Использование микробных поверхностноактивных веществ в биологии и медицине

Тип работы:
Реферат
Предмет:
Биология


Узнать стоимость

Детальная информация о работе

Выдержка из работы

УДК 759. 873. 088. 5:661. 185
ВИКОРИСТАННЯ МІКРОБНИХ ПОВЕРХНЕВО-АКТИВНИХ РЕЧОВИН У БІОЛОГІЇ ТА МЕДИЦИНІ
Т. П. ПИРОГ, А. Д. КОНОН, А. Б. СКОЧКО Національний університет харчових технологій, Київ E-mail: tapirog@usuft. kiev. ua
Наведено дані літератури та результати власних експериментальних досліджень практичного використання мікробних поверхнево-активних речовин (ПАР) у біології та медицині. Розглянуто і проаналізовано антимікробні (противірусні, антибактерійні, антифунгальні) властивості ПАР мікробного походження, їхню антиадгезивну активність, перспективи використання цих продуктів мікробного синтезу в терапевтичних цілях (як тромболітичні та протипухлинні агенти, складові ліпосом для цільового доставлення ліків, для посилення антимікробної дії ефірних олій, застосування в генній терапії тощо).
Обговорюються перспективи використання мікробних ПАР у молекулярно-біологічних, генетичних, цитологічних та імунологічних дослідженнях.
Ключові слова: мікробні поверхнево-активні речовини, антимікробна дія, антиадгезивні властивості, генна терапія, медицина, біологія.
Поверхнево-активні речовини широко використовують у різних галузях промисловості, у зв’язку з чим попит на синтетичні ПАР постійно зростає. Разом з тим темпи розвитку біотехнології на сучасному етапі та підвищення уваги до збереження довкілля зумовили великий інтерес дослідників до мікробних ПАР як альтернативи хімічним аналогам [1].
ПАР мікробного походження мають багато переваг перед синтетичними сполуками: біодеградабельність (у разі потрапляння в екосистему легко розкладаються на простіші сполуки, тимчасом як використання хімічних ПАР завдає великої шкоди довкіллю) — синтезуються мікроорганізмами з дешевої сировини (наприклад, відходів різних виробництв) — стабільність властивостей у широкому діапазоні рН і температури- неток-сичність (на відміну від синтетичних ПАР та інших антимікробних і дезінфікувальних препаратів, що діють на плазматичну мембрану клітин-мішеней [1]) — складна хімічна будова, що важко синтезується штучно.
Завдяки амфіфільній будові молекул мікробним ПАР притаманні різноманітні властивості, що зумовило використання їх у нафто- та гірничодобувній, хімічній, харчовій промисловості, сільському господарстві, а також у природоохоронних технологіях для очищення довкілля (табл. 1) [2].
У біології мікробні ПАР можуть бути використані як стимулятори росту мікроорганізмів (табл. 1) та під час селекції штамів-продуцентів замість вузькоспецифічних синтетичних ПАР (додецилсульфонат натрію, оксіетиловані алкілфеноли типу Тритон Х-100 та цетилтриметиламонійбромід).
Іншим перспективним напрямом практичного застосування мікробних ПАР є медицина. На сьогодні цей напрям лише починає розвиватися, але вже є певні позитивні результати, що дають підстави розглядати ПАР мікробного походження як альтернативу синтетичним лікарським засобам. Завдяки антимікробним, антивірусним і анти-адгезивним властивостям мікробні ПАР можна використовувати як безпечні та ефективні терапевтичні засоби.
Такі властивості мікробних ПАР, як стимуляція утворення іонних каналів та підвищення електричної провідності в ліпідних мембранах, вплив на АТФазу, посилення імунної відповіді (табл. 2), уможливлюють використання їх у біології для вивчення будови і функції біліпідних мембран, адаптивних механізмів та енергетичних процесів у клітинах, імунологічних реакцій і в лабораторній практиці при створенні гібридом.
