Адаптивный нейросетевой регулятор для управления пьезоэлектрическим двигателем вращения

Тип работы:
Реферат
Предмет:
Кибернетика


Узнать стоимость

Детальная информация о работе

Выдержка из работы

НАУКА и ОБРАЗОВАНИЕ
____Эя Н? ФС 77 — 30 569. Государственная регистрация № 421 100 025. 155Н 1ЗД4-М06_
Адаптивный нейросетевой регулятор для управления пьезоэлектрическим двигателем вращения 77−30 569/345402
# 03, март 2012
Боков А. А., Бошляков А. А., Иваненков В. В.
УДК 621. 865. 8−8
МГТУ им. Н. Э. Баумана boshlyakov@mail. ru
ВВЕДЕНИЕ
В настоящее время является актуальной задача создания компактных безредукторных высокоточных мехатронных модулей. Например, в астрономии, в космических
исследованиях, где требуется точная ориентировка по весьма малым объектам (звездам) — в робототехнических комплексах, в особенности мобильных, для решения задач сканирования, ориентации и стабилизации датчиков информационных каналов [1] и т. п.
Представляется перспективным построение таких модулей на основе
пьезоэлектрических двигателей, т.к. они обладают уникальной совокупностью
положительных свойств, а именно:
& gt- отсутствие люфта-
& gt- потенциально может обеспечить высокую точность-
^ эффект самоторможения (удержание момента на валу при отсутствии
питающего напряжения) —
& gt- высокий удельный номинальный момент (как правило, больший, чем у электромагнитного двигателя того же объема) —
& gt- высокая надежность-
^ обладает высоким быстродействием-
& gt- отсутствие излучаемых полей-
& gt- возможность миниатюризации.
Применение пьезоэлектрических двигателей вращения в следящих системах затрудняется сложностью управления ими. Пьезодвигатель с точки зрения управления представляет собой нелинейный объект. Причиной этому являются нелинейности пьезокерамики, наиболее существенные из которых — зависимость ее свойств от температуры и пьезоэлектрический гистерезис [2]. Отсутствие достаточно полной математической модели, описывающей поведение двигателя, затрудняет синтез регуляторов классическими методами теории управления. В работе [3] показана возможность использования инверсного нейросетевого регулятора для управления пьезодвигателем. Однако, настройка такого регулятора довольно сложный и трудоемкий процесс, не позволяющий менять весовые коэффициенты нейросети в процессе работы мехатронного модуля. Целью данной работы является построение адаптивного нейросетевого регулятора для управления пьезоэлектрическим двигателем вращения, обеспечивающего подстройку коэффициентов регулятора в функционирующей системе.
Основная идея предлагаемого подхода заключается в том, что в цепь ошибки вводится адаптивный регулятор, построенный на базе нейросети (рис. 1).
Адаптивный регулятор Объект управления
і і

