Многофакторная оптимизация методом случайного поиска

Тип работы:
Реферат
Предмет:
Общие и комплексные проблемы естественных и точных наук


Узнать стоимость

Детальная информация о работе

Выдержка из работы

2008 НАУЧНЫЙ ВЕСТНИК МГТУ ГА № 127
серия Эксплуатация воздушного транспорта и ремонт авиационной техники. Безопасность полетов
УДК 629. 735. 015
МНОГОФАКТОРНАЯ ОПТИМИЗАЦИЯ МЕТОДОМ СЛУЧАЙНОГО ПОИСКА
В.М. РУХЛИНСКИЙ, Ю.М. ЧИНЮЧИН
В статье рассмотрен метод случайного поиска при решении задачи многофакторной оптимизации ВС в экстремальных условиях.
Применение метода случайного поиска многофакторной оптимизации обусловлено тем, что нет необходимости вычислять первые и вторые производные функции цели (в отличие от градиентных методов), что особенно трудно, если выражение целевой функции сложное. Кроме того, алгоритм случайного поиска позволяет достаточно просто учитывать ограничения на область изменения переменных. Доработка алгоритма случайного поиска специальной процедурой позволяет выявить с большой достоверностью все локальные и условные экстремумы и выбрать из них глобальный. Применение в случайном поиске самообучения (адаптации) по направлению поиска и длины рабочего шага позволяет обеспечить приемлемую оперативность решения.
Алгоритм оптимизации позволяет решать следующие задачи:
— выбор начальных точек поиска-
— организацию траектории поиска из начальных точек до пересечения с границей области-
— выявление локальных и условных минимумов-
— определение глобального минимума.
Выбор начальных точек осуществляется случайным образом при условии принадлежности их к границе области, задаваемой системой неравенств (функций ограничений) вида
Х1 ^ К-
Обычно даже при достаточно сложной многомерной гиперобласти параметров для надежного поиска глобального оптимума достаточно 5… 10 начальных точек.
Из каждой текущей точки траектории осуществляется & quot-т & quot- случайных проб:
_ г & quot-: =:: г. ,¦¦¦¦. ,
где, а — рабочий шаг-
— случайный вектор, спроектированный на единичную гиперсферу.
Для определения наиболее вероятного статистического градиента изменения функции цели рекомендуется выбрать т = 25… 30.
Переход в новую (к+1) точку траектории осуществляется в соответствии с выражением
7,= _ = ¦ -V
где ] - номер пробы, в которой значение целевой функции наименьшее из всех «т» случайных проб.
Тогда у (: г* - Да,) = тт у,-(хк + ДхД } = 1,2,… д при этом х — индикаторная функция, определяемая из следующих соотношений:
_ Г 1, если х*+1 Е НАу* (хк — Дх,.) & lt-
{о при Хы ё Ё НАу*(хк+Ах-) & gt-у*(**)]-
Индикаторная функция х определяет возможность движения по траектории при удачном шаге (тогда х=1), или запрещает переход в новую точку поиска при х=0.
Выход за допустимую область (і*+і Є И) рассматривается как неудачный шаг.
Для обеспечения продолжения поиска по траектории после нахождения локального экстремума в качестве минимизирующей функции принято: на спуске у*=у- на подъеме у*=у.
Если шаг был неудачным (х=0), то переход в новую точку не происходит, а поиск повторяется из одной и той же точки, но с меньшим шагом.
Алгоритмом предусмотрена адаптация рабочего шага в ходе поиска по следующему соотношению:
к+11гг-.
Гіак, если у*(**] & lt-
если у*О,) & gt- У*(*м) —
Таким образом, величина шага увеличивается, если в предыдущей точке произошло уменьшение значения функции цели, или уменьшается, если в предыдущей точке не произошло ее уменьшение, при этом:.
¦ _ ¦: — параметры алгоритма, которые должны удовлетворять условию:
П & gt- 1.
О & lt- у2 & lt- 1,
ПГ2 & gt- 1-
Величина оптимальна, если отношение количества удачных шагов по всем шагам равна
Величина характеризует вероятность удачного шага и ее численное значение лежит в
диапазоне 0,14… 0,27.
В этом случае для выбранного значения У| (обычно 1,2 — 1,7) у2 определяется по выражению:
/2.
При прохождении по траектории фиксируются все точки локальных минимумов
У С* л) =
если у (Лу-0 у (* & lt- уС*вни)
и перевалов
уС^лО =Уиер,
если у (хы_ 1) & lt- у (хл) & gt- у ^ 1).
Условием оптимума является уменьшение величины неудачного шага меньше заданной
величины
После пересечения траектории с границей области
ГуСЮ)
Су (* ІЛСІ
выбирается (случайным образом) начальная точка для следующей траектории. После прохождения 5… 10 траекторий из всех выявленных локальных минимумов и границ траекторий определяется глобальный оптимум
у (: їк) = паш тіпу (: їЛ:).
Для повышения быстродействия поиска предусмотрена его адаптация, заключающаяся в увеличении плотности распределения случайных векторов в направлении наиболее вероятного уменьшения цели у (: ?(,).
Такое увеличение плотности распределения осуществляется за счет введения параметра в, который определяет степень детерминированности процесса поиска, а также за счет ортонор-мированного преобразования случайного вектора С*, равномерно распределенного на единичной сфере таким образом, что новая реализация случайного вектора определяет точку, которая лежит между определяемыми векторами
йк=хк~хк-1
и и? к+1 = *к-П —
Параметр определяется из следующих рекурентных соотношений:
— /?& lt--. со-з, при 11"*+! II & gt-? АII йгк| & gt-?- оба удачных шага-
1 — при | | & gt-? Л| II & lt-? — первый удачный шаг-
1, при ||й?й+1| & lt-? — неудачный шаг.
Численные характеристики случайного вектора ^й+1, в частности, Математическое ожидание и Среднеквадратичное отклонение деформируются на единичной гиперсфере по зависимостям:
= 0
— = г- = - при неудачном шаге-
по зависимостям
^ _ _ = т-^- при удачном шаге.
Степень деформированности определяется выбором начального значения в. Чем ближе в к «/», тем процесс менее детерминирован.
В работе рекомендуется принимать начальное значение в = 5… 10. Таким образом, адаптация алгоритма оптимизации позволяет по мере движения по траектории к минимуму сужать раствор гиперконуса варьируемых параметров, в котором осуществляется поиск, и увеличивать длину рабочего шага (увеличением значений «в» и «а»). При приближении к минимуму (неудачные шаги) рабочий шаг уменьшается, а поиск осуществляется в гиперсфере. При нахождении минимума для быстрейшего выхода на точку перевала, помимо изменения целевой функции на обратную, о чем было сказано выше, направление поиска осуществляется в узком конусе с (3 = /?с. и с постоянным шагом «л^».
На рис. 1 показан топологический план поиска функции двух переменных. На рис. 2 приведены схемы адаптации шага и направление поиска.
В результате оптимизации процесса эксплуатации по рассмотренному алгоритму получены оптимальные варианты сочетания неуправляемых и управляемых эксплуатационных факторов, обеспечивающих минимальный параметр потока отказов ВС (табл. 1). Как видно из табл. 1 в указанном диапазоне изменения параметров процесса можно достигать снижения параметра потока отказов более чем в 2 раза (см. строку 2). При этом варианты сочетаний эксплуатационных факторов характеризуются следующим образом:
строка I — экстремальные значения (встречаются крайне редко) —
строка 2 — средние значения, типичные для влажной зоны Крайнего Севера-
строки 3, 4, 5 — сочетания средних и экстремальных значений.
х2 тах
Л
— пространство поиска
— ограничения первого рода
— линии ровного уровня целевой функции
— траектория поиска
— гиперконус поиска
о
х
— текущие точки
— локальные минимумы
— глобальный минимум
Рис. 1. Топологический план
Хк-1
локальный минимум
Рис. 2. Схема адаптации
Таблица 1
Оптимальные варианты ПТЭ (I и III зоны)
№№ пп Значения неуправляемых эксплуатационных факторов Оптимальные значения управляемых эксплуатационных факторов Критерий эффективности ю
сутшах Т Т нэ Кэ ] п Jto -те расч. факт.
°С мб м/с ч полет шт. град ч ч ич ич
I (экстр.) 16 8,3 17 1054 462 0,213 5 70 57,14 0,057 0,05… 0,07
2 (средние) 3,5 0,85 6,5 8752,7 2474,4 0,082 7 63,1 113,45 0,023 0,05… 0,07
3 (экстр.+ средн.) 16 0,86 6,5 3123 1016,8 0,196 5 69,2 68,4 0,047 0,05… 0,07
4 (экстр.+ средн.) 3,5 6,3 6,5 6217 1896 0,115 6 64,8 83,6 0,034 0,05… 0,07
С к к ре (э с 3,5 8,3 17 5624 1638 0,148 6 66,2 76,2 0,044 0,05… 0,07
Анализ представленных результатов оптимизации, полученных расчетным путем, позволяет сделать следующие выводы:
1) наибольшее влияние на параметры безотказности ВС оказывают факторы: наработка ВС с начала эксплуатации, интенсивность эксплуатации, интенсивность подогрева, «глубокие» переходные циклы охлаждения ВС, длительное время нахождения ВС в нерабочем состоянии на стоянках-
2) влияние экстремальных и средних значений факторов Крайнего Севера и соответствующие им оптимальные расчетные значения управляемых эксплуатационных факторов требуют дифференцированного установления назначенного ресурса авиационной техники в зависимости от региона базирования ВС. Для экстремальных условий эксплуатации оптимальные расчетные значения назначенного ресурса 1-ой группы самолетов Ту-134А составляют 1054 л.ч., 462 полета, для средних условий — 8752 л. ч, 2474 полета-
3) экстремальные условия эксплуатации требуют сокращения времени нахождения в нерабочем состоянии, в котором его «эффективная температура» находится в области низких температур-
4) на ВС существенное влияние оказывают «глубокие» переходные циклы охлаждения конструкции, их интенсивность и повторяемость (количество). Чем больше «глубоких» переходных циклов, тем ниже уровень надежности авиационной техники, и, соответственно, безопасности полетов. В экстремальных условиях целесообразно стремиться к увеличению интенсивности эксплуатации, тем самым обеспечивается снижение продолжительности «глубоких» переходных циклов в охлаждении и приближение термического состояния ВС к оптимальным (желаемым) значениям его «эффективной температуры» (близкой к температуре полета -20 °С) —
5) оптимальные значения характеристик интенсивности подогрева ВС в условиях поддержания его в диапазоне оптимальных значений «эффективной температуры» снижают время отрицательного термического воздействия на системы и оборудование ВС источников подогрева, что также способствует повышению безотказности авиационной техники.
MANY FACTOR OPTIMIZATION BY THE METHOD OF RANDOM SEARCH
Rukhlinskiy V.M., Chinyuchin U.M.
This article examines the method of random search in solving the problems of many factor optimization and improving aircraft reliability under extremal conditions.
Сведения об авторах
Рухлинский Виктор Михайлович, 1946 г. р., окончил МАИ (1973), кандидат технических наук, председатель Комиссии по связям с ИКАО, международными и межгосударственными организациями Межгосударственного авиационного комитета, автор более 40 научных работ, область научных интересов — безопасность полетов и поддержание летной годности самолетов ГА.
Чинючин Юрий Михайлович, 1941 г.р., окончил КуАИ (1965), доктор технических наук, профессор, декан механического факультета МГТУ ГА, заведующий кафедрой технической эксплуатации летательных аппаратов и авиадвигателей МГТУ ГА, автор свыше 300 научных работ, область научных интересов — техническая эксплуатация и поддержание летной годности воздушных судов, повышение конструктивно-эксплуатационных свойств авиационной техники.

ПоказатьСвернуть
Заполнить форму текущей работой