Крім того, ПАР мікробного походження можуть бути альтернативою таким препара-
Таблиця 1. Галузі практичного використання мікробних поверхнево-активних речовин
№ п/п Властивості ПАР Сфера застосування
1 Диспергування й утворення емульсій Виготовлення косметичних засобів, фарб, нафтодобування
2 Солюбілізація та утворення мікроемульсій Виробництво засобів особистої гігієни та фармацевтичних препаратів
3 Змочування і проникність Виробництво фармацевтичних препаратів, фарб, текстильна промисловість
4 Мийні властивості Сільськогосподарська продукція, продукти високих технологій
5 Піноутворення Виробництво засобів особистої гігієни і косметики
6 Згущування Виробництво фарб
7 Сорбція металів Гірничодобувна промисловість
8 Формування везикул Косметика, системне доставлення ліків
9 Стимуляція росту мікроорганізмів Очищення стічних вод, ферментація
10 Деемульгування Перероблення відходів
11 Зниження в’язкості Транспортування трубопроводами
12 Диспергування Утворення вугільно-нафтових і вугільно-водних сумішей
там, як Тритон Х-100 у генетичних дослідженнях (екстракція ДНК) та додецилсуль-фат натрію (електрофорез).
Мікробні ПАР, що їх застосовують у біології та в медичних цілях, мають різну хімічну будову, різні властивості та синтезуються багатьма мікроорганізмами (табл. 2).
Антимікробні та противірусні властивості мікробних ПАР
Однією з основних причин недостатньої ефективності лікарських засобів є резистентність до них мікроорганізмів-збудників інфекційних захворювань. Виникненню та поширенню стійкості до антимікробних препаратів сприяє нераціональне застосування антибіотиків у клінічній практиці, а саме: призначення їх у разі вірусних інфекцій, неадекватність доз і термінів застосування, призначення препаратів без визначення чутливості збудників, вільний продаж антибіотичних засобів в аптечній мережі, самолікування тощо. Поширення резистентних штамів мікроорганізмів потребує розроблення невідкладних заходів щодо запобігання цьому процесу. Одним із підходів до вирішення цієї проблеми є пошук нових речовин з антимікробною дією та розроблення на їх основі ефективних препаратів. Такими потенційними речовинами для практичного використання у медицині можуть бути мікробні ПАР.
Мікроорганізми-продуценти ПАР набули здатності синтезувати антимікробні сполуки у процесі еволюції. Наприклад, рам-ноліпіди, манозилеритритолліпіди (МЕЛ) і сурфактини завдяки антибіотичній актив-
ності забезпечують перевагу продуцентам у процесі колонізації нового середовища і конкуренції за субстрат з іншими видами [9, 31]. З біологічного погляду дослідження мікробних ПАР дозволяє детальніше зрозуміти таке явище у природі, як активний антагонізм. Яскравим прикладом є високий антимікробний потенціал нещодавно виділеного ліпопептиду Brevibacilis brevis HOB1 проти штаму Bacillus licheniformis, ізольованого разом із продуцентом ПАР з відпрацьованої води нафтового поля [18].
Методи визначення антимікробної активності ПАР
Як свідчать дані літератури, найчастіше застосовуваним методом визначення антимікробної дії ПАР є метод дифузії в агар [3,
13, 17, 18], який ґрунтується на вимірюванні зон затримки росту тест-культур і дає змогу визначити мінімальну інгібуючу концентрацію (МІК), тобто мінімальну концентрацію антимікробного агента, якому притаманна здатність до затримки росту мікроорганізмів. Досить важливим є метод, за допомогою якого можна визначити антагоністичну активність продуцентів ПАР [8, 16]. Для цього на щільне живильне середовище у двох місцях наносять культуральну рідину продуцента, а в двох інших — частини агару зі спорами грибів, після чого культури інкубують разом кілька днів за оптимальної температури й оцінюють зони затримки росту мікроміцетів.
