Главный момент сил сопротивления в газодинамическом подшипнике со спиральными канавками

Тип работы:
Реферат
Предмет:
ТЕХНИЧЕСКИЕ НАУКИ


Узнать стоимость

Детальная информация о работе

Выдержка из работы

Главный момент сил сопротивления в газодинамическом подшипнике
со спиральными канавками
И. А. Зенкина Калужский филиал МГТУ им. Н.Э. Баумана
Аннотация: В данной статье автор рассматривает газодинамический подшипник со спиральными канавками, активная зона которого образована двумя близко расположенными твердыми поверхностями, одна из которых профилирована спиральными микроканавками. Введена косоугольная система координат, состоящая из логарифмических спиралей и окружностей. Для каждой диады канавка-перемычка были получены значения сил вязкого трения и далее вычислен их главный момент сопротивления относительно оси подшипника, найдено выражение для главного момента сил сопротивления в гладком слое. В работе получен алгоритм, позволяющий вычислить главный момент сил вязкого трения, развивающегося в слое смазки газодинамического подшипника, имеющего спиральные канавки.
Ключевые слова: газодинамический подшипник, спиральные канавки, косоугольные координаты, момент сопротивления.
Введение
Газодинамические подшипники обладают целым рядом несомненных достоинств по сравнению с другими опорами скольжения. Они позволяют существенно увеличить скорость вращения ротора за счет низкой вязкости газов, обеспечивают стабильность работы при больших перепадах температур, обладают хорошими экологическими характеристиками. В данной статье автор рассматривает подшипник со спиральными канавками, активная зона которого образована двумя близко расположенными твердыми поверхностями, одна из которых профилирована спиральными микроканавками.
Целью данной работы является нахождение момента сил вязкого трения, развивающихся в слое смазки газодинамического подшипника, имеющего спиральные канавки, используя косоугольную систему координат.
1. Введение косоугольной системы координат
Рассматривается плоский газодинамический подшипник со спиральными канавками (рис. 1). Одна его поверхность, профилированная, остается неподвижной, а другая, гладкая, вращается. Такой подшипник называется парциальным, в отличие от бинарного, у которого профилированы обе поверхности [1].
Рис. 1 — Газодинамический подшипник со спиральными канавками
Вся активная зона парциального подшипника состоит из диад канавка-перемычка, причем поле давлений в каждой диаде идентично. Одна такая диада представлена на рис. 2, где О — произвольная точка на фронтальной кромке, отделяющей канавку от перемычки.
Вводится ортогональная система координат х, & amp- по правилу
X = (r- ro)/R, & amp- = Ф-Фo, (1)
где r0 и ф0 — полярные координаты точки О.
Обозначим
Р = Ъ/R. (2)
Введем также криволинейную косоугольную систему координат, п [2, 3] таким образом, чтобы линии п = const были логарифмическими спиралями с полюсом в O1 и углом атаки у, а линии = const -окружностями с центром в O1.
Дф Аф n
П =-1- = n-- = -
Ф1 + ф2 2п 2п
с
& amp- + - ctg у. Р
, ^ = ctg у, (3)
2п р
где n — число спиральных канавок.
Значения п на границах диады выражаются через параметры
к = -^, а =---, к + а = 1. (4)
Ф1 +Ф2 Ф1 +Ф2
2. Нахождение сил вязкого трения
Рассмотрим узкую полоску смазочного слоя (рис. 2), расположенную вдоль линии r = const и имеющую ширину dr. Пусть ds — элементарный участок этой площадки, равный 2п 2
ds = - R р dp dn, (5)
n
Если элементарная площадка ds находится около вращающейся поверхности, т. е. на высоте z = h от плоскости перегородок нижней детали, профилированной канавками, то проекция силы вязкого трения, приложенной к ней, на ось & amp- определится выражением
dR& amp- =f-ds, (6)
dz
h
где ц — динамический коэффициент вязкости, а — проекция скорости
частиц газа на ось 0. Далее рассматриваются силы в окрестности канавки, так как в окрестности перемычки их можно найти, учитывая соответствующий результат для канавки [4]. Проекция скорости на ось 0 на высоте г от нижней стенки смазочного слоя удовлетворяет уравнению
V = ЮЯ (р + х)--- (Ь -1 Xе + 2) др с + к 2|иЯ (р + х) д0
(7)
Здесь ю — угловая скорость подвижной детали, к — рабочий зазор, с -глубина спиральных канавок, р — давление.
Продифференцировав выражение (7), найдем
V
дг
ю
Я (р + х) к — с — 2 г др
к + с 2цЯ (р + х) д0
(8)
Как видно из рис. 2., полоска содержит точку О, где х = 0. Тогда, приняв в найденном выражении х = 0, г = к, получим
iдV0^] юЯр к + с др
дг
+
к к + с 2цЯр д0 Подставив (9) и (5) в (6), найдем
ц 2р2 +(к + с -р
к + с д0
(9)
йЯ0 =П Я п
йр йп.
(10)
Данное выражение было получено для канавки, так что вместо переменной р удобнее взять рх. Чтобы получить результат,
соответствующий перемычке, надо принять с = 0 и заменить р на р2.
Используя индексы 1 и 2 для канавки и перемычки соответственно, запишем
йЯо1 = _ Я
п
йЯ02 = _ Я
2цю
к+с
Я 2р 2 + (к + с)
дА д0
йр йп.
022, и др2
п
Я р + к-2 йр йп к д0)
(11)
Используя соотношения (3), получим
др1 _ ра дП1 _ пра дП1 др2 _ Ра дП 2 _ пра дП 2
(12)
дО 2Р дО 4пР дл '- дО 2Р дО 4пР дл '- где ра — атмосферное давление, Р _ р/ра — безразмерное давление, П1 и П2 — квадраты безразмерного давления в области канавки и перемычки.
Квадраты безразмерного давления аппроксимируются двумерными сплайнами — линейными по и кубическими по л [5, 6]:
П1 _ П + - (а0?, + а1п + а2ц2 + а3л3),
п
П2 _П + -((+ М + М2 + М3). п
(13)
Здесь П — квадрат безразмерного давления в точке О. Продифференцировав выражения (13) по л, получим
^ _ - ((+ 2а2 л + 3а3П2 ^ _-{?1 + 2^ Л + 3М2). дл п дл п
(14)
Соотношения (13) и (14) позволяют привести выражения (11) к виду
2
п
Я1 _ - Яра
п
п
dR02 _-Яр,
п
2цюЯ 2 к+с (. _ 2
-{-)Р + 1а1 + 2а2П + 3а3П)
ра (+ с) 4Р
dp dл.
^ Р2 + А (+ 2Ь2 П + 3М2)
р"п 4 Р
рак
dp dл
(15)
3. Вычисление главного момента сопротивления в активном слое
Для того чтобы найти моменты сил трения относительно оси подшипника, умножим dЯo1 и dЯo2 на г _ Яр
1 Я 2 ра
п
2 Я2ра
п
2цюЯ 2 к + с/ 2
-(-)Р + а1 + 2а2П + 3а3П)
ра (+ с) 4 Р
р dр dл
2июЯ 2 к --р 2 + -
рак 4Р
(+ 2Ь2 л + 3Ь3л2)
р dр dл
(16)
Обозначим момент сопротивления полоски шириной dr = Rdp за dm. На рис. 2 она пересекает пару канавка-перемычка по линии р = const.
П=а
П=0
dm = | dm1 (n) + J dm2 (n).
П=-к n=0
(17)
Пусть момент сил сопротивления, приложенных к кольцевому фрагменту непрофилированной детали, имеющей ширину йг = Яйр, относительно оси подшипника, равен йМ: [7]. Очевидно, что йМ: в п раз превосходит величину йт следовательно:
dM 1 = n
П=а
П=0
J dm1 (n)+ J dm2 (n)
П=-к n=0
(18)
Для нахождения dM 1 необходимо вычислить следующие интегралы:
Jdn = к, 2 Jndn = -K2, 3 Jn2dn = к3
a
J dn = a, 2Jn dn = a 2, 3Jn2 dn = a3
(19)
0 0 0
Соотношения (19) и (16) позволяют привести выражения (18) к виду
dM 1 = nR 2 p
2
(к +ai 2 h + c
Pa Vh +c h
+ (ab + a2b2 + a3b3) lp dp.
P2 +
4 P
(ка1
к a2 + к a31+
(20)
Введем в рассмотрение число сжимаемости Л и безразмерный параметр v
6uroR h
Л = ---, v
Pah
h + c
(21)
Принимая во внимание эти выражения, запишем
a
a
a
2цюЯ2(
ра V
к + с (ка
4 Р
к гк

к Гк
4Р V
к а
-+ -
Р _
2цюЯ2
рак 2
Г
к
а + к-
к
V
к + с
р2 _ 3Лк (а + ку) р2:
к а2 + к а3
4е- (
)+ 4Р (аЬ1 +а2Ь2 +аЬ)_
)+ а (ь1 + аЬ2 + а 2Ь3)
ка2 + к а3
(22)
ка2 + к а3
)+ а (ь1
+ аЬ2 + а Ь3
С учетом этих соотношений dM 1 приводится к виду dM 1 _ пЯ2рак|Л (а + ку) р2 + к (а1 — ка2 + к2а3)
+ ау
(23)
'-((+ аЬ2 + а 2Ь3)) dр.
Нетрудно заметить, что интегрируя dM 1 (23) в пределах от р _ р1 до
р _ 1, получим выражение для главного момента М1 сил трения,
приложенных к непрофилированной детали со стороны смазочного слоя, относительно оси подшипника [8].
Л, 4 2 1 /
а —
4уР у
М1 _ пЯ2рак Ду (а + ку) р2 + + ау (Ь1 + аЬ2 + а 2Ь3)}р dр.
к
ка2 + к а31+
(24)
В подынтегральной функции от р зависят Р, а1, а2, а3, Ь1, Ь2, Ь3. Поэтому записанное выражение можно преобразовать так
12(а +™)(1- р4)+ ^ |-1 [к (а1 — ка2 + к2а3)+
р1
М1 _ пЯ 2 рак
+ ау (Ь1 + аЬ2 + а 2Ь3)]р ^р}
(25)
Для удобства расчетов обозначим М1 безразмерный момент сопротивления таким образом, что:
(26)
2 * м 1 _ пЯ 2 рк М1
Примем обозначения для безразмерного зазора и и нормированного числа сжимаемости Л 0
к_к ^
и = 1 +, С =-0, Л 0 = Ли2, (27)
к0
где к0 — номинальный зазор.
*
Для активной зоны подшипника выражение для М1 примет вид
М* = (а + Ку- -р4)+ - Г — [к ((-ка2 +к2а3)+
1 12 и л 4 4ур РУ Х '- (28)
+ ау (+ аЬ2 + а 2Ь3)]р ф.
Коэффициенты сплайнов аг-, Ь^ (13), присутствующие в
подынтегральной функции М* (28), выражаются через Р и йР/йр, исходя из гидродинамической идентичности всех диад и из условия неразрывности локальных массовых расходов газа [1, 9, 10]. В результате преобразований получается следующее уравнение для доминирующего давления:
У0 =1 а = 1 -к, У = У^(1 +, у =1 -у, р = у
3
= 1 + ?, Л = Л 0/ и 2, Ле=(пЛ/ пР) р2вт2 у, е = - Бт2у.
2п
2
Х = Ле-8, 0 = Л^ -е, А = к
к+2(а + кру
р (1 + к0-
01 = 3к-А0, 02 =а (3 + ах), а1 = 4е (а2 -А,), а2 = 4(1 -р),
П0 = 02 + Р°ь ?1 = (о2а2С0^ У-Ра1 Уп0, ?2 =°281п2^ ,
П0
?3 = 0? + 4е,? 4 = 0?2, А = 3(1 + к0), 5 = 20/Д, ?5 =5?3, ?6 =54, А1 = 4(к + ар), А2 = к (1 -р),
Ж = А1 + А2(-?1 +к?3 -к2?5), Ф1 = 2Лyv2А2 (?2 — к?4 + к2Юб) р/ж
Ф 2 = 2р/(м 3ЖрР),
Р = -Ф1 -Ф 2б*. (29)
ар
Здесь у0
Н0 + с
— нормированная глубина канавок.
*
Теперь можно записать формулу М1 для активной зоны подшипника
М

12 и
(а + ку) -р4) + К
^ [ вра р + + - [в-р2 р и р 2у р аР
где0 =к (1 -к8), в1 =3 в2 = ?2 4.
(30)
(31)
Для того чтобы вычислить безразмерный момент сопротивления активной зоны, сначала необходимо решить уравнение (29) численными методами [2, 3], далее запрограммировать вспомогательные переменные (31), и только после этого вычислить М* по формуле (30).
4. Вычисление главного момента сопротивления для гладкой зоны
Теперь необходимо вычислить момент сопротивления для гладкой зоны подшипника. Рассматриваемая гладкая зона расположена в виде кольца с радиусами Я1 и Я2, имеет толщину к. Снизу она ограничена неподвижным
диском, а верхний вращается с угловой скоростью ю. Безразмерный момент
*
сопротивления для гладкой зоны М 2 получается в результате допущений из-за отсутствия канавок [2, 3].
М 2 =
1Л 12 и
(-Р 2).
(32)
Реальный момент сопротивления для гладкой зоны связан с безразмерным таким же соотношением, как и в случае активной зоны (26)
2 * М 2 =пЯ 2 Ра к0 М 2.
(33)
с
Можно заметить, что выражение (32) может быть получено из (30) двумя способами: во-первых, при у 0 = 0, когда канавки становятся
бесконечно мелкими, а во-вторых, при к = 0, когда канавки считаются бесконечно узкими [2, 3].
5. Главный момент сил сопротивления смазочного слоя
*
Окончательный безразмерный момент сопротивления М слоя смазки подшипника складывается из безразмерных моментов сопротивления
активной М* (30) и гладкой (32) зон.

М = 12 ^ [4-р?)+р4-р 4
12 и
ку + -
2
^ УУ| 02р3йр + 01 ^ р2 йр
и 2^ ар
р1 р1
+
(36)

Реальный момент сопротивления М определяется выражением
М = лЯ 2 рак0М *. (37)
Заключение
В данной работе автор применил косоугольную систему координат, состоящую из логарифмических спиралей и окружностей. Для каждой диады канавка-перемычка были получены значения сил вязкого трения и далее вычислен их главный момент сопротивления относительно оси подшипника. Автор нашел выражение для нахождения главного момента сил сопротивления в гладком слое.
В работе получен алгоритм, позволяющий вычислить главный момент сил вязкого трения, развивающегося в смазочном слое газодинамического подшипника, одна поверхность которого профилирована спиральными канавками.
Литература
1. Емельянов А. В., Емельянов И. А. Теория газодинамических подшипников со спиральными канавками на обеих рабочих поверхностях // Известия Российской академии наук. Механика жидкости и газа. 2000. № 3. С. 46.
2. Зенкина И. А. Математическое моделирование газодинамических подшипников со спиральными канавками: дис. … канд. физ-мат. наук: 05. 13. 18. Калуга, 2004. 262 с.
3. Зенкина И. А. Математическое моделирование газодинамических подшипников со спиральными канавками: автореф. дис. … канд. физмат. наук: 05. 13. 18. Тула, 2004. 24 с.
4. Пинегин С. В., Емельянов А. В., Табачников Ю. Б. Газодинамические подпятники со спиральными канавками. М.: Наука, 1977. 108 с.
5. Винокуров В. Н., Емельянов А. В. Исследование радиального газостатического подшипника с новыми свойствами // Проблемы машиностроения и надежности машин. 2009. № 5. С. 107−111.
6. Винокуров В. Н., Емельянов А. В. Специфические эффекты в работе радиальных газостатических подшипников при большой эксцентричности // Проблемы машиностроения и надежности машин. 2007. № 1. С. 109.
7. Мукутадзе М. А., Флек Б. М., Задорожная Н. С., Поляков Е. В., Мукутадзе А. М. Расчетная модель гидродинамической смазки неоднородного пористого подшипника конечной длины, работающего в устойчивом нестационарном режиме трения при наличии принудительной подачи смазки // Инженерный вестник Дона, 2013 № 3 URL: ivdon. ru/ru/magazine/archive/n3y2013/1765.
8. Айзинбуд А. К. Формирование точного автомодельного решения задачи гидродинамического расчета упорного подшипника, обладающего
повышенной несущей способностью и демпфирующими свойствами, работающего на двуслойной смазке в нестационарном режиме трения // Инженерный вестник Дона, 2013 № 4 URL: ivdon. ru/ru/magazine/archive/n4y2013/2030.
9. Yemelyanov, A.V. and Yemelyanov I. A, 1999. Physical models, theory and fundamental improvement to self-acting spiral-grooved gas bearings and visco-seals. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 4(V. 213). PP. 263−271.
10. Emel'-yanov, A.V. and Emel'-yanov I. A, 2000. Theory of binary spiral-grooved gas bearings. Fluid Dynamics, 3(V. 35). PP. 351−360.
References
1. Emel'-yanov A.V., Emel'-yanov I.A. Izvestiya Rossiyskoy akademii nauk. Mekhanika zhidkosti i gaza. 2000. № 3. P. 46.
2. Zenkina I.A. Matematicheskoe modelirovanie gazodinamicheskikh podshipnikov so spiral'-nymi kanavkami [Mathematical modeling of gasdynamic bearings with spiral flutes]: dis. … kand. fiz-mat. nauk: 05. 13. 18. Kaluga, 2004. 262 p.
3. Zenkina I.A. Matematicheskoe modelirovanie gazodinamicheskikh podshipnikov so spiral'-nymi kanavkami [Mathematical modeling of gasdynamic bearings with spiral flutes]: avtoref. dis. … kand. fiz-mat. nauk: 05. e3. 18. Tula, 2004. 24 p.
4. Pinegin S.V., Emel'-yanov A.V., Tabachnikov Yu.B. Gazodinamicheskie podpyatniki so spiral'-nymi kanavkami [Gasdynamic thrust bearings with spiral flutes]. M.: Nauka, 1977. 108 p.
5. Vinokurov V.N., Emel'-yanov A.V. Problemy mashinostroeniya i nadezhnosti mashin. 2009. № 5. PP. 107−111.
6. Vinokurov V.N., Emel'-yanov A.V. Problemy mashinostroeniya i nadezhnosti mashin. 2007. № 1. PP. 109.
7. Mukutadze M.A., Flek B.M., Zadorozhnaya N.S., Polyakov E.V., Mukutadze A.M. Inzenernyj vestnik Dona (Rus), 2013 № 3 URL: ivdon. ru/ru/magazine/archive/n3y2013/1765.
8. Ayzinbud A.K. Inzenernyj vestnik Dona (Rus), 2013 № 4 URL: ivdon. ru/ru/magazine/archive/n4y2013/2030.
9. Yemelyanov, A.V. and Yemelyanov I. A, 1999. Physical models, theory and fundamental improvement to self-acting spiral-grooved gas bearings and visco-seals. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 4(V. 213): PP. 263−271.
10. Emel'-yanov, A.V. and Emel'-yanov I. A, 2000. Theory of binary spiral-grooved gas bearings. Fluid Dynamics, 3(V. 35): PP. 351−360.

ПоказатьСвернуть
Заполнить форму текущей работой