Isolation of Phaffia rhodozyma yeasts mutants under increased carotenoid content

Тип работы:


Детальная информация о работе

Выдержка из работы

UDK 663. 12: 575. 224. 4: 577. 161. 1
B. P. Matselyukh1 D. Ya. Matselyukh1 S. L. Golembiovska1 S. V. Gural2
1Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine, Kyiv 2Institute of Animal Biology of the National Academy of Agrarian Sciences of Ukraine, Lviv
E-mail: bohdan@serv. imv. kiev. ua
Received 28. 04. 2014
The aim of the paper was the selection of the improved strains of Phaffia rhodozyma using chemical mutagenesis and the identification of individual carotenoids synthesized by isolated more pigmented mutants. Hyperpigmented mutants of P. rhodozyma NRRL Y-17 268−1 and iMB Y-5021−15 were isolated from initial strains NRRL Y-17 268 and IMB Y-5021 by nitrosoguanidine mutagenesis. Pigments were purified by TLC and identified using HPLC and liquid chromatography-mass spectrometry. It was shown that initial strains P. rhodozyma NRRL Y-17 268 and IMB Y-5021 and obtained from them mutants NRRL Y-17 268−1 and IMB Y-5021−15 produced torulene and torularhodin without illumination in shaking flasks at 20 °C. The content of torularhodin produced by the mutant strains Y-17 268−1 (18.2 pg) and Y-5021−15 (16.5 pg) per 1.0 g of dry biomass was increased to 33.8 and 18. 4%, respectively, in comparison with the content of this pigment in the initial parental strains. The obtained strains present interest for further selection of more active producers of carotenoids and examination of the action of reactive oxygen species as stimulators of carotenoid production in yeasts.
Key words: Phaffia rhodozyma, mutagenesis, torulene, torularhodin.
Natural carotenoid pegments play the important role in the life of the animals and humans as biostimulators, antioxydants, vitamin A substitutes, coloring and tumor inhibiting compounds. Red yeasts of the genus Phaffia are known to produce the different ca-rotenoids presented by torulene, torularhodin and astaxanthin. The low carotenoid content in the biomass limited these yeasts in industrial exploitation. Carotenoid production by microorganisms can be increased using mutagenic treatment of the cells. Natural pigments ca-rotenoids in most cases are presented by tetra-terpenoids synthesized from eight isoprene pyrophosphate units [1]. Many red yeasts of the genera Rhodotorula, Rhodospiridium, Sporobo-lomyces and Phaffia are known to produce different carotenoids in natural conditions [24]. Carotenoids play the important role in the life of animals and humans as biostimulators, antioxidants, vitamin A substitutes, coloring and tumor inhibiting pigments.
Representatives of the genera Rhodotorula and Phaffia synthesize different commercially important carotenoids (beta-carotene,
torulene, toriularhodin and astaxanthin) and therefore belong to potential industrial microorganisms. Industrial exploitation of these yeasts is limited by the low carotenoid content in their biomass.
The aim of the paper was the selection of the improved strains of Phaffia rhodozyma using chemical mutagenesis and the identification of individual carotenoids synthesized by isolated more pigmented mutants.
Materials and Methods
Strains. Wild type strain Phaffia rhodozyma NRRL Y-17 268 (BKM Y-2059) was obtained from the Institute of Cell Biology, National Academy of Sciences of Ukraine, kindly presented by Prof. C. P. Kurtzman from Microbial Genomics and Bioprocessing Research Unit, Peoria, Illinois, USA [5]. The mutant P. rhodozyma IMB Y-5021 (stored in the Depository of IMV) was isolated in the Institute of Animal Biology, National Academy of Agrarian Sciences of Ukraine from the strain NRRL Y-10 921 by mutagenesis.
Media. Yeasts strains were grown on the modified S medium (g/L): K2HPO4 — 2,0- MgSO4−7H2O — 0,5- yeast extract — 4,0- peptone — 4,0- malt — 2,0- glucose — 20,0- biotin — 1. 10−6- fountain water — 1,0 L- pH 6,0, sterilization at 1,0 bar overpressure for 30 min.
The yeast cultures were incubated in 750 mL conical shaker flasks containing 80 mL of suitable medium and rotating at 240 rpm at 28 «C or 20 «C for 72 h.
Mutagenesis. Mutagenesis of P. rhodo-zyma NRRL Y-17 268 and IMB Y-5021 was performed with N-methyl-N'--nitro-N-nitrozoguanidine (SERWA, Heidelberg). The concentration of the mutagen in the Tris-maleic acid buffer (0. 05 M Tris base and 0. 05 M maleic acid), pH 8.0 was 300 pg/mL for 60 min. Nitrozoguanidine, after treatment, was removed by cells, washing in a buffer and centrifugation. Diluted cell suspension was then distributed on an agar medium in Petri dishes by glass spatula and incubated at 20 «C for a period of 7 days. Separate colonies with more orange or red color were chosen for further investigation.