Іншим способом визначення антимікробної дії ПАР є метод суспензійних культур [17, 32], який ґрунтується на внесенні препаратів поверхнево-активних речовин
Таблиця 2. Деякі поверхнево-активні речовини, використовувані у медицині
Мікроорганізм-проgуцент Тип ПАР Практичне застосуванння
1 2 3
Pseudomonas aeruginosa Рамноліпіди (гліколіпід) Антимікробна активність проти Mycobacterium tuberculosis, антифунгальна, антиадгезивна активність проти деяких бактерій та дріжджів, виділених із зубних протезів [3−6]
Pseudomonas libanensis M 9−3 Віскозин (ліпопептид) Протипухлинна дія [7]
Bacillus subtilis 20B Ліпопептид Антифунгальна активність проти фітопатогенних грибів [8]
Bacillus subtilis Сурфактин (ліпопептид) Антибактеріальна й антифунгальна дія, гемолізис та утворення іонних каналів у ліпідних мембранах, протипухлинна дія щодо ракових клітин Ерліха, широка противірусна активність [9, 10]
Ліпопептид N1 Антибактеріальна дія на спорові мікроорганізми, стрептококи, стафілококи, збудників туберкульозу [11]
Ітурин (ліпопептид) Вплив на морфологію і мембранні структури дріжджових клітин, антимікробна та антифунгальна дія, підвищення електричної провідності ліпідів мембран, нетоксичний і непірогенний імунологічний ад’ювант [12, 13]
Bacillus pumilus Пумілацидин (аналог сурфактину, ліпопептид) Противірусна активність щодо простого вірусу герпесу 1 (HSV-1), інгібування Н+, К± АТФази та профілактика шлункових виразок in vivo [14]
Bacillus licheniformis BAS50 Ліхенізин (ліпопептид) Бактерицидна дія [15]
Bacillus amyloliquefaciens LP03 Бамілоцин, А (ліпопептид) Антифунгальна активність проти фітопатогенних грибів [16]
Bacillus circulans Ліпопептид Антимікробна дія на широкий спектр мікроорганізмів, у тому числі резистентних Staphylococcus aureus (MRSA), Escherichia coli, Klebsiella pneumoniae [17]
Brevibacilis brevis HOB1 Ліпопептид Антимікробна дія [18]
Candida antartica T34 Манозилеритритол-ліпіди (гліколіпід) Антимікробні, імунологічні та нейрологічні властивості, індукування диференціації клітин людини HL60, індукування нейродиференціації клітин РС12 [19, 20]
Candida bombicola ATCC 22 214 Софороліпід (гліколіпід) Антибактеріальна дія, у т. ч. на Propionibacterium acne, перспективний нетоксичний компонент косметичних засобів, антифунгальна дія на фітопатогенні гриби [21]
Pseudozyma fusiformata Гліколіпід Антифунгальна дія на широкий спектр дріжджів [22, 23]
Rhodococcus erythropolis Трегалозоліпіди (гліколіпід) Противірусна активність щодо вірусу простого герпесу HSV та вірусу грипу [24, 25]
Pseudozyma flocculosa Флокулозин (гліколіпід) Антифунгальна активність, посилення антимікробної і цитотоксичної дії антибіотика ам-фотерицину В на дріжджі та ракові клітини [26]
Pseudozyma siamensis SBS 9960 Манозилеритритолліпід (гліколіпід) Здатність до формування ліотропних рідкокристалічних рядів з утворенням везикул (ліпосом) для використання в генній терапії [27]
Streptococcus thermophilus A Гліколіпід Антиадгезивна дія проти деяких бактерій та дріжджів, виділених із зубних протезів [28, 29]
Streptococcus mitis — Антиадгезивна дія проти Streptococcus mutans [9]
Закінчення табл. 2
1 2 3
Представники роду Lactobacillus Сурфактин (ліпопептид) Антиадгезивна дія проти деяких патогенних мікроорганізмів, у тому числі ентеробактерій [30]
Lactococcus lactis 53 — Антиадгезивна дія проти деяких бактерій та дріжджів, виділених із зубних протезів [9]
Примітка: «-» — дані відсутні.
