации форм, полученные точки сводятся в матрицу S = [s^s^ …, sm], где sm = [х™, …, х™, у™, …, у™]т. После нахождения главных компонент данной матрицы и ее параметров получаем следующее выражение для статистической модели: s = s0 + ФА,
где s0 — базовая форма, усредненная по всем изображениям из обучающего набора, Ф5 — матрица главных векторов, bs — параметры, применяемые при деформации для подгонки формы под реальное изображение.
Второй этап обучения алгоритма ААМ состоит в формировании компонентов внешнего вида из изображений тренировочного набора. Этот этап выполняется только после
создания базовой формы, т.к. изображения выбирается с учетом соответствия изначально размеченных точек микроструктуры непосредственно смоделированной форме. Для этого выполняется триангуляция меток базовой формы и формы, состоящей из меток обучающего изображения. Затем с помощью кусочной интерполяции выполняется отображение полученных в результате триангуляции регионов обучающего изображения в соответствующие регионы формируемой текстуры.
Далее из набора текстур формируется матрица, каждый ее столбец содержит значение пикселей соответствующей текстуры (аналогично матрице S). Стоит отметить, что используемые для обучения текстуры могут быть как одноканальными (градации серого), так и многоканальными (например, пространство цветов RGB или другое). В случае многоканальных текстур векторы пикселей формируются отдельно по каждому из каналов, а потом выполняется их конкатенация. После нахождения главных компонент матрицы текстур получаем выражение для синтезированной текстуры:
t= t0 + ФА ,
где где t0 — базовая текстура, усредненная по всем текстурам из обучающего набора, — матрица собственных текстур, bt — вектор параметров ААМ.
Заключительный этап алгоритма ААМ создает связь между параметрами внешнего вида (модель текстур) и параметрами статистической формы (модель формы). Для этого вычисляется вектор комбинированных параметров, который задается следующей формулой:
¦wsbs Ws& lt-PTs (s -So)
— bt.. 4& gt-T (t- to)
где Ж — диагональная матрица весовых значений, которая позволяет уравнять значимость расстояний между пикселами и интенсивностей пикселов. По каждому элементу обучающей выборки (паре текстура-форма) вычисляется свой вектор Ь. Затем полученный набор векторов объединяется в матрицу и находятся ее главные компоненты. В этом случае синтезированный вектор объединенных параметров формы и текстуры определяется следующим выражением:
Ь = Фсс
где Фс — матрица главных компонент объединенных параметров, с — вектор комбинированных параметров внешнего вида. Отсюда получаем новые выражения для синтезированной формы и текстуры:
_1 [Фс-
5 = 50 + Ф5Щ, 1Ф с, зСЛ = + Ф[Фс1[с, Фс = '-
. Фс, с.
Данный алгоритм предоставляет большие возможности для настройки и оптимизации с учетом экспериментальных данных.
Заключение
Рассмотрены проблемы прогнозирования остаточного ресурса деталей машин и конструкций с использованием метода количественной оценки степени поврежденности микроструктуры. Подробно описан алгоритм активных моделей внешнего вида, позволяющий детектировать зерна металлов и сплавов на поврежденной микроструктуре. Использование данного подхода позволяет автоматизировать процедуру формирования оценок ресурсных характеристик металлов и сплавов при достаточной точности и объективности.
Список литературы
1. Андреев В. В. Предел выносливости металлов на обобщенной зависимости приведенных параметров сопротивления усталости. — Н. Новгород: Изд. Нижегородского гос. технич. унта, 2003. — 304 с.
2. Андреева О. В., Дмитриев Д. В. Андреев В.В. Прогнозирование остаточного ресурса металлов и сплавов на основе нейросетевого метода оценки степени поврежденности микроструктуры поверхности // Нейрокомпьютеры: разработка, применение. — 2014. — № 11. — С. 68−71.
3. Андреева О. В., Дмитриев Д. В., Разработка методов и алгоритмов верификации изображений на основе нейронных сетей // XIX Нижегородская Сессия Молодых Ученых Технические Науки Н-Новгород: НИУ РАНХ и ГС. — 2014. — С. 80−83.
4. Андреева О. В., Дмитриев Д. В, Крылова Н. С., Мартынюк М. В. К вопросу о проведении верификации изображений лиц на основе нейронных сетей // Датчики и системы. — 2014. — № 5 (180). — С. 56−58.
5. Андреева О. В., Дмитриев Д. В. Нейросетевой анализ дефектов микроструктуры поверхности металлов и сплавов // Современные проблемы науки и образования. — 2014. -№ 6- URL: www. science-education. ru/120−16 491 (дата обращения: 13. 04. 2015).
Рецензенты:
Мисевич П. В., д.т.н., профессор кафедры «Вычислительных систем и технологий» Института радиоэлектроники и информационных технологий Федерального государственного бюджетного образовательного учреждения высшего профессионального образования «Нижегородский государственный университет им. Р.Е. Алексеева», г. Нижний Новгород-
Ломакина Л. С., д.т.н., профессор кафедры «Вычислительных систем и технологий» Института радиоэлектроники и информационных технологий Федерального государственного бюджетного образовательного учреждения высшего профессионального
образования «Нижегородский государственный университет им. Р.Е. Алексеева», г. Нижний Новгород.

ПоказатьСвернуть
Заполнить форму текущей работой