Рис. 1. Структура системы управления
Весовые коэффициенты сети настраиваются адаптивным регулятором в соответствии с принятым критерием качества без этапа предварительного обучения и только при наличии ошибки в системе. Как только ошибка в системе становится меньше допустимой, то корректировка весов прекращается. Корректировка весов выполняется лишь эпизодически, что обеспечивает высокоточную отработку мехатронным модулем быстротекущих сигналов.
СИНТЕЗ АДАПТИВНОГО РЕГУЛЯТОРА
За основу адаптивного регулятора (выделен пунктиром на рис. 2) был взят самонастраивающийся нейросетевой регулятор, предложенный в работе [4].
Рис. 2. Структура адаптивного регулятора.
Как показало моделирование, трех нейронов и двух производных ошибки управления достаточно для реализации адекватной обратной связи. Структурная схема нейросети представлена на рис. 3, где приняты следующие обозначения: уг — уставка- еу — ошибка- и — сигнал управления- у — регулируемая величина-
'-wij и V) — весовые коэффициенты-
Ь — значение активационной функции нейрона.
Рис. 3. Структура нейросети Сигнал управления и (1) формируется в следующем виде
. 11. 12. 13 еу (*) & quot- 51& quot- ¦ и —
М21. 22. 23 х еу (* - 1)2 функция ^ И2
У активации
_ М31. 32. 33 _ _еу (* - 2)_ _ 53 _ _ И3 _
где
к=1
2
е
2 5, —
[ У1
+ 1
У3 ]х
*1
И2
к
и (*)
Введем минимизируемый критерий качества управления
1 *
Е «) = Т X е, (к)2,
2 к=1
е, (*) = (*) — ,(*),
где время * полагается дискретным (шаг постоянный).
АЛГОРИТМ КОРРЕКТИРОВКИ ВЕСОВ
Для минимизации критерия будем использовать метод обратного распространения ошибки, для этого нам необходимо будет вычислить градиент функции Е (*)
дЕ (*)'- УЕ (*) =
Выражения для частных производных функции Е (*) имеют вид
дЕ (*) дЕ (*) деу деи ди (*)
ду. де де ди (*) ду.
1 У и у 7 1
дЕ (*) дЕ (*) деу де ди (*) дк. д5.
дм.
де де ди (*) дк д5. д.
у и V / 1 1
дЕ (*) ду.
де
= е---------^ • (-1) • к
у де ^ 1,
1
Е- = е А. (-1)-у-(1 -к)(1 + к)-X.
д. у де 1 2 1 ',
где XI — 1-й вход нейросети.
деу
В результате дифференцирования появляется частная производная., которую
и
можно рассматривать как некий „эквивалентный коэффициент усиления“ [4]. В дальнейшем мы вернемся к ней. На основе приведенных выше выражений выведем правила для корректировки весовых коэффициентов нейросети
де» v,¦ (І + 1) = vi (І) + еу • к}
де
• п
1 / / деу
. ,/* +1) = *) + е, • у. -(1 -к)(1 + к.) ¦х, — - ¦ п,
где п — коэффициент, влияющий на величину шага изменения весовых коэффициентов, т. е. на скорость обучения (1еаттщ гМе).
Данный метод замечателен своей простотой, но на пути к его применению возникает
деу
препятствие в виде указанной выше частной производной де, так как в общем случае она
и
неизвестна. Однако, достаточно знать её знак, поскольку амплитуда может быть учтена коэффициентом скорости обучения п при условии, что
деу
& lt- да
де
Кроме того, знак можно определить путем простого эксперимента — подачи на вход системы ступенчатой функции. Предположение о том, что знак этой частной производной для данной конкретной системы остается постоянным в окрестности рабочей точки, не является строгим, но выполняется на практике в большинстве случаев. В наихудшем случае можно реализовать оценку знака «на лету» в процессе работы системы управления. Таким образом правила корректировки весов нейросети принимают вид
V і (І + 1) = V і (І) + ц- sign
де
де
и и
• е -к
у і
і, і
'-де,'-
Кдеи У
4(1 — кі)(1+кі)• єу-'-'і-хі.
Схема алгоритма работы адаптивного регулятора представлен на рис. 4.
Рис. 4. Схема алгоритма работы адаптивного регулятора
МОДЕЛИРОВАНИЕ
Моделирование работы системы управления проводилось с помощью математического пакета МЛТЬЛВ. В начале была произведена первичная настройка
адаптивного регулятора по реакции системы на заранее приготовленный тестовый сигнал. Затем подавались различные сигналы.
1)
2)
Ступенчатое воздействие (рис. 5). Переходный процесс имеет колебательный характер, перерегулирование — не более 9%, время вхождение сигнала в трубку 5%-го отклонения составляет 24 мс, установившаяся ошибка равна нулю.
1. 2
0. 8
0. 6
0. 4
& gt->-
0. 2