у суспензії тест-культур із подальшим вимірюванням показників росту мікроорганізмів (оптична густина, ваговий метод) та оцінюванням ступеня його гальмування.
Відомо, що механізм антимікробної дії ПАР полягає в порушенні цілісності цитоплазматичної мембрани тест-культур і втраті клітиною життєздатності. На цій властивості й ґрунтується третя група методів визначення антимікробної активності ПАР. Так, автори роботи [21] вимірювали активність малатдегідрогенази (ензиму, який є ін-термедіатом циклу трикарбонових кислот), що виділявся клітинами тест-культур назовні після дії поверхнево-активних речовин. Інші дослідники [22, 23] за схожим принципом оцінювали антимікробну дію ПАР, вимірюючи лише кількість виділеної АТФ.
Антибактеріальна активність мікробних ПАР
На сьогодні найбільш дослідженими ПАР, яким притаманна антимікробна дія, є ліпо-пептиди. Це й зрозуміло, оскільки вони по суті є поліпептидними антибіотиками. Серед них привертають увагу сурфактин (продуцент
В. эиЫШэ) [9] і ліхенізин (В. ІісНєпі^гшіз) [15]. Є також дані про антибактеріальну активність ще однієї поверхнево-активної речовини N1, продуцентом якої є В. эиЫШэ (табл. 3) [11]. ПАР N1 виявились ефективними проти грам-позитивних (проте не грамнегативних) бактерій. Таке явище можна пояснити тим, що грамнегативні бактерії мають зовнішню мембрану, непроникну для досліджуваних ПАР.
Таблиця 3. Антибактеріальна активність поверхнево-активної речовини N1
Забарвлення тест-культур за Грамом TeCT-Ky?LTypH Антибактеріальна активність
Bacillus coagulans +++
B. subtilis MTCC 121 ++
Lactococcus lactis subsp. lactis MTCC 440 +++
Грампозитивні Mycobacterium smegmatis ++
Staphylococcus aureus MTCC 87 ++
S. aureus MTCC 96 ++
Staphylococcus epidermidis MTCC435 ++
Streptococcus mutans MTCC 497 +++
Escherichia coli MTCC 406 —
E. coli MTCC 476 —
E. coli MTCC 443 —
E. coli MTCC 452 —
E. coli MTCC 295 —
E. coli MTCC 73 —
Грамнегативні Enterococcus faecalis MTCC 439 —
Pseudomonas acidovorans MTCC 104 —
P. aeruginosa MTCC 424 —
Pseudomonas cepacia MTCC 438 —
Salmonella virchow MTCC 1163 —
Salmonella MTCC 98 —
Serratia marcescens MTCC 97 —
Примітка: «+++» — зона затримки росту & gt-11 мм- «++» — зона затримки росту 9−11 мм- «-» — зони затримки росту не виявлено.
Ліпопептид B. brevis HOB1 виявляв антимікробну дію як щодо грампозитивних (B. licheniformis), так і грамнегативних (E. coli) бактерій, однак був неефективним проти S. aureus [18]. Загалом пошук препаратів проти золотистого стафілокока є актуальним через утворення резистентних форм, на які не діють антибіотики. Одним з таких препаратів може бути ліпопептид B. circu-lans, який у концентрації 500 мкг/мл повністю знищував клітини S. aureus [17]. Також цей ліпопептид виявляв ефективність проти таких стійких мікроорганізмів, як Klebsiella sp. і E. coli. Крім того, він характеризувався широким спектром антибактеріальної дії як на грампозитивні, так і на грамнегативні мікроорганізми. Не поступається йому за активністю й рамноліпід, продукований P. aeruginosa AT10 [3] (табл. 4). Порівняння антимікробної дії рамноліпіду і ліпопептиду показало, що останній ефективніший проти грамнегативних бактерій окрім E. coli і Serratia marcescens. За дії на грампозитивні бактерії значної переваги ліпопептиду порівняно з рамноліпідом виявлено не було.
