Нечеткое когнитивное моделирование слабоформализуемых систем и процессов

Тип работы:
Реферат
Предмет:
Кибернетика


Узнать стоимость

Детальная информация о работе

Выдержка из работы

УДК 004. 94
нечеткое когнитивное моделирование слабоформализуемых систем и процессов захарова А.с., Глызин А. А.
ФГБОУ ВПО «Астраханский государственный технический университет», Астрахань, e-mail: glyzin4u@gmail. com
Проведен критический анализ литературных источников в области терминологической базы сложных слабоформализуемых систем и процессов, а также видов неопределенностей, в которых функционируют рассматриваемые системы. Показана принципиальная возможность моделирования указанного класса систем и процессов с применением формальных моделей в форме графовых структур с расчетом и анализом степени влияния факторов, входящих в эти структуры. Предложено в качестве математического аппарата моделирования рассматриваемого класса объектов использовать нечеткие когнитивные карты Силова. Рассмотрены теоретические основы построения нечетких когнитивных карт Силова для целей математического моделирования сложных систем и процессов, а также вопросы исследования системных характеристик данных карт. Описаны границы применимости нечетких когнитивных карт Силова для целей математического моделирования рассматриваемых систем и процессов, показана принципиальная возможность их использования. Рассмотрен пример реализации нечеткого когнитивного моделирования сложных систем и процессов для процесса получения серы по методу Клауса в разработанной авторами среде нечеткого когнитивного моделирования. Предложено дальнейшее направление по развитию функциональных возможностей среды нечеткого когнитивного моделирования добавлением автоматизированного механизма построения обобщенной нечеткой когнитивной карты.
ключевые слова: нечеткая когнитивная карта, нечеткое когнитивное моделирование, слабоформализуемая система, слабоформализуемый процесс, сложная система
fuzzy cognitive modeling of poorlyformalizable SYSTEMS AND PROCESSES zaharova A.S., Glyzin A.A.
Astrakhan State Technical University, Astrakhan, e-mail: glyzin4u@gmail. com
The critical analysis of the references in the field of termbase of poorly formalized complex systems and processes, as well as the types of uncertainty in which these systems are functioning. The principal possibility of modeling of the class of systems and processes, using formal models in the form of graph structures with the calculation and analysis of the degree of influence of the factors entering into these structures. Proposed mathematical formalism modeling this class of objects to use with Silov’s fuzzy cognitive maps. The theoretical basis for constructing of the Silov’s fuzzy cognitive maps for mathematical modeling of complex systems and processes, as well as the research questions of system performance data cards. Describes the limits of applicability of the Silov’s fuzzy cognitive maps for mathematical modeling of such systems and processes fundamental possibility of their use. An example of the implementation of fuzzy cognitive modeling of complex systems and processes for sulfur by the Claus in the authors'- fuzzy cognitive modeling environment. Proposed future direction for the development capability of fuzzy cognitive modeling environment by adding automated mechanism of the generalized fuzzy cognitive map.
Keywords: fuzzy cognitive map, fuzzy cognitive modeling, poorlyformalizable system poorlyformalizable process, a complex system
Существует большое число работ, в которых приводится определение понятия сложная система [1−2]. Наличие в составе сложной системы технической (технологической) подсистемы (процесса) уточняет определение «сложная система» и выделяет новый класс сложных систем — сложная техническая система (СТС) [3, 4]. Присутствие различных видов неопределенности [5, 6], в которых функционирует СТС, определяет необходимость выделения еще одной разновидности СТС, а именно слабоформализуемых СТС (ССТС), признаки которых введены в [7].
В [8] показано, что для целей анализа ССТС могут быть представлены в виде ориентированного графа, в котором вершины представляют факторы влияния на систему, а ребра показывают направление и влияние одного фактора на другой. Про-
гнозирование состояния таких систем сводится к определению наиболее сильных влияний, которые затрагивают наибольшее количество важных областей системы, что обеспечивают когнитивные карты [9], значения факторов в них будут меняться прямо пропорционально или обратно пропорционально силе влияния. Однако для целей анализа и моделирования ССТС возможностей когнитивных карт не достаточно, поэтому предлагается применять нечеткие когнитивные карты [10].
По результатам критического анализа различных видов нечетких когнитивных карт предложено использовать для целей моделирования ССТС нечеткие когнитивные карты (НКК) В. Б. Силова [11].
Таким образом, в работе решается актуальная научно-практическая задача раз-
работки среды нечеткого когнитивного моделирования (СНКМ) ССТС. Вопросам разработки подобных сред посвящено значительное число работ. Самая известная в нашей стране система — «Канва» [12].