1- 1 1 1 1 1 '- і 1'- - -
— -
1 і і і '-



і і І і і
Рис. 5. Реакция на ступенчатое воздействие
2) Синусоидальное воздействие: частота 2 Гц- амплитуда 50 (рис. 6). Динамическая
ошибка не превышает 11 минут, нелинейные искажения отсутствуют, временной сдвиг равен 2,5 мс.
У (і)
Время (сек)
Рис. 6. Реакция на синусоидальное воздействие (частота 2 Гц- амплитуда 50)
3) Синусоидальное воздействие: частота 20 Гц- амплитуда 50 (рис. 7).
Динамическая ошибка не превышает 1°, нелинейные искажения отсутствуют, временной сдвиг равен 3 мс.
Рис. 7. Реакция на синусоидальное воздействие (частота 20 Гц- амплитуда 5)
4) Ломаный сигнал (рис. 8). Колебательности практически нет, на линейных участках динамическая ошибка не превышает °, 3°.
уф
-ю -…-…т…-…-…т… -
-15 11 111
О 0.5 1.0 1.5 2.0 2.5 3. 0
Время (сек)
Рис. 8. Реакция на ломаный сигнал
5) Комбинированное воздействие (рис. 9). При ступенчатых перепадах возникают колебания, идентичные тем, что наблюдаются при реакции на ступенчатое воздействие. На линейном участке динамическая ошибка не превышает 1,2 мин. На следующем за ним горизонтальном участке ошибка равна нулю.
Рис. 9. Реакция на комбинированное воздействие
6) Ступенчатый сигнал (рис. 10): высота одной ступеньки составляет 1, длина горизонтального участка ступеньки произвольна в пределах от 10 до 25 мс. На горизонтальных участках в установившемся режиме ошибка не превышает 0,010 и со временем стремится к нулю, а после 12 мс становится меньше 30″.
У (0
О 0.5 1.0 1. 5
Время (сек)
Рис. 10. Ступенчатый сигнал
АНАЛИЗ РЕЗУЛЬТАТОВ МОДЕЛИРОВАНИЯ
Приведенные выше результаты были получены при частоте замыкания контура обратной связи равной 1° кГц. В процессе моделирования возник ряд проблем.
1) Перед включением системы управления матрицы весовых коэффициентов должны быть инициализированы ненулевыми начальными значениями.
2) Коэффициент п можно сделать либо постоянным, либо реализовать адаптивное изменение его значения в зависимости от величины текущей ошибки. Моделирование показало, что введение адаптивного изменения скорости обучения резко снижает устойчивость процесса управления, поэтому был принят первый вариант. Значение коэффициента подбиралось эмпирически.
3) Реализованный в данной работе метод корректировки весовых коэффициентов нейросети имеет ограниченную скорость сходимости, поэтому чем выше частота сигнала управления, тем больше динамическая ошибка системы управления. Это легко заметить на графиках реакции системы на синусоидальное входное воздействие с частотой 2 Гц и 2° Гц -динамическая ошибка возрастает в 6 раз.
4) Адаптивный регулятор достаточно хорошо отрабатывает постоянные входные воздействия. Есть небольшая колебательность, но она быстро затухает, а перерегулирование не превышает 9%. Кроме того, через 24 мс, ошибка становится меньше 5%. Однако в случае
линейных входных сигналов наблюдается постоянная динамическая ошибка, обусловленная временным запаздыванием.
деу
5) Моделирование показало, что знак частной производной ^
не остается постоянным даже в окрестности рабочей точки, поэтому было реализовано определение знака в процессе работы системы управления. Для этого было использовано разностное приближение
деу ^ еу (1) — (1 — 1)
деи еи (1) — (1 — 1).
ЗАКЛЮЧЕНИЕ
При выполнении данной работы были получены следующие результаты.
Синтезирован адаптивный нейросетевой регулятор для управления пьезоэлектрическим двигателем вращения.
Проведено моделирование работы всей системы, которое показало целесообразность предложенного подхода построения системы управления.
В заключение стоит отметить, что качество процесса управления можно значительно улучшить, применив более быстрый метод оптимизации весовых коэффициентов нейросети.