Представники роду Pseudomonas можуть продукувати не тільки рамноліпіди (гліколі-піди), а й ліпопептиди. Так, P. putida PCL1445 синтезує речовину ліпопептидної природи (путисолвін), що пригнічує утворення біо-плівок і призводить до деградації вже існуючих біоплівок як власних, так й інших псевдомонад, у тому числі й умовно-патогенних для людини [33].
Candida antarctica T34 синтезує суміш чотирьох видів МЕЛ (гліколіпіди), проте у ній переважають МЕЛ-А і МЕЛ-В, які демонструють сильну дію проти грампозитивних бактерій [19, 20].
Також цікавим агентом є софороліпід Candida bombicola ATCC 22 214, який діє на
B. subtilis, Staphylococcus xylosus, Streptococcus mutans. Перевагою софороліпідів є не-токсичність, висока розчинність у воді, економічно вигідна технологія виробництва та високий вихід цільового продукту — до 300 г/л [21].
Окремо можна розглянути групу продуцентів ПАР, які належать до молочнокислих бактерій. Їхньою особливістю є те, що структуру деяких ПАР не встановлено, однак окрім здатності до синтезу поверхнево-активних речовин їм притаманна й пробіо-тична дія. Наприклад ПАР, синтезовані молочнокислими бактеріями Lactococcus lactis 53 і Streptococcus thermophilus A [29] мають високу антимікробну активність у низьких концентраціях (25−100 мг/мл) проти Staphylococcus epidermidis, Streptococcus salivarius, S. aureus, Rothia dentocariosa й використовуються як пробіотики для лікування та профілактики сечостатевих і кишкових захворювань (захищають сечостатеву систему та кишковий тракт від патогенних мікроорганізмів, забезпечуючи альтернативне лікування) [6]. У дослідах на щурах, інфікованих хірургічним шляхом, було встановлено, що ПАР Lactobacillus fermen-tum RC-14 знищують збудника — S. aureus [34]. Нещодавно було показано, що як самі бактерії Lactobacillus plantarum 299v і Lactobacillus rhamnosus GG, так і синтезовані ними ПАР перешкоджають прикріпленню E. coli до епітеліальних клітин кишкового тракту [35].
Із забруднених нафтою зразків ґрунту і води нами було виділено нафтоокисню-вальні бактерії, ідентифіковані як Acinetobacter calcoaceticus K-4 і Rhodococcus erythropolis
Таблиця 4. Порівняння антимікробної активності ліпопептиду B. circulans і рамноліпіду P. aeruginosa AT10
Тест-культура Мінімальна інгібуюча концентрація (мкг/мл)
Ліпопептид Рамноліпід
Грамнегативні бактерії
Alcaligenes faecalis 10 32
Bordetella bronchiseptica 100 128
E. coli 40 32
Представники роду Enterobacter 20 & gt-256
Serratia marcescens 30 16
Proteus miravillis 20 & gt-256
Грампозитивні бактерії
Представники роду Bacillus 30 64
Microccocus 200 32
Представники роду Mycobacterium 50 16
ЕК-1 [36], і встановлено здатність цих штамів синтезувати метаболіти з поверхнево-активними та емульгувальними властивостями під час росту на різних гідрофобних і гідрофільних субстратах [37, 38]. За хімічною природою ПАР R. erythropolis ЕК-1 є комплексом гліко-, фосфо- і нейтральних ліпідів [37], а ПАР A. calcoaceticus K-4 — комплексом гліко-, аміно- та нейтральних ліпідів [38]. Гліколіпіди обох штамів представлені трегалозоміколатами. Встановлено можливість інтенсифікації синтезу ПАР оп-тимізацією умов культивування продуцентів як у колбах, так і в лабораторному ферментаторі [37−40], внесенням у середовище з етанолом чи гексадеканом С4-дикар-бонових кислот (попередників глюконеоге-незу) і цитрату (регулятора синтезу ліпідів) [41−42], модифікацією середовища на основі дослідження особливостей метаболізму гексадекану й етанолу у штамів ЕК-1 і К-4 (зниження в середовищі культивування вмісту інгібіторів і підвищення активаторів ключових ензимів біосинтезу ПАР) [43, 44].