методика и теоретические основы построения сНкм
Наиболее точной моделью для построения НКК считается математическая модель В. Б. Силова. Для данной модели предложено использовать НКК с диапазоном значений для уровня влияния одного концепта на другой: [-1−1].
НКК математической модели В. Б. Силова может быть представлена в виде матрицы смежности, в которой на пересечении строки и столбца указывается уровень влияния одного концепта на другой. Направление влияния определяется на уровне построения когнитивной карты, где необходимо выяснить какой из концептов является причиной, а какой следствием.
Таким образом, по строкам указываются концепты-причины, а по столбцам концепты-следствия. Для работы с такими когнитивными картами была введена каузальная алгебра, которая использует операции Т-норм, S-норм, макстриангулярную композицию, операцию max и замыкание. Данная алгебра используется для определения взаимовлияний концептов, а именно нахождения максимального веса пути от концепта w до концепта w.
Сложность данной задачи заключается в использовании отрицательных влияний. В качестве концептов в нечеткой когнитивной карте выступают факторы взаимного влияния из диаграммы [8].
Нечеткая когнитивная матрица взаимовлияний будет иметь вид W = wii, где
II J llnxn
n — число концептов. Перейдем к рассмотрению взаимовлияния концептов, для этого получим нечеткую матрицу положительных обратных связей R = к, —.
II ^ 112nх2n
После этого формируется транзитивно замкнутая когнитивная матрица взаимовлияний, которая позволяет определить согласованные отношения взаимовлияния концептов.
Для определения влияния концептов друг на друга, а также интегральные показатели влияния концептов на систему и системы на концепты используем консонанс и диссонанс влияния одного концепта на другой, а также консонанс и диссонанс влияния системы на концепт. Для этого используется
цы R = Гу по специальному правилу
преобразования [10].
Для исследования системных характе-
ристик получим из матрицы
трицу
ма-
(1)
Затем осуществляется транзитивное замыкание матрицы Я: Я = ЯVЯ2 V…, однако размерность данной матрицы велика, поэтому в статье ее приводить нецелесообразно. Для исследования динамического влияния компонентов на систему и обратного влияния необходимо получить матрицу
V = обр
(о". н)|
зовани
с помощью следующего пре-[10]:
vjf = max
Vi, = - max
(r2i-1,2 j-1, r2i, 2 j)
(r2i -1,2 j, r2 i, 2 j -1)
(2)
матрица V =
, полученная из матри-
Границы применимости Нкк для целей моделирования сстс
Необходимость очертить границы применимости НКК для технических систем вызвана тем, что методы когнитивного моделирования применяются для слабоструктурированных систем (ситуаций), когда построение аналитической модели затруднено или невозможно. Однако существует ряд задач, например, построение моделей слабо-формализуемых технологических процессов (СФТП) [7, 13] и управления данным классом процессов на основе таких моделей [14], когда применение нечеткого когнитивного моделирования позволит существенным образом повысить эффективность управления СФТП. В задачах управления СФТП присутствует структурная неопределенность, для анализа и устранения которой НКК подходят наилучшим образом.
Пример реализации сстс в снкм
В соответствии с методикой, предложенной в [7] и развитой в [8] покажем способ представления ССТС в форме диаграммы взаимного влияния факторов [15], которая легко трансформируется в НКК. Приведенный в [8] пример для выявления влияния различных факторов на активность катализатора в СФТП получения элементарной серы с помощью метода Клауса может быть преобразован в НКК (рис. 1). Приведенный
в [8] метод построения диаграмм взаимного влияния факторов может использоваться для получения весов влияния для НКК,
однако требует модификации для учета обратного влияния факторов между уровнями представления (рис. 1).
Рис. 1. Представление системы в СНКМ
Полный перечень концептов рассматриваемого примера (рис. 1): температура газа, давление газа- расход газа, температурный режим, содержание воды в потоке воздуха, температура в реакторе- степень конверсии стадии, состояние подогревателя, качество газа, состояние реактора, качество воздуха, температурный режим реактора, показатель успеха регенерации, активность катализатора.
Выбранная шкала взаимовлияний концептов [-1−1] может быть вербально формализована следующим образом: -1 — сильное отрицательное влияние- 0 — влияние отсутствует- 1 — сильное положительное влия-
ние- промежуточные значения в интервале (-1−0) характеризует ослабление степени отрицательного влияния- промежуточные значения в интервале (0−1) характеризует увеличение степени положительного влияния.
Определим согласованные значения отношений причинности в построенной НКК и представим их в виде когнитивной матрицы взаимовлияний. Полученную матрицу ввиду большой размерности (равной 14×14) приводить в тексте статьи не целесообразно. Для проведения дальнейшего анализа вычислим интегральные показатели влияния концептов на систему и влияние системы на концепты (таблица).
Интегральные показатели
Концепты 1 2 3 4 5 6 7
Влияние системы на концепт 0 0 0 0 0 0 0
Влияние концепта на систему 0. 06 0. 01 -0. 01 -0. 17 0. 02 0. 07 0. 13
Концепты 8 9 10 11 12 13 14
Влияние системы на концепт 0 -0. 07 0. 04 0. 04 0. 14 -0. 02 -0. 09
Влияние концепта на систему 0. 02 -0. 06 -0. 04 -0. 04 0 0. 06 0
для обеспечения визуализации полученных данных в ходе представления СФТП в виде НКК в СНКМ реализован механизм «Графики» (рис. 2, 3). С помощью данной
формы можно получить следующие графики зависимости (по оси абсцисс отложены номера концептов, а по оси ординат уровень влияния из диапазона [-1−1]) [16]: влияние
системы на концепты- влияние концептов на систему- консонанс влияния системы на концепты- консонанс влияния концептов
на систему- диссонанс влияния системы на концепты- диссонанс влияния концептов на систему.
Рис. 2. Окно визуализации показателей в СНКМ (консонанс)
Рис. 3. Окно визуализации показателей в СНКМ (диссонанс)
Полученные графические результаты имитационного моделирования в целом совпадают с результатами, опубликованными в работах [13−14]. Это означает, что применение концептуальных основ метода устранения структурной неопределенности математических моделей СФТП [8] может применяться для построения НКК и получения весов, однако с некоторой модификацией, которая необходима для учета отрицательных весов из диапазона [-1−0).
Заключение
На основании проведенного обзора определений ССТС корректным является предположение о возможности рассмотрения в качестве примера не всей ССТС (в силу сложности и большой размерности задачи), а конкретного СФТП, входящего в ее состав. Пример, рассмотренный в рабо-
те, позволяет утверждать, что разработанная СНКМ может быть применима для целей имитационного моделирования ССТС. Показано, что существуют границы применимости НКК для целей моделирования ССТС.
В качестве дальнейшей работы по развитию функциональных возможностей СНКМ предполагается добавление автоматизированного механизма построения обобщенной НКК на основе анализа и объединения НКК нескольких экспертов по аналогии с методом построения моделей СФТП со структурной неопределенностью [8], с учетом механизмов получения весов из диапазона [-1−0).
Список литературы
1. Авдеева З. К., Коврига С. В., Макаренко Д. И. Когнитивное моделирование для решения задач управления сла-
боструктурированными системами (ситуациями) // Управление большими системами — 2007. — № 16. — С. 26 — 39.
2. Борисов В. В., Круглов В. В., Федулов А. С. Нечеткие модели и сети. — М.: Горячая линия — Телеком, 2007. — 284 с.
3. Губка В., Эдер В. Э., Теория технических систем, Спрингер — Верлаг, Берлин, 1988
4. Кафаров В. В., Дорохов И. Н. Системный анализ процессов химической технологии. Основы стратегии. — М.: Наука, 1976. — 500 с.
5. Кулинич А. А. Когнитивная система поддержки принятия решений «Канва» // Программные продукты и системы. — 2002. — № 3.
6. Проталинский О. М. Применение методов искусственного интеллекта при автоматизации технологических процессов: Моногр. /Астрахан. Гос. Техн. Ун-т. — Астрахань: Изд — во АГТУ, 2004. — 184 с.
7. Проталинский О. М., Щербатов И. А. Система поддержки принятия решений для операторов слабо-формализуемых ТП // Автоматизация в промышленности. — 2009. — № 7. — С. 41 — 45.
8. Проталинский О. М., Мичуров Ю. И., Щербатов И. А. Гибридная модель каталитического реактора процесса Клауса // Известия высших учебных заведений. Северо-Кавказский регион. Серия: Технические науки. 2005. № 2. С. 23.
9. Проталинский О. М., Савельев А. Н., Щербатов И. А. Оптимальное управление технологическим процессом Клауса в условиях неопределенности // Известия высших учебных заведений. Северо-Кавказский регион. Серия: Технические науки. 2006. № Спецвыпуск. С. 19a — 25.
10. Пылькин А. Н., Крошилин А. В., Крошилина С. В. Методология когнитивного анализа в вопросах автоматизации управления материальными потоками // Информатика и системы управления. — 2012. — № 2(32). — С. 138 — 149.
11. Силов В. Б. Принятие стратегических решений в нечеткой обстановке / В. Б. Силов. — М.: ИНПРО — РЕС, 1995. — 228 с.
12. Федосеев С. А., Гитман М. Б., Столбов В. Ю. Современные механизмы и инструменты управления большими системами // Управление большими системами: сборник трудов. 2010. № 30. С. 164 — 179.
13. Щербатов И. А. Классификация неопределенностей в задачах моделирования и управления сложными слабо-формализуемыми системами // Вестник Саратовского государственного технического университета. 2013. Т. 1. № 1. С. 175 — 179.
References
1. Avdeyeva Z.K., Kovriga S.V., Makarenko D.I. Kognitivnoye modelirovaniye dlya resheniya zadach upravleniya slabostrukturirovannymi sistemami (situatsiyami) // Upravleniye bolshimi sistemami — 2007. — no. 16. — pp. 26 — 39.
2. Borisov V.V., Kruglov V.V., Fedulov A.S. Nechetkiye modeli i seti. — M.: Goryachaya liniya — Telekom, 2007. — 284 p.
3. Gubka V., Eder V.E., Teoriya tekhnicheskikh sistem, Springer — Verlag, Berlin, 1988
4. Kafarov V.V., Dorokhov I.N. Sistemny analiz protsessov khimicheskoy tekhnologii. Osnovy strategii. — M.: Nauka, 1976. — 500 p.
5. Kulinich A.A. Kognitivnaya sistema podderzhki prinyatiya resheny «Kanva» // Programmnye produkty i sistemy. — 2002. — no. 3.
6. Protalinsky O.M. Primeneniye metodov iskusstvennogo intellekta pri avtomatizatsii tekhnologicheskikh protsessov: Monogr. /Astrakhan. Gos. Tekhn. Un-t. — Astrakhan: Izd-vo AGTU, 2004. — 184 p.
7. Protalinsky O.M., Shcherbatov I.A. Sistema podderzhki prinyatiya resheny dlya operatorov slaboformalizuyemykh TP // Avtomatizatsiya v promyshlennosti. — 2009. — no. 7. -pp. 41 — 45.
8. Protalinsky O.M., Michurov Yu.I., Shcherbatov I.A. Gibridnaya model kataliticheskogo reaktora protsessa Klausa // Izvestiya vysshikh uchebnykh zavedeny. Severo — Kavkazsky region. Seriya: Tekhnicheskiye nauki. 2005. no. 2. p. 23.
9. Protalinsky O.M., Savelyev A.N., Shcherbatov I.A. Optimalnoye upravleniye tekhnologicheskim protsessom Klausa v usloviyakh neopredelennosti // Izvestiya vysshikh uchebnykh zavedeny. Severo — Kavkazsky region. Seriya: Tekhnicheskiye nauki. 2006. no. Spetsvypusk. pp. 19a — 25.
10. Pylkin A.N., Kroshilin A.V., Kroshilina S.V. Metodologiya kognitivnogo analiza v voprosakh avtomatizatsii upravleniya materialnymi potokami // Informatika i sistemy upravleniya. — 2012. — no. 2(32). — pp. 138 — 149.
11. Silov V.B. Prinyatiye strategicheskikh resheny v nechetkoy obstanovke / V.B. Silov. — M.: INPRO — RES, 1995. — 228 p.
12. Fedoseyev S.A., Gitman M.B., Stolbov V. Yu. Sovremennye mekhanizmy i instrumenty upravleniya bolshimi sistemami // Upravleniye bolshimi sistemami: sbornik trudov. 2010. no. 30. pp. 164 — 179.
13. Shcherbatov I.A. Klassifikatsiya neopredelennostey v zadachakh modelirovaniya i upravleniya slozhnymi slaboformalizuyemymi sistemami // Vestnik Saratovskogo gosudarstvennogo tekhnicheskogo universiteta. 2013. T. 1. no. 1. pp. 175 — 179.
Рецензенты:
Ханова А. А., д.т.н., доцент, заведующий кафедрой «Прикладная информатика в экономике», ФГБОУ ВПО «Астраханский государственный технический университет», г. Астрахань-
Попов Г. А., д.т.н., профессор, заведующий кафедрой «Информационная безопасность» ФГБОУ ВПО «Астраханский государственный технический университет», г. Астрахань.
Работа поступила в редакцию 24. 06. 2014.

ПоказатьСвернуть
Заполнить форму текущей работой