СПИСОК ЛИТЕРАТУРЫ
1. Бордаченков А. В., Бошляков А. А., Рубцов И. В. Быстродействующий привод сканирования и стабилизации изображения в системах технического зрения мобильных робототехнических комплексов // Интеллектуальные робототехнические системы-2001: Материалы науч. молод. школы. Таганрог: Изд-во ТРГУ, 2001, с. 138−139.
2. Рассадкин Ю. И., Бошляков А. А., Лебедев А. Ю. Выбор метода управления лепестковым пьезоэлектрическим двигателем вращения для ориентации и стабилизации датчиков систем технического зрения //Электротехнические системы и комплексы: Межвузовский сб. науч. тр. — (Магнитогорск). 2007. Вып. 14, ^287−293.
3. Борисов В. В., Бошляков А. А., Иванов Д. А., Лебедев А. Ю. Реализация нейросетевого регулятора для управления пьезоэлектрическим двигателем // Известия ЮФУ, Технические науки. 2010. № 12(113), а!90 — 195.
4. Ponce N., Behar A., Hernandez O., Sitar R., «Neural Networks for Self-tuning Control Systems», Czech Technical University Publishing House, 2004. Acta Polytechnica Vol. 44, No. 1/2004, p. 49−52.
electronic scientific and technical periodical
SCIENCE and EDUCATION
__________El.. Vs KS 77 — 30 569. -V"042l 100 025. ISSN 1994−0408_
Adaptive neural network regulator to control piezoelectric rotation engine 77−30 569/345402
# 03, March 2012
Bokov A.A., Boshlyakov A.A., Ivanenkov V.V.
Bauman Moscow State Technical University
boshlyakov@mail. ru
This article deals with selecting and creating a control system of a mechatronic modular unit based on piezoelectric rotation engine. The authors consider the features of a piezoelectrical engine as a control object and justify the choice of the neural networks technology. The authors carry out a synthesis of the adaptive neural network regulator and simulation in MATLAB of the whole system. The efficiency of the synthesized regulator is shown.
Publications with keywords: control system, mechatronic module, piezoelectric engine of rotation, neuronet regulator
Publications with words: control system, mechatronic module, piezoelectric engine of rotation, neuronet regulator
References
1. Bordachenkov A.V., Boshliakov A.A., Rubtsov I.V. Bystrodeistvuiushchii privod skanirovaniia i stabilizatsii izobrazheniia v sistemakh tekhnicheskogo zreniia mobil'-nykh robototekhnicheskikh kompleksov [A fast drive of scanning and image stabilization in the vision systems of mobile robotic complexes]. «Intellektual'-nye Robototekhnicheskie Sistemy-2001» Mat. Nauch. Molod. Shkoly ["Intelligent Robotic Systems-2001″. Proc. Sci. Youth School]. Taganrog, TRTU Publ. ,
2001, pp. 138−139.
2. Rassadkin Iu.I., Boshliakov A.A., Lebedev A. Iu. Vybor metoda upravleniia lepestkovym p'-ezoelektricheskim dvigatelem vrashcheniia dlia orientatsii i stabilizatsii datchikov sistem tekhnicheskogo zreniia [Selecting the control method for petal piezoelectric rotation motor for orientation and stabilization of the sensors of machine vision systems]. Elektrotekhnicheskie sistemy i kompleksy [Electrical systems and complexes], 2007, no. 14, pp. 287−293.
3. Borisov V.V., Boshliakov A.A., Ivanov D.A., Lebedev A. Iu. Realizatsiia neirosetevogo reguliatora dlia upravleniia p'-ezoelektricheskim dvigatelem [Neural net regulator implementation for
piezoelectric motor]. Izvestiia IuFU. Tekhnicheskie nauki [Herald of the Southern Federal University. Engineering Science], 2010, no. 12, pp. 190−195
4. Ponce N., Behar A., Hernandez O., Sitar R. Neural networks for self-tuning control systems. Acta Polytechnica, 2004, vol. 44, no. 1, pp. 49−52.

ПоказатьСвернуть
Заполнить форму текущей работой