Наступні дослідження показали, що ПАР R. erythropolis ЕК-1 і A. calcoaceticus K-4 виявляють антимікробну дію щодо ряду бактеріальних тест-культур. На першому етапі аналізували вплив ПАР на добові культури B. subtilis і E. coli. Такі тест-куль-тури було обрано тому, що B. subtilis БТ-2 є грампозитивною бактерією, здатною утворювати термостійкі спори і бути шкідниками виробництв, а E. coli — грамнегативні бактерії, які можуть ще й спричиняти колі-інфекції.
Встановлено, що за присутності ПАР R. erythropolis ЕК-1 у концентрації 0,98 мг/мл спостерігалася загибель понад 90% клітин
B. subtilis БТ-2 вже через 1 год експозиції. За нижчої концентрації ПАР (0,61 мг/мл) виживання клітин становило 53−55% незалежно від тривалості обробки. У разі оброблення B. subtilis БТ-2 препаратами ПАР
A. calcoaceticus K-4 (0,15 мг/мл) кількість клітин тест-культури через 1 год зменшилася на 98,6%, а через 2 год — на 99,48%. За використання ПАР штаму К-4 у концентрації 0,22 мг/мл спостерігали 100%-ну загибель клітин B. subtilis БТ-2 незалежно від тривалості експозиції.
Препарати ПАР R. erythropolis ЕК-1, на відміну від A. calcoaceticus K-4, не виявляли антимікробної активності щодо E. coli ІЕМ-
1. За концентрації 0,22 мг/мл ПАР штаму К-4 знижували виживання клітин E. coli ІЕМ-1 на 67%. Очевидно, різна антимікробна дія цих двох препаратів на клітини E. coli
зумовлена відмінностями у хімічній будові досліджуваних ПАР.
Відомо, що антимікробна дія препаратів залежить від фізіологічного стану тест-культур- крім того, актуальним залишається питання пошуку антимікробних речовин проти резистентних спорових мікроорганізмів. На прикладі тест-культури B. subtilis ІЕМ-1 нами було показано ефективність дії ПАР A. calcoaceticus K-4 проти як вегетативних, так і спорових клітин.
Порівняння отриманих нами експериментальних результатів із даними літератури показало, що препарати ПАР R. erythropolis ЕК-1 за своєю антимікробною дією схожі на ПАР N1, яка була ефективна лише проти грампозитивних бактерій [11], а ПАР
A. calcoaceticus K-4 — на ліпопептид B. circulans [17], який справляв сильнішу антимікробну дію на різні види бактерій роду Bacillus, ніж на E. coli.
Антифунгальна дія ПАР
мікробного походження
Розглянемо антимікробну дію ПАР окремо на мікроміцети і на дріжджі. При визначенні антифунгальної дії зазвичай як тест-культури використовують мікроорганізми, що спричинюють псування продуктів, захворювання рослин (фузаріози, суха гниль тощо), а також патогени, які викликають хвороби людей (наприклад, кандидози).