Carotenoid extraction and analysis. The yeast cells were harvested by centrifugation, washed in the water and the resulting sediment was dried at 80 «C until no change in weight was observed. The dry biomass was reduced to a powder using glass powder and a porcelain mortar with a pestle on the ice to prevent the degradation of the carotenoids which were then extracted twice with acetone. The obtained extract was cleared by centrifugation at 11,000 rpm, dried in a vacuum rotor evaporator and the pigments were dissolved in acetone. The carotenoids were separated by means of thin layer chromatography on Silica gel 60 F254 (Merck) with 25% acetone or 5% ethyl acetate in hexane. The absorption spectra of the acetone solutions of carotenoids were registered by a Beckman DU-8 spectrophotometer. The content of carotenoids was determined using the specific extinction coefficients E1%, 1 cm for torulene (3200 at 484 nm) and torularhodin (1932 at 495 nm) in hexane.
HPLC and LC/MS (liquid chromatography-mass spectrometry) of the carotenoids purified by TLC were performed using a liquid chromatography system Agilent Technologies 1200 with a single quadrupole detector and the Multimode ions in APCI mode. The conditions of separation were the following: column Zorbax Hypersyl ODS 120×2.1 mm, 3 pm, with acetone/water + 0. 1% formic acid
(95: 5) as a solvent at a flow rate 0.3 ml min-1. Detection was performed at 540 nm, and the UV-VIS absorption spectra were recorded online with the photodiode-array detection system. The chromatograms have been analyzed with Chemstation software.
Results and Discussion
The frequency of origin of stable colonies with more intensive red-orange color after nitrosoguanidine treatment was found to be
0. 07−0. 08% among surviving colonies of both P. rhodozyma strains (Fig. 1). Four and three more pigmented mutants were isolated among 4600 and 4200 tested colonies of the strains Y-17 268 and Y-5021, respectively. Observation of these mutants during prolonged storage and repeated sowing approved their stability. The next stage of this work was identification of the main individual carotenoids in the extract of the dry cell biomass of the yeasts. TLC of the extracts showed the presence of two carotenoids produced by the strains Y-17 268, Y-17 268−1, Y-5021, and Y-5021−15 (Fig. 2). Purified carotenoids were identified according to their absorption spectra. Torulene (A, max = 460, 485, 528 nm) and torularhodin (A, max = 485, 495, 524 nm) were identified in all strains of P. rhodozyma (Fig. 3).
The results of preliminary carotenoid identification were confirmed by HPLC and LC/MS spectrometry (Fig. 4). The following m/z values of the carotenoids were obtained by APCI NI: 534.4 for torulene and 564.4 for torularhodin. Index Rt was equal to 1. 480 and 2. 206 for torulene and torularhodin, respectively. The obtained values A, max, m/z and Rt of the identified carotenoids are in good agreement with walues reported in literature [6].
Biosynthetic activity of the selected yeast strains was investigated by their growth in the shaking flasks on the appropriate media. Among 4 strains of P. rhodozyma the most active producers of carotenoids were the mutants Y-17 268−1 and Y-5021−15 synthesizing in a dark environment 18.2 pg and 16.6 pg of torularhodin per 1.0 g of dry biomass, respectively (Table). These data are statistically reliable (P & lt- 0. 001). The contents of torularhodin produced by the mutant strains Y-17 268−1 and Y-5021−15 were increased to 33. 8% and 18. 2%, respectively, in comparison with the output of this pigment in the initial parental strains.
According to our results the strains P. rhodozuma NRRL Y-17 268 and IMB Y-5021, and isolated from them mutants Y-17 268−1 and
Y-5021−15 produce torulene and torularhodin like the red yeasts Rhodotorula. Accurate identification of carotenoids produced by the strain Y-17 268 was not found in the published papers [7−11]. Torulene (30%) and torularhodin (60−65%) were produced by 10 different P. rhodozyma strains of BKM collection, as well as by the strain NRRL Y-17 268 (BKM Y-2059), during growth at 30 «C, whereas they synthesized astaxanthin at 20 «C [12]. Despite of our attempts the growth of above mentioned strains at 18−20 «C did not leaded to production of astaxanthin instead of torulene and torularhodin.
In comparison with representatives of Rhodotorula, the mutant strain Y-17 268−1 produces similar quantities of torulene and torularhodin, 575.2 pg/L and 684.3 pg/L, respectively without illumination [13−15]. This strain presents an interest for further selection of better producers of carotenoids and study of possible stimulating influence of reactive oxygen species (H2O2, O2-, OH) on carotenoids production in yeasts [16].
