Метод лазерной диагностики динамической формы ротора гидрогенератора

Тип работы:
Реферат
Предмет:
ТЕХНИЧЕСКИЕ НАУКИ


Узнать стоимость

Детальная информация о работе

Выдержка из работы

Метод лазерной диагностики динамической формы ротора
гидрогенератора
12 3 3
Т. Н. Круглова, И. В. Ярошенко, М. А. Мельников, Н.Н. Работалов
1 Южно-Российский государственный политехнический университет (НПИ) имени М. И. Платова, г. Новочеркасск 2 ООО «Диагностические комплексы и системы (ДИАКС)», г. Москва 3ООО & quot-Высоковольтные измерительные комплексы и системы& quot- (ООО & quot-ВИКС"-)
г. Балаково
Аннотация: Предложен метод лазерной диагностики динамической формы ротора гидрогенератора для измерения биения вала с определением траектории оси вращения вала, позволяющий проводить прямые измерения геометрии быстро движущейся поверхности ротора гидроагрегата в реальном времени с высокой точностью без внесения изменений в конструкцию генератора.
Ключевые слова: лазерная диагностика, биение вала, гидрогенератор, триангулярный датчик, траектория оси вращения, геометрия поверхности ротора.
Динамический зазор между статором и вращающимся ротором является важнейшим параметром, определяющим безопасность режима работы агрегата в целом [1]. Изменение динамического зазора между статором и ротором возникает под действием различных гидравлических, механических и электрических сил. Отклонение от нормы величины зазора свидетельствует о децентрированности ротора на валу, соединяющего ротор и турбину, об износе механической части гидроагрегата или об опасном режиме работы гидроагрегата [2].
На сегодняшний день ведется активный поиск технологий измерения динамического зазора между статором и ротором работающего агрегата. Емкостные и индукционные методы имеют в своей основе ряд целый погрешностей, борьба с которыми приводит к значительному усложнению конструкции и проблемам с надежностью измерений [3].
При ремонте агрегата в статическом положении производится замер формы ротора и статора с помощью механических индикаторов и щупов. Таким образом, оценивают и прогнозируют величину динамического зазора
агрегата в работе. Недостатками такого подхода являются низкая достоверность оценки, высокие требования к квалификации персонала, необходимость остановки гидроагрегата для процедуры контроля. Такое положение дел существует на подавляющем большинстве энергогенерирующих предприятий России и ближайшего зарубежья [4,5].
Предлагаемый метод относится к классу новых лазерных технологий, повышающих степень надежности и безопасности работы гидрогенераторов электростанций и позволяющих осуществлять бесконтактное дистанционное измерения координат ротора нагруженного работающего гидроагрегата на основе принципа триангуляции [6].
Преимущество разработанного измерительного устройства заключается в возможности быстрых и точных дистанционных измерений через узкий протяженный канал и использовании одного объектива для излучения лазерного луча и приема отраженного света, не требующих изменения конструкции измеряемых машин.
Для измерения геометрии вращающегося объекта (ротора) лазерный датчик закрепляют неподвижно в вентиляционный канал сердечника статора генератора (то есть направляют к поверхности ротора по нормали (рис. 1)).
Вентиляционный канал в пакете активной стали статора
ротор
ш с^ о н о с^
о 2 с- о 1=
Воздушный зазор между ротором и статором
Рис. 1 — Схема установки лазерного датчика динамического контроля
формы ротора
Лазерный излучатель создает световую метку на поверхности объекта. Изображение световой метки проецируется на линейный КМОП -фотоприемник. При изменении расстояния от датчика до объекта происходит перемещение изображения световой метки в плоскости фотоприемника. Микропроцессор производит вычисление координат изображения. По координатам изображения точки определяется расстояние до объекта (рис. 2).
Рис. 2 — Принцип измерения лазерного датчика Для реализации осреднения используется сигнал с отметчика, представляющего собой оптический модуль, генерирующий синхросигнал, привязанный к начальной фазе вращения ротора.
