Теоретическое исследование сушки дубовых пиломатериалов вакуум-импульсным и конвективным способами

Тип работы:
Реферат
Предмет:
Общие и комплексные проблемы естественных и точных наук


Узнать стоимость

Детальная информация о работе

Выдержка из работы

УДК 674. 047:66. 047. 2
ТЕОРЕТИЧЕСКОЕ ИССЛЕДОВАНИЕ СУШКИ ДУБОВЫХ ПИЛОМАТЕРИАЛОВ ВАКУУМ-ИМПУЛЬСНЫМ И КОНВЕКТИВНЫМ СПОСОБАМИ
Быкова Е. Л., Тракало Ю. И.
ФГБОУ ВПО «Уральский государственный лесотехнический университет», Екатеринбург, Россия (620 100, г.
Екатеринбург, Сибирский тракт, д. 37), e-mail: rublevas@mail. ru_
Наряду с конвективным способом сушки в деревообработке применяют специальные способы сушки древесины. Таким способом является и вакуум-импульсная сушка. Одним из основных преимуществ данного способа сушки по сравнению с конвективным способом является уменьшение продолжительности сушки. В современных условиях производства это особенно актуально для сушки дубовых пиломатериалов. В данной статье приведено сравнение процесса сушки дубовых пиломатериалов вакуум-импульсным и конвективным способами. Для исследования были прнняты результаты экспериментальных данных, полученные при проведении опытных сушек дубовых образцов в учебно-производственных мастерских университета. Учитывались следующие характеристики исследуемых образцов: размеры дубовых образцов, начальная и конечная масса, начальная и конечная влажность, температура. Определены коэффициенты: теплопроводности, температуропроводности и влагопроводности, продолжительность прогрева образцов. Полученные результаты расчётов позволяют сделать вывод о значительном снижении продолжительности сушки дубовых пиломатериалов вакуум-импульсным способом.
Ключевые слова: конвективная сушка, вакуум-импульсный способ, коэффициент температуропроводности, коэффициент теплопроводности, коэффициент влагопроводности, продолжительность сушки.
THEORETICAL INVESTIGATION OF DRYING OAK LUMBER A VACUUM-IMPULSIVE AND CONVECTIVE METHODS
Bykova E.L., Trakalo Y.I.
The Ural State Forest Engineering University, Russia, Yekaterinburg, Russia (620 100, Ekaterinburg, Sibirskytrakt,
37), e-mail: rublevas@mail. ru_
Along with convective drying method used in woodworking special methods of drying wood. This method is the vacuum impulse drying. One of the main advantages of this method of drying compared to convective method is to reduce the duration of drying. In modern conditions of production, this is especially true for drying oak lumber. This article compares the process of drying oak lumber a vacuum-impulsive and convective means. For the study were prrety the results of the experimental data obtained during the experimental drying oak samples in training and production workshops of the University. Take into account the following characteristics of the samples: the size of the oak samples, initial and final weight, initial and final moisture content, temperature. Coefficients: thermal conductivity, thermal diffusivity and blagorodnost, duration of heating of the samples. The calculation results allow us to conclude about a significant reduction in the duration of drying oak lumber a
vacuum-pulse method. _
Keywords: convective drying, vacuum-pulse method, the thermal diffusivity, thermal conductivity, coefficient of blagorodnost duration of drying.
Для производства сухого пиломатериала традиционно применяют конвективный способ сушки. Данный способ характеризуется хорошим качеством и обеспечивает бездефектную сушку с полным сохранением всех физико-механических свойств [5].
В современных условиях производства немаловажную роль играет снижение продолжительности сушки. При этом конвективная сушка твердолиственных пиломатериалов имеет значительные показатели по времени нахождения материала в сушильной камере [1−5].
В связи с этим находят применение новые способы сушки. Таким способом является
вакуум-импульсная сушка.
Для определения механизма действия и расчёта продолжительности сушки был проведен сравнительный анализ сушки вакуум-импульсным и конвективным способом дубовых пиломатериалов.
Методы и результаты исследования Для примера сравним процесс сушки дубового пиломатериала при предложенной вакуум-импульсной сушке — С1 и конвективной сушке — С2. В качестве объекта сушки возьмем образец дуба Д1 размерами 94×82×20 мм, начальная масса 118,41 г, влажность Ж (У) = 38%, температура г0= 20 °C.
Процесс сушки начинается с процесса прогревания, который протекает совершенно одинаково, как при конвективной сушке, так и при вакуум-импульсной.
Определим время прогревания образцов Д1.
Дубовая пластина, размером в поперечном сечении 20×82 мм (0,02×0,082 м), имеющая влажность 38% и начальную температуру и0= 20 °C, нагревается в воздухе, температура которого 70 °C. Необходимо определить продолжительность нагревания, необходимую для получения в центре пластины температуру 60 ° С [4].
Находим приведенную величину определяющего размера по формуле
Х ^ 2
Я:

где& amp-=0,02 м- & amp-= 0,082 м. Имеем
Я = =, 0−02×0−082 = 0,01 м.
2^/8? + ?22 2д/(0,02)2 + (0,082)2
Безразмерная координата точки
X = 1
Я
х = = 0,01 м т.к. 2 — и 8=0,01 м.
Безразмерная температура 0 равна
_ tc — ts 70 — 60
0 = --- =-= 0,2.
tc — t0 70 — 20
По номограмме, построенной А. В. Лыковым в координатах? Ох/К., находим критерий Фурье Бс=0,82 [1].
Коэффициент температуропроводности, а равен
1
а =-
Ср
где С — удельная теплоемкость- р — фактическая плотность древесины дуба при влажности 38%-
1 — коэффициент теплопроводности.
Древесина дуба имеет среднюю базисную плотность рб = 560 кг/м3. Ее фактическая плотность при влажности 38% (диаграмма плотности древесины) равна 750 кг/м3 [4].
Для определения удельной теплоемкости С и коэффициента теплопроводности нужно знать, кроме влажности, температуру материала, которая в процессе нагревания непостоянна. В качестве температуры возьмем среднюю расчетную, °С: tp= (г0+и/2 = (70+20)/ 2 = 45° С.
Удельная теплоемкость древесины дуба при этой температуре и влажности 38% составляет С = 2,64 кДж/ (кг С). Коэффициент теплопроводности находим по (рис. 5, а) и формуле
1 = х х К р
ном Х р
Номинальное значение коэффициента теплопроводности находим по диаграмме К. Р. Кантера 1ном = 0,185 Вт/(м-°С). Искомый коэффициент теплопроводности определим по формуле
1 = 1ном хКххКр = 0,185×1,07×1,38 = 0,273Вт/(м •0 С). Полагаем Кх = 1,07
Величину Кр = 1,38 находим из табл.1 [4].
Таблица 1
Значения коэффициента Кр в зависимости от базисной плотности
Рб, кг/ м3 360 400 450 500 550 600 650
Кр 1,00 1,05 1,12 1,22 1,36 1,56 1,86
Тогда величина коэффициента температуропроводности равна 1 0,273
а =
Ср 2640×750 '-
= 1,38−10 м2/с
Искомая продолжительность нагревания составит т = = 0,82 • (0,01)г = 594с
а 1,38 • 10−7 или т" 10 мин.
Прогрев древесину в течение 10 минут, приступаем к ее вакуум-импульсной сушке. Результаты сушки отражены в таблице 2.
Таблица 2
Результаты сушки дубовых образцов
1. Порода Дуб 1 Дуб 2 Дуб з Дуб 4 Дуб 5 Дуб 6 Дуб 7
2. Начальная масса (г) 90,39 135,95 141,84 140,28 136,235 136,235 134,7
3. Начальная влажность (%) 27 28 30 29 27 27 29
4 Давление разряжения, ат 0,3 0,5 0,5 0,5 0,5 0,5 0,5
5 Время цикла, мин 10 10 10 10 10 10 10
6 Температура в камере, °С 60 80 75 75 75 75 75
7 Время сушки, час 11 7 8 8 7 8 8
8. Конечная влажность, % 8−10 8−10 8−10 9−10 8−10 8 8
9 Конечная масса, г 77,48 116,545 122,96 118,98 113,755 115,775 112,035
Рассмотрим теперь, какое время необходимо затратить, чтобы высушить образец Дуб 1 из таб.1 при конвективной сушке дубового образца размером в поперечном сечении 20×82 мм (0,02×0,082 м), имеющего влажность 27% в воздухе, движущемся со скоростью 2,0 м/с, при температуре Ъ =60°С и р = 0,3 до влажности 8% [6].
Найдем коэффициент влагопроводностиа'- для образца Дуб 1. Базисная плотность дуба равна рб = 560 кг! м3. По левой половине диаграммы (см. рис. 1).
Заболонь Ядра и спелая древесина
Рис. 1. Диаграмма коэффициента влагопроводности древесины в тангенциальном направлении
устанавливаем, что при температуре 60 °C и базисной плотности рб = 560 кг / м3
коэффициент влагопроводности равен а'- = 4−10& quot-6см2 / с.
Коэффициент влагообмена а'- = 22−10−5 см/с.
Приведенная толщина? определена равенством (1) и равна
0? + ?2 2×8,2
? =, 1 2 =. '- == = 2 см.
л/^12 +? 2 V (2)2 + (8,2)2
По рисунку 2.4 в учебнике автора Расева А. И. [2−6] равновесная влажность древесины в воздухе данного состояния Wp =5,4%. Величину / считаем равной р" 0,81.
Для определения времени сушки от начальной влажности Жн= 27% до влажности Жк= 8%, воспользуемся формулой
?2 Ж — Жв т = 1п (0,81 -н-р-).
к2а Жк — WP
Подставляя имеющиеся значения для первого образца Дуб 1 получим
?2 Жн -22 27 -5 4 т =-1п (0,81-н-р-) =-1п (0,81--^) = 682 482с, т = 189,5ч
1 п2а Жк — Ж 3,142 • 4−10−6 8−5,4 1
к р 1
Получили, что при конвективной сушке первого образца Дуб 1 время сушки в 17 раз больше, чем при вакуум-импульсной сушке.
Рассмотрим теперь, какое время необходимо затратить, чтобы высушить образец Дуб 2 из таб. 1 при конвективной сушке дубового образца размером в поперечном сечении 20×82 мм (0,02×0,082 м), имеющего влажность 28% в воздухе, движущемся со скоростью 2,0 м/с, при температуре to=80 °С и р = 0,3 до влажности 8% [2].
Найдем коэффициент влагопроводности а'- для образца Дуб 2. Базисная плотность дуба равна рб = 560 кг! мъ. По левой половине диаграммы (см. рис. 1) устанавливаем, что при
температуре 75 °C и базисной плотности рб =560 кг/м3 коэффициент влагопроводности равен
а'-= 8−10& quot-6см2 /с.
Коэффициент влагообмена а'- = 22 •10−5см / с. Приведенная толщина Б определена равенством (1) и равна
? = 2 см.
Равновесная влажность древесины в воздухе данного состояния Жр=4,6%[2−4].
Величину В считаем равной
5−0,81.
Для определения времени сушки от начальной влажности Wh= 28% до влажности Wk= 8% воспользуемся формулой s 2 W — W
r = A_]n (0,81).
ж2а WK — WP
Подставляя имеющиеся значения для второго образца Дуб 2, получим
S2 W" - Wp 22 28 — 4 6 t2 ^ -^2-rln (0,81-н--) =-^--ln (0,81- '-) = 87 134с, t2 = 24,2ч
2 ж2а WK — Wj 3,142 • 8−10−6 8 — 4,6 2
к — & gt- & gt-
Получили, что при конвективной сушке второго образца Дуб 2 время сушки в 3,5 раза больше, чем при вакуум-импульсной сушке.
Рассмотрим теперь, какое время необходимо затратить, чтобы высушить образец Дуб 3 из таб. 1 при конвективной сушке дубового образца размером в поперечном сечении 20×82 мм (0,02×0,082), имеющего влажность 30% в воздухе, движущемся со скоростью 2,0 м/с, при температуре t0=75°Cu j=0,3 до влажности 8% [2].
Найдем коэффициент влагопроводности d для образца Дуб 3. Базисная плотность дуба равна рб =560 г/м3. По левой половине диаграммы (см. рис. 1) устанавливаем, что при
температуре 75 °C и базисной плотности рб =560 г/м3 коэффициент влагопроводности равен а'- = 6,2−10−6 см2/с.
Приведенная толщина S определена равенством (1) и равна S= 2 см.
Равновесная влажность древесины в воздухе данного состояния Wp=5,3% [4−6]. Величину В
считаем равной
В-0,81
Для определения времени сушки от начальной влажности W н=30% до влажности W к = 8% воспользуемся формулой S2 W — W
ж2 a WK — WP
Подставляя имеющиеся значения для второго образца Дуб 3, получим
S2 W" - Wp 22 30 — 5 3
t = --^ln (0,81-н--) =-^--ln (0,81- 7) = 131 065с, t3 = 36,4ч
3 ж2а WK — Wj 3,142 • 6,2−10−6 8 — 5,3 3
к-
Получили, что при конвективной сушке третьего образца Дуб 3 время сушки в 4,5 раза больше, чем при вакуум-импульсной сушке.
Рассмотрим теперь, какое время необходимо затратить, чтобы высушить образец Дуб 4 из таб.1 при конвективной сушке дубового образца размером в поперечном сечении 20×82
мм (0,02×0,082 мм), имеющего влажность 29% в воздухе, движущемся со скоростью 2,0 м/с, при температуре to=75 °С и j = 0,3 до влажности 9%.
Найдем коэффициент влагопроводности а'- для образца Дуб 4. Базисная плотность дуба равна рб = 560 кг/м3. По левой половине диаграммы коэффициента влагопроводности древесины в тангенциальном направлении (см. рис. 1) устанавливаем, что при температуре 75 °C и базисной плотности рб = 560 кг/ м3 коэффициент влагопроводности равен
а =6,2−10& quot-6 см2/с.
Приведенная толщина S определена равенством (1) и равна S= 2 см.
Равновесная влажность древесины в воздухе данного состояния Wp=5,3% [4−6]. Величину В
считаем равной
В~0,81
Для определения времени сушки от начальной влажности W н =29% до влажности W к = 9% воспользуемся формулой
S2 WH — WB
t = -S2-r ln (0,81 -н-p-).
к2а WK — WP
Подставляя имеющиеся значения для четвертого образца Дуб 4, получим
S2 W — W 22 29 — 5 3
t =-S-ln (0,81-н-*-) =-^--ln (0,81- 29 5,3) = 10 7731c, t4 = 29,9ч
4 ж2а W — W 3,142 • 6,2−10−6 9 — 5,^ 4
к —
Получили, что при конвективной сушке четвертого образца Дуб 4 время сушки в 3,65 раза больше, чем при вакуум-импульсной сушке. Выводы
Приведенные примеры показывают, что эффективность вакуум-импульсной сушки гораздо выше, чем конвективной.
Следует отметить, что предлагаемая автором Расевым А. И. [4] формула определения времени сушки
S2 W -W
t = 4140, 81 ^J^L) кга WK — WP
Работает не всегда, а только в случае, когда выполняется неравенство 0,81^н+0,19^р^к.
Это создает определенные неудобства, так как данная формула не позволяет определять время сушки пошагово по влажности. Пусть
Wн=28%- Wк= 25%- Wр= 5%.
Рассмотрим величину