Fig. І. Growth of the initial strains and their more pigmented mutants on solid medium:
1 — P. rhodozyma Y-5021- 2 — Y-5021−15-
3 — Y-17 268- 4 — Y-17 268−1
Fig. 2. Thin layer chromatograms of the caro-tenoids:
A — lycopene (control) [17]- B — lycopene and beta-carotene (control) [17]- C — beta-carotene (control) [17]- D — torulene (top spot): 25% acetone in hexane- torularhodin (bottom spot): 5% ethylacetate in hexane
Fig. З. Absorption spectra of carotenoids in acetone:
a -torulene- b — torularhodin
B 7,
Fig. 4. HPLC (top) and LC/MS (bottom) of carotenoids:
A — torulathodin- B — torulene- C — P-carotene
Carotenoid production by P. rhodozyma strains in shaking flasks
Strain Dry cell mass, g/L Torularhodin, Pg/g Torulene, Pg/g Relation torularhodin/torulene Sum of carotenoids, Pg/g
38.0 13.6 14. 9
Y-17 268 (control) 38,6 13,4 14,7 0. 91 28. 5
37,4 13,8 15,1
37.6 18. 2* 15. 3
Y-17 268−1 37,4 18,4 15,5 1. 19 33. 5
37,8 18,0 15,1
36.5 13.9 16. 9
Y-5021 (control) 36,3 14,0 17,2 0. 82 30. 8
37,0 13,7 16,6
Y-5021−15 i-H (c)CO 333 * & lt-q & lt-n© 111 13.4 13,0 13,8 1. 24 30. 0
Note: * P & lt- 0. 001 (as compared with control).
This work was supported by the National Academy of Sciences of Ukraine (0111U000606).
1. Methods in Enzymology. Steroids and Isopre-noids. Part B. Ed. by Law J. H., Rilling H. C. Acad. Press: Orlando, San Diego, New York, London, Toronto, Montreal, Sydney, Tokyo. 1985, V. 111, P. 190.
2. Johnson E. A. Phaffia rhodozyma: colorful odyssey. Int. Microbiol. 2003, V. 6, P. 169−174.
3. Frengova G. I., Beshkova D. M. Carotenoids from Rhodotorula and Phaffia: yeasts of biotechnological importance. J. Industr. Microbiol. Biotechnol. 2009, 36(2), 163−180.
4. Schmidt I., Schewe H., Gassel S. Biotechnological production of astaxanthin with Phaffia rhodozyma/X ant hophyllomyces dendrorhous. Appl. Microbiol. Biotechnol. 2011, V. 9, P. 555−571.
5. Gural S. V., Kolysnyk G. V., Klymyshyn D. O., Gonchar M. V. Investigation of carotenoids composition in the yeast mutants Phaffia rhodozyma (Xanthophyllomyces dendrorhous). Bio-technologia. 2011, 4(1), 93−100. (In Ukranian).
6. Weber R. W., Anke H., Davoli P. Simple method for the extraction and reversed-phase high-performance liquid chromatographic analysis of carotenoid pigments from red yeasts (Basidiomycota, Fungi). J. Chromatogr. A. 2007, V. 1145, P. 118−122.
7. Foncesa R. A., Rafael R. S., Kalil S. J., Burkert CAV., Burkert J. F. Different cell disruption methods for astaxanthin recovery by Phaffia rhodozyma. Afr. J. Biotechnol. 2011, 10 (7), 1165−1171.
8. Nghiem N. P., Montanti L., Johnston D. Production of astaxanthin from corn fiber as a value-added co-product of fuel ethanol fermentation. Appl. Biochem. Biotechnol. 2009, V. 154, P. 227−237.
9. Parajo J. C., Santos V. V., Vazque M. Production of carotenoids by Phaffia rhodozyma
growing on media made from hemicellulosic hydrolysates of eucalyptus globulus wood. Biotechnol. Bioeng. 1998, 59 (4), 501−506.
10. Vazques M., Santos V., Parajo J. C. Effect of the carbon source on the carotenoid profiles of Phaffia rhodozyma strains. J. Ind. Microbiol. Biotechnol. 1997, 19 (4), 263−268.
11. Vazquez M., Santos V., Parajo J. C. Fed-batch cultures of Phaffia rhodozyma in xylose-containing media made from wood hydrolysates. Food Biotechnol. 1998, 12 (1, 2), 43−55.
12. Polulyakh O. V., Podoprigora O. I., Eliseev S. A
Biosynthesis of torulene and torularhodin in the yeast Phaffia rhodozyma. Prikladnaya biochimia i mikrobiologiya. 1991, 27 (4), 541 545. (In Russian).
13. Buzzini P., Innocenti M., Turchetti B. Carotenoid profiles of yeasts belonging to the genera Rhodotorula, Rhodosporidium, Sporobolomyces, and Sporidiobolus. Can. J. Microbiol. 2007, 53 (8), 1024−1031.