Найбільш ефективними проти мікромі-цетів виявилися ПАР ліпопептидної природи, продуцентами яких є представники роду Bacillus. Антифунгальна активність характерна для сурфактину [9], ітурину (продуцент B. subtilis) [13], бамілоцину, А (B. amy-loliquefaciem LP03) [16] та ліпопептиду
B. subtilis 20B [8] і Bacillus sp. IBA 33 [32]. Бамілоцин, А діяв на збудників псування цибулі, капусти, моркви, томатів, цукрового буряку Bolrytis cineria, захворювання плодів і овочів (фузаріоз) та псування картоплі (суха гниль) Fusarium oxysporum, який може спричиняти харчові отруєння, і Rhizoctonia solani, що викликає хвороби рослин [16], а ліпопептид B. subtilis 20B — на фітопатогенні гриби Chrysosporium indicum, Alternaria burnsii, F. oxysporium, Fusarium udum, Trichoderma herzanium і Rhizoctonia bataticola [8]. Ліпопептид Bacillus sp. IBA 33 ефективний проти збудника псування лимонів Geotrichum candidum [32].
Ітурін характеризувався широким спектром дії [13] і був ефективним проти таких фітопатогенних грибів: Macrophomina
phaseolina (вугільна гниль), Pythium ultimum, Pythuim aphanidermatum (коренева гниль), Rhizoctonia solani (ризоктоніозна хвороба), Fusarium solani, F. oxysporum (коренева гниль), F. moniliforme (фузаріозна гниль), F. udum, Alternaria solani, Alternaria alternata (альтернаріоз), Aspergillus niger (чорна цвіль). Не поступався йому за активністю й рамноліпід (продуцент P. aeruginosa AT10) [3]. Він діяв на Aerobacidium pullulants, A. niger, Chaetonium globusum, Glioca-dium virens, Penicillium crysogenum, Penicil-lium funiculosum, B. cinerea, Colletotrichum gloesporioides, R. solani. Отже, не тільки ліпопептиди, а й гліколіпіди є ефективними антифунгальними препаратами.
Софороліпід діяв на збудника хвороб яблук, полуниці і томатів — B. cineria [21].
Серед описаних в літературі про-тидріжджових препаратів ПАР найбільшу увагу привертають гліколіпіди, продуковані представниками роду Pseudozyma. Наприклад, ПАР P. fusiformata (Ustilaginales) має низьку молекулярну масу, є термостійким і діє більш ніж на 80% із 280 досліджених видів дріжджів [22]. ПАР штаму VKM Y-2821 [23] у концентрації 0,6 мг/мл призводив до 100%-ї втрати АТФ із клітин дріжджів Cryptococcus terreus, Candida albicans і Saccharomyces cerevisiae через збільшення проникності цитоплазматичної мембрани. Інший гліколіпід флокулозин [26] (продуцент P. flocculosa) у концентрації 50 мкг/мл активніше діяв на C. albicans, Candida glaba-tra, Candida lusitaniae, S. cerevisiae, Tricho-sporon asahii за кислих умов (рН 5,0), ніж за нейтрального рН. Проте при рН 7 за сумісного використання ПАР і антибіотика амфоте-рицину В (АМВ) антимікробна дія посилювалась. Взаємодія між флокулозином і АМВ спостерігалася вже в разі додавання
0,005 мкг/мл флокулозину, що давало змогу знизити кількість токсичного антибіотика. Припускають, що такої невеликої кількості флокулозину достатньо для порушення структури мембрани дріжджів і полегшення проникнення АМВ у клітини, де він зв’язується з ергостеролом і спричинює загибель клітин.
Разом з тим слід зазначити, що рамно-ліпід, який належить до гліколіпідів, не діяв на C. albicans, S. cerevisiae і Rhodotorula rubra [3]. Оскільки механізм дії ПАР ще остаточно не встановлено, неможливо точно визначити причини такої різної антимікробної дії поверхнево-активних речовин гліко-ліпідної природи.
ПАР, синтезовані молочнокислими бактеріями Lactococcus lactis 53 і Streptococcus
thermophilus A, виявились ефективними у досить низьких концентраціях (10−100 мг/мл) проти C. albicans і C. tropicalis [9]. Ліпопеп-тид B. brevis HOB1 діяв на Pichia pastoris [17], а ПАР B. subtilis — на C. albicans [11]. Отже, ліпопептиди є не досить ефективними антимікробними агентами щодо дріжджів. Можливо, це пов’язано з відмінностями у структурі й складі клітинної стінки та цитоплазматичної мембрани дріжджів, мікро-міцетів і прокаріотів.
Наші дослідження показали, що кількість живих клітин дріжджів роду Candida за присутності ПАР R. erythropolis ЕК-1 (0,61−1,44 мг/мл) і A. calcoaceticus K-4 (0,15−0,22 мг/мл) знижувалась із підвищенням концентрації ПАР і збільшенням тривалості обробки. Так, через 2 год оброблення препаратами ПАР у найвищій з досліджуваних концентрацій спостерігали загибель 85% клітин C. tropicalis, 74% - C. albicans і 17% - C. utilis.
За своїм спектром дії на представників роду Candida ПАР штамів ЕК-1 і К-4 схожі на гліколіпіди P. fusiformata [22, 23] та є ефективнішими у значно нижчих концентраціях (до 1,5 мг/мл), ніж ПАР L. lactis 53 і S. thermophilus A (10−100 мг/мл) [9].
Противірусна активність мікробних ПАР
Аналізуючи дані літератури, можна дійти висновку, що противірусній активності мікробних поверхнево-активних речовин приділяється значно менша увага порівняно з антимікробною дією. Відомо, що лише двом речовинам ліпопептидної природи (сурфактин і пумілацидин) і одній гліколіпідної (трегалозоліпіди) притаманна антивірусна активність. Найефективнішим виявився сурфактин [9], який діяв на широкий спектр вірусів: вірус лісу Семліки (збудник лихоманки), вірус простого герпесу (HSV), віруси герпесу свиней, везикулярного стоматиту, імунодефіциту мавп, каль-цивірозу кишок та енцефаломіокардиту мишей. Аналог сурфактину (пумілацидин) і гліколіпід, синтезований R. erythropolis, виявляли антивірусну дію щодо простого вірусу герпесу 1 (HSV-1) [2].
Механізм противірусної дії вивчений лише для сурфактину. Показано, що цей ліпопептид є ефективнішим проти вірусів, що мають оболонку (ретровіруси, віруси герпесу), ніж проти безоболонкових вірусів. Таке явище зумовлено тим, що саме механізм дії ПАР пов’язаний із взаємодією молекул препарату із зовнішньою оболонкою вірусів
і утворенням у ній каналів з подальшою дезінтеграцією [9].
Отже, противірусна дія ПАР потребує більш докладного вивчення, оскільки цей напрям є актуальним і перспективним, особливо для пошуку ефективних препаратів для боротьби з ретровірусами і вірусом імунодефіциту людини.
Антиадгезивна активність ПАР мікробного походження
Вже давно відома роль поверхнево-активних речовин ліпопротеїдної природи в захисті організму людини від інфекцій верхніх дихальних шляхів. Ці сурфактанти синтезуються та секретуються епітеліальними

Статистика по статье
  • 83
    читатели
  • 16
    скачивания
  • 0
    в избранном
  • 0
    соц. сети

Ключевые слова
  • МіКРОБНі ПОВЕРХНЕВОАКТИВНі РЕЧОВИНИ,
  • АНТИМіКРОБНА ДіЯ,
  • АНТИАДГЕЗИВНі ВЛАСТИВОСТі,
  • ГЕННА ТЕРАПіЯ,
  • МЕДИЦИНА,
  • БіОЛОГіЯ,
  • МИКРОБНЫЕ ПОВЕРХНОСТНОАКТИВНЫЕ ВЕЩЕСТВА,
  • АНТИМИКРОБНОЕ ДЕЙСТВИЕ,
  • АНТИАДГЕЗИВНЫЕ СВОЙСТВА,
  • ГЕННАЯ ТЕРАПИЯ,
  • БИОