Моделирование статических электромагнитных полей и расчет параметров в Comsol Multiphysics

Тип работы:
Реферат
Предмет:
Физика


Узнать стоимость

Детальная информация о работе

Выдержка из работы

УДК 621.3. 013:004
МОДЕЛИРОВАНИЕ СТАТИЧЕСКИХ ЭЛЕКТРОМАГНИТНЫХ ПОЛЕЙ И РАСЧЕТ ПАРАМЕТРОВ В COMSOL MULTIPHYSICS
Будько А. А. 1, Васильева О. В. 1
'-ФГБОУ ВПО «НИ ТПУ» («Национальный исследовательский Томский политехнический университет»),
Томск, Россия (634 050, Томск, пр. Ленина, 30), e-mail: vasileva.o. v@mail. ru_
Работа посвящена оригинальным методам моделирования и расчета статических электромагнитных полей и соответствующих параметров в среде COMSOL Multiphysics. Рассматривается расчет таких параметров, как индуктивность катушки и емкость конденсатора. Апробация метода была произведена на примере кругового кольца кругового сечения и сферического конденсатора со слоистой диэлектрической проницаемостью. Преимущество данного способа — в том, что расчет можно производить не только в декартовой системе, но и в цилиндрической или сферической системах координат. Предлагается энергетический метод расчета параметров. Результирующая индуктивность, полученная через энергию магнитного поля, содержит в себе как собственные, так и взаимные индуктивности электродной системы. Результирующая емкость, полученная через энергию электрического поля, также содержит в себе все емкости от каждых слоев неоднородности по отдельности. В сравнении с предложенным методом рассчитаны результирующие индуктивность и емкость на основе литературных данных традиционным методом. Погрешность расчетов двумя методами меньше 1%, что говорит об адекватности моделирования. В статье приведены иллюстрации решений с помощью различных поверхностей и рисунков с пояснениями.
Ключевые слова: индуктивность, емкость, магнитное поле, электрическое поле, энергия, COMSOL Multiphysics, MathCAD, цилиндрическая система координат, сферический конденсатор, статика, моделирование.
MODELLING OF STATIC ELECTROMAGNETIC FIELDS AND CALCULATION OF PARAMETERS IN COMSOL MULTIPHYSICS
Budko A.A. 1, Vasileva O.V. 1
'-National research Tomsk polytechnic university, Tomsk, Russia (634 050, Tomsk, Lenin prospect, 30), e-mail:
vasileva.o. v@mail. ru_
Work is devoted to original methods of modeling and calculation of static electromagnetic fields and the corresponding parameters in the environment of COMSOL Multiphysics. Calculation of such parameters, as inductance of the coil and capacity of condenser is considered. Approbation of method was produced on the example of circular ring of circular section and spherical condenser with layered dielectric permeability. Advantage of this method is in that calculation can be made not only in the cartesian system, but also in cylindrical or spherical systems of coordinates. The power method of calculation of parameters is offered. Resulting inductance, got through energy of the magnetic field, contains both own and mutual inductance of the electrode system. A resulting capacity, got through energy of the electric field, also contains all capacities from every layers of heterogeneity on separateness. By comparison to the offered method resultant inductance and capacity are calculated on the basis of literary information by a traditional method. Error of calculations by two methods less than 1% talks about adequacy of design. Illustrations of decisions are given in article by means of various surfaces and drawings with explanations.
Keywords: inductance, capacity, magnetic field, electric field, energy, COMSOL Multiphysics, MathCAD, cylindrical system of coordinates, spherical condenser, static, modeling.
Введение
В работах авторов Калантарова П. Л., Цейтлина Л. А. и др. были решены частные случаи расчета индуктивностей канонических форм, прямолинейных и криволинейных проводов, плоских контуров, круговых колец и т. д., а также предложены приближенные и аналитические методы расчета индуктивностей для ограниченных классов задач, где постоянно требуется обращение к приведенным таблицам и кривым, что является
неудобным. Технология приведенных методов заключалась в том, что необходимо подсчитывать отдельно собственные и взаимные индуктивности, затем их складывать, где неизбежно содержались эллиптические интегралы, в связи с этим и возникала необходимость в дополнительных справочных данных [6].
В случае с емкостью конденсатора сложной конфигурации и неоднородной диэлектрической проницаемостью традиционными методами необходимо рассчитывать емкости каждых однородных слоев по отдельности, затем их складывать или воспользоваться интегрированием, что также является весьма неудобным, если конденсатор содержит большое количество слоев неоднородности [8]. Поэтому расчет индуктивностей и емкостей с помощью компьютерного моделирования является актуальной задачей.
Методика
Для расчета статических электромагнитных полей [4] и параметров использовалась программа COMSOL Multiphysics (рис. 1).
Рис. 1. Навигатор моделей COMSOL Multiphysics
В данной работе предлагается энергетический метод расчета параметров, где полученная через энергию магнитного поля результирующая индуктивность содержит в себе как собственные индуктивности элементов электродной системы, так и взаимные индуктивности между элементами системы. Полученная через энергию электрического поля результирующая емкость конденсатора с различной диэлектрической проницаемостью содержит все емкости от каждых слоев неоднородности по отдельности.
Из навигатора моделей COMSOL Multiphysics, представленного на рисунке 1, очевидно, что для моделирования магнитостатического поля и расчета индуктивности необходим блок «Magnetostatics» (магнитостатика) и, соответственно, для моделирования электростатического поля и расчета емкости необходим блок «Electrostatics» (электростатика).
Экспериментальная часть
Апробация метода была произведена на примере кругового кольца кругового сечения [1, 6] и сферического конденсатора со слоистой диэлектрической проницаемостью [2, 7]. На рисунке 2 представлено объемное изображение кругового кольца кругового сечения (а) с радиусом сечения кольца r = 0,08 м, площадью сечения S = ж- r2 = 0,02 м², а также
сферического конденсатора (б) с радиусами r = (0,1 0,2 0,3 0,4)Г м и диэлектрическими проницаемостями e = (4 3 1) Г (начиная с окружности меньшего радиуса).
Рис. 2. Объемное изображение: а) кругового кольца кругового сечения- б) сферического конденсатора со слоистой диэлектрической проницаемостью
В COMSOL Multiphysics необходимо выбрать границы поля и шаг сетки, затем построить геометрию кругового кольца и сферического конденсатора соответственно, указав необходимые магнитные (плотность тока, магнитная проницаемость) и электрические (разность потенциалов, диэлектрическая проницаемость) параметры. Зная геометрию и размеры исследуемых моделей, было получено распределение статических электромагнитных полей и расчет соответствующих параметров [5].
Энергия магнитного поля:
(r) т —
'- т — о
2 12
WM =- ® L =-M, (1)
здесь I — ток, Шм — энергия магнитного поля, Ь — индуктивность. Энергия электрического поля:
и2с ш
ШЕ = - ® С = ш, (2)
Е 2 и2
здесь и — напряжение, ШЕ — энергия электрического поля, С — емкость.
На рисунке 3 представлено распределение магнитостатического поля кругового кольца (а) и электростатическое поле сферического конденсатора со слоистой диэлектрической проницаемостью (б).
Подробный анализ расчета индуктивности на основе расчета энергии магнитного поля был рассмотрен в [3].
а б
Рис. 3. Распределение статических электромагнитных полей: а) кругового кольца кругового сечения- б) сферического конденсатора со слоистой диэлектрической проницаемостью
При токе I = 1 А, используя (1), получаем формулу для индуктивности Ь = 2Шм. В соответствии с этим (рис. 4) рассчитаем индуктивность.
Рис. 4. Запись уравнения в окне Subdomain Integration для расчета индуктивности
В результате получили индуктивность кругового кольца, равную Ь = 7,66 10 7 Гн. Далее на основе [2] сравним полученный результат расчета индуктивности с расчетом в среде МаШСЛБ, используя формулу:
l=m • R ¦ (in--
r 4
где R = 0,34 м — радиус кольца, m0 = 4-ж¦ 10−7Гн/м — магнитная постоянная.
(3)
В результате получили индуктивность кругового кольца, равную L = 7,59 10 7 Гн.
Погрешность между расчетами в программах COMSOL Multiphysics и MathCAD (3) составляет 0,9%, что говорит об адекватности моделирования.
При напряжении U = 1 В, используя (2), получаем формулу для емкости C = 2WE. В соответствии с этим рассчитаем емкость, где на основе рисунка 4 в поле «Expression» необходимо ввести формулу для расчета результирующей емкости «We_es*2». В качестве «Unit of integral» (единицы интегрирования) выбрать J — «Electric energy density» (плотность электрической энергии).
В результате получили емкость сферического конденсатора, равную C = 4,21 636 10−11 Ф.
Далее на основе [8] сравним полученный результат расчета емкости с расчетом в среде MathCAD, используя формулу:
C = e • 4-ж-
111 111
r r r r
v '-1 '-2 '-2 '-3

— C =
1 1 1 v1
-±±
, C C C
v^ 12 ^3 j
(4)
r3 r4 j
где Ст -(8,897 10& quot-11 2,002 10−10 1,335 10−10) Ф — емкости каждых слоев конденсатора по
отдельности (начиная с окружности меньшего радиуса) — е0 — 8,85 10−12 Гн/м -диэлектрическая постоянная.
В результате получили емкость, равную С — 4,214 • 10−11 Ф.
Погрешность между расчетами в программах COMSOL Multiphysics и МаШСАО (4) составляет 0,1%, что говорит об адекватности моделирования.
Результаты
Таким образом, используя программу COMSOL Multiphysics, можно одновременно получить распределение статических электромагнитных полей и соответствующие значения параметров, таких как индуктивность катушки и емкость конденсатора различной конфигурации. Преимущество данного способа — в том, что расчет можно производить не только в декартовой системе, но и в цилиндрической или сферической системах координат.
T
Список литературы
1. Бессонов Л. А. Теоретические основы электротехники: Электромагнитное поле. — М.: Высшая школа, 1986. — 263 с.
2. Бинс К., Лауренсон П. Анализ и расчет электрических и магнитных полей: пер. с англ. — М.: Энергия, 1970. — 376 с.
3. Васильева О. В., Исаев Ю. Н., Колчанова В. А. Расчет индуктивности на основе расчета электромагнитного поля // Электромеханические преобразователи энергии: Материалы IV Международной научно-технической конференции. Томск, 13−16 октября 2009. — Томск: ТПУ, 2009. — С. 381−384.
4. Демирчан К. С. Моделирование магнитных полей. — Л.: «Энергия», 1974. — 288 с., ил.
5. Исаев Ю. Н., Васильева О. В. Методы расчета электромагнитных полей. Практика использования MathCAD, COMSOL Multiphysics. — Saarbrucken: LAP LAMBERT Academic Publishing GmbH & amp- Co. KG, 2012. — 162 c.
6. Калантаров П. Л., Цейтлин Л. А. Расчет индуктивностей: Справочная книга. — 3-е изд., перераб. и доп. — Л.: Энергоатомиздат, 1992. — 487 с.
7. Ландау Л. Д., Лифшиц Е. М. Теоретическая физика Т. 2 Теория поля. — М.: Наука, 1988. — 509 с.
8. Миролюбов Н. Н., Костенко М. В., Левнштейн М. Л., Тиходеев Н. Н. Методы расчета электростатических полей. — М.: Высшая школа, 1963. — 414 с.
Рецензенты:
Сивков А. А., д.т.н., профессор кафедры ЭПП ЭНИН ФГБОУ ВПО «НИ ТПУ», Национальный исследовательский Томский политехнический университет, г. Томск. Курец В. И., д.т.н., профессор кафедры ЭСиЭ ЭНИН ФГБОУ ВПО «НИ ТПУ», Национальный исследовательский Томский политехнический университет, г. Томск.

ПоказатьСвернуть
Заполнить форму текущей работой