14. Davoli P., Mierau V., Weber R. W. S. Carotenoids and fatty acids in red yeasts Sporobolomyces roseus and Rhodotorula glutinis. Prikladnaya biochimia i mikrobiologiya. 2004, 40 (4), 460−465. (In Russian).
15. Ferdes M., Ungureanu C., Mihalcea A. The influence of the carbon source on torularhodin pigment biosynthesis. Rev. Chim. (Bucharest). 2011, 62 (3), 339−343.
16. Schroeder W. A., Johnson E. A. Singlet oxygen and peroxyl radicals regulate carotenoid biosynthesis in Phaffia rhodozyma. J. Biol. Chem. 1995, 70 (31), 18 374−18 379.
17. Matselyukh B. P., Matselyukh D. Ya., Golem-biovska S. L. Isolation of Streptomyces globisoporus and Blakeslea trispora mutants with increased carotenoid content. Mikrobiol. Zh. 2013, 75 (6), 10−16.
Б. П. Мaцелюх1 Д. Я. Мaцелюхl С. Л. ГолембювсьKa1 С. В. Гурaль2
1Інститут мікробіології і вірусології ім. Д. К. Заболотного НАН України, Київ 2Інститут біології тварин НААН України, Львів
E-mail: bohdan@serv. imv. kiev. ua
Метою роботи був добір поліпшених штамів Phaffia rhodozyma, одержаних за допомогою хімічного мутагенезу, та ідентифікація окремих каротиноїдів, синтезованих ізольованими гіперпігментованими мутантами. Мутанти з підвищеною пігментацією P. rhodozyma NRRL Y-17 268−1 та ІМВ Y-5021−15 виділено з вихідних штамів NRRL Y-17 268 і ІМВ Y-5021 за допомогою нітрозогуанідинового мутагенезу. Пігменти очищали тонкошаровою хроматографією й ідентифікували за допомогою високоефективної рідинної хроматографії та рідинної хроматографії/ мас-спектрометрії. Показано, що вихідні штами P. rhodozyma NRRL Y-17 268 i IMB Y-5021, а також одержані від них мутанти NRRL Y-17 268−1 та IMB Y-5021−15 продукували торулін і торулародин без освітлення в колбах на качалці при 20 «C. Вміст тору-лародину в мутантних штамахY-17 268−1 (18,2 мкг) і Y-5021−15 (16,5 мкг) в 1,0 г сухої біомаси збільшився до 33,8 і 18,4% відповідно порівняно зі вмістом цього пігменту у вихідних батьківських штамах. Одержані штами є перспективними для подальшої селекції активніших продуцентів каротиноїдів і дослідження дії реактивних сполук кисню для стимуляції утворення цих сполук дріжджами.
Ключові слова: Phaffia rhodozyma, мутагенез, торулін, торулародин.
Б. П. Мaцелюх1 Д. Я. Мaцелюхl С. Л. Голембиовс^л1 С. В. Гурaль2
1Институт микробиологии и вирусологии им. Д. К. Заболотного НАН Украины, Киев 2Институт биологии животных НААН Украины, Львов
E-mail: bohdan@serv. imv. kiev. ua
Целью работы был отбор улучшенных штаммов Phaffia rhodozyma, полученных с помощью химического мутагенеза, и идентификация отдельных каротиноидов, синтезированных изолированными гиперпиг-ментированными мутантами. Мутанты с повышенной пигментацией P. rhodozyma NRRL Y-17 268−1 и ИMB Y-5021−15 выделены из исходных штаммов NRRL Y-17 268 и IMB Y-5021 нитрозогуанидиновым мутагенезом. Пигменты очищали тонкослойной хроматографией и идентифицировали с помощью высокоэффективной жидкостной хроматографии и жидкостной хроматографии/ масс-спектрометрии. Показано, что исходные штаммы P. rhodozyma NRRL Y-17 268 и ИMB Y-5021, а также полученные от них мутанты NRRL Y-17 268−1 и ИMB Y-5021−15 образуют торулин и торулародин без освещения в колбах на качалке при 20 «С. Содержание тору-лародина в мутантных штаммах Y-17 268−1 (18,2 мкг) и Y-5021−15 (16,5 мкг) в 1,0 г сухой биомассы увеличилось до 33,8 и 18,4% соответственно по сравнению с содержанием этого пигмента в исходных родительских штаммах. Полученные штаммы являются перспективными для последующей селекции более активных продуцентов каротиноидов и исследования действия реактивных соединений кислорода для стимуляции образования этих соединений дрожжами.
Ключевые слова: Phaffia rhodozyma, мутагенез, торулин, торулародин.

Заполнить форму текущей работой