1п
н
0,81х-
W — W
^ & quot-к & quot-р
= 1п| 0,81×5 1 = -0,0709. I 25 — 5)
но тогда время сушки будет отрицательным, чего быть не может. В этом случае, что
нетрудно проверить, не выполняется неравенство
0,81^н+0,19^р^к.
Список литературы
1. ГОСТ 2695–83. Пиломатериалы лиственных пород. — М.: Изд-во стандартов, 1990. — 13 с.
2. ГОСТ 16 588–91 Пилопродукция и деревянные детали. Методы определения влажности. — М.: Изд-во стандартов, 1990. — 13 с.
3. Лыков А. В. Теория сушки. — М.: Изд-во «Высшая школа», 1967. — 559 с.
4. Расев А. И. Сушка древесины: учебное пособие. — СПб.: Изд-во «Лань», 2010. — 416 с.
5. Руководящие технические материалы по технологии камерной сушки древесины. -Архангельск, 2000. — 119 с.
6. Серговский П. С. Гидротермическая обработка и консервирование древесины: учебник для вузов / П. С. Серговский, А. И. Расев. — М.: Лесная промышленность, 1987. — 360 с.
Рецензенты:
Старжинский В. Н., д.т.н., Уральского государственного лесотехнического университета кафедры Охрана труда, г. Екатеринбург-
Уласовец В. Г., д.т.н., профессор кафедры механической обработки древесины Уральского государственного лесотехнического университета, г. Екатеринбург.

ПоказатьСвернуть
Заполнить форму текущей работой