Предложенный метод лазерной диагностики динамической формы ротора гидрогенератора реализован в составе лазерной системы для динамического контроля геометрии ротора гидрогенератора и опробован на гидрогенераторах типа СВ-1477/142−104. Получен профиль поверхности ротора генератора в реальном времени без математического пересчета параметров, напрямую в микрометрах. Результаты измерений динамической формы ротора при работе гидрогенератора приведены на рис. 3 в полярных координатах (отклонение от среднего значения в мм). Сравнение полученной динамической формы ротора со статической (замер вручную на
остановленном гидроагрегате) приведено на рис. 4.
1
53
Рис. 3 — Динамическая форма ротора в полярных координатах
Рис. 4 — Сравнение полученной динамической формы со статической
Методика измерения данными датчиками включает в себя измерение динамической формы ротора в двух поясах, расположенных напротив верней и нижней части ротора. Эти измерения позволяют построить траектории движения ротора в этих двух плоскостях и при их совмещении сделать вывод об изломе линии «генератор — турбина».
Сравнение измерений динамической формы ротора в двух поясах, снятых с каждой сегментной части статора гидроагрегата дает представление о ходе самих сегментов статора.
С помощью данной системы также возможно быстро и с высокой точностью провести измерение статической формы статора для оценки воздушного зазора [4], закрепив датчики на определенный полюс ротора в двух положениях по высоте и проворачивая ротор.
Как правило, величины биений вала измеряются либо механическими индикаторами, либо бесконтактными индукционными датчиками [7−10]. По опыту эксплуатации гидроагрегатов результаты измерений этими двумя способами могут существенно отличаться из-за заложенных в основе погрешностей.
Обычно величина биения вала замеряется механическими индикаторами, которые устанавливаются на неподвижных опорах (брусьях, балках и пр.), а штифт упирается в вал агрегата. Измерение биения вала вертикального гидроагрегата производится у всех направляющих подшипников (турбинного, верхнего и нижнего генераторного) в двух вертикальных плоскостях, расположенных под углом 90о друг к другу. Для
непрерывного контроля биений вала в процессе эксплуатации обычно применяются бесконтактные индукционные датчики. Оценка погрешности приведена в [6].
Предложенный лазерный бесконтактный способ измерения боя вала реализован в составе лазерной системы для контроля боя вала и опробован на гидрогенераторах типа ВГСМ 1525/135−120 УХЛ4. Полученные данные боя вала в районе генераторного и турбинного подшипников при различных режимах работы гидроагрегата приведены на рис. 5
мни
XX с XX с XX с XX с XX с Р-ЮМВт Р=20М& amp-г Р=30МВт Р=40МВт Р=5 0 МВт Р=ЬОМВт
П=0,7пном п=0,8пном п=0,9пном Г)=1,ОПНОМ 11ст=11ном Режим работы генератора
-¦-ВБ -4-ПБ
а)
мкм
XX с XX с XX с XX с XX с Р=10МВт Р=20МОт Р=30М0г Р=40 МВт Р=50МВт Р=60МВт п-0,9пном п-1,0пном ист-иком Режим работы генератора
--ВБ -ПБ
б)
Рис. 5 — Результаты измерения боя вала: а) в районе генераторного подшипника, б) в районе турбинного подшипника
Предлагаемая бесконтактная система контроля боя вала на основе 2-х лазерных триангуляционных датчиков положения, расположенных в одной плоскости под углом 90°., со встроенной микропроцессорной системой управления, позволяет не только контролировать величину боя вала гидроагрегата, но и построить траекторию передвижения оси вала.
Предложен метод лазерной диагностики динамической формы ротора гидроагрегата для измерения боя вала с определением траектории оси вращения вала с использованием лазерных триангуляционных датчиков, позволяющих проводить прямые измерения геометрии быстро движущейся поверхности ротора гидроагрегата через узкий протяженный вентиляционный канал пакета активной стали сердечника статора в реальном времени с высокой точностью без вмешательства в конструкцию генератора.
Благодаря лазерным триангуляционным датчикам положения со встроенной микропроцессорной системой управления, расположенных в одной плоскости под углом 90°, имеется возможность не только измерения боя вала гидроагрегата, но и траектории перемещения оси вала.
Опытные образцы опробованы на действующих гидроагрегатах, испытания показали применимость и эффективность использования созданной технологии в условиях мощных полей, создаваемых высоковольтным оборудованием.
Литература
1. Ярошенко И. В. математическая модель и метод классификации технического состояния высоковольтных мехатронных модулей // Инженерный вестник Дона, 2014, № 2 URL: ivdon. ru/ru/magazine/archive/n2y2014/2330
2. Е. А. Абидова. Применение опорной маски спектра сигнала электродвигателя арматуры для диагностирования неисправностей //
Инженерный
вестник
Дона, 2009, № 1 URL:
ivdon. ru/ru/magazine/archive/n1y2009/110
3. Скворцов О. Б., Трунин Е. С «Синхронный динамический анализ формы ротора и магнитного поля для генераторов ГЭС и ГАЭС» URL: pennwell. websds. net/2013/Moscow/rp-hvr/papers/T3S6O5-paper-ru. pdf
4. СТО РУСГИДРО 70 238 424. 27. 140. 001−2011. «Гидроэлектростанции, методика оценки технического состояния основного оборудования». Москва 2011. — 45 с.
5. ЛевицкийА.С., НовикА.И. Оценка погрешности измерения емкостными датчиками биений валов электрических машин. — Киев: ISSN 0204−3599. Техн. електродинамша. 2010. № 4. — С. 66−70
6. Куликов Д. В., Миледин В. Г. и другие. ФГУБН «Институт теплофизики им. Кутателадзе С О РАН» «Метод лазерной диагностики динамической формы вращающихся объектов». // Современные проблемы науки и образования. 2013. № 2. — С. 12−19.
7. IEEE Std 1434−2000 & quot-Trial Use Guide t o the Measurement of Partial Discharges in Rotating Machinery& quot- - 2000, № 8. 64 р.
8. Ю. П. Аксенов, В. И. Завидей, Р. Я. Захаркин, А. В. Мухортов (ДИАКС, концерн «РОСЭНЕРГОАТОМ», Москва). Контроль разрядных явлений в активной части электрических машин. // Инженерная физика, 2003, № 3. -
9. Y.P. Aksenov, G. Noe, I. Arces. Maintenance'-s Experience of & quot-Double Coordinates Locations Technologies& quot- for turbine generator is on-line Sparking and PD-site location // CWIEME-2003. — Germany, BerllN, JUNE 17−19, 2003. — pp. 1834
10. РД ЭО 18 700 Методические рекомендации по диагностике изоляции статорных обмоток вращающихся машин классов напряжения 3,15−24 кВ по
С. 37−44.
характеристикам частичных разрядов, принятых для концерна «Росэнергоатом». М. МРФ по АЭ. 1999 г. — 48 с.
References
1. Jaroshenko I.V. Inzenernyj vestnik Dona (Rus), 2014, № 2 URL: ivdon. ru/ru/magazine/archive/n2y2014/2330
2. Abidova E.A. Inzenernyj vestnik Dona (Rus), 2009, № 1 URL: ivdon. ru/ru/magazine/archive/n1y2009/110
3. STO RUSGIDRO 70 238 424. 27. 140. 001−2011. Gidrojelektrostancii, metodika ocenki tehnicheskogo sostojanija osnovnogo oborudovanija. [Hydroelectric power plants, methods for assessing the technical condition of the main equipment] Moskva 2011. — 45 p.
4. LevickijA.S., NovikA.I. Ocenka pogreshnosti izmerenija emkostnymi datchikami bienij valov jelektricheskih mashin. [Evaluation of measurement error capacitive sensors beats shafts of electric cars] Kiev: ISSN 0204−3599. Tehn. elektrodinamika. 2010. № 4. — pp. 66−70
5. Skvorcov O.B., Trunin E.S. Sinhronnyj dinamicheskij analiz formy rotora i magnitnogo polja dlja generatorov GJeS i GAJeS [Synchronous dynamic analysis of the shape of the rotor and the magnetic field generator hydro and pumped storage] URL: pennwell. websds. net/2013/Moscow/rp-hvr/papers/T3S6O5-paper-ru. pdf
6. Kulikov D.V., Miledin V.G. i drugie. Sovremennye problemy nauki i obrazovanija, 2013, № 2. pp. 12−19.
7. IEEE Std 1434−2000 & quot-Trial Use Guide t o the Measurement of Partial Discharges in Rotating Machinery& quot- 2000, № 8. 64p.
8. Ju.P. Aksenov, V.I. Zavidej, R. Ja. Zaharkin, A.V. Muhortov nzhenernaja fizika, 2003, № 3. pp. 37−44.
9. Y.P. Aksenov, G. Noe, I. Arces. Maintenance'-s Experience of & quot-Double Coordinates Locations Technologies& quot- for turbine generator is on-line Sparking and
PD-site location. CWIEME-2003. Germany, BerlIN, JUNE 17−19, 2003. pp. 1834
10. RD JeO 18 700 Metodicheskih rekomendacijah po diagnostike izoljacii statornyh obmotok vrashhajushhihsja mashin klassov naprjazhenija 3, 15−24 kV po harakteristikam chastichnyh razrjadov, prinjatyh dlja koncerna «Rosjenergoatom». [Guidelines for the diagnosis insulation stator windings of rotating machines 3,1524 kV voltage class characteristics of PD taken to & quot-Rosenergoatom"-] M. MRF po AJe. 1999. — 48 p.

ПоказатьСвернуть
Заполнить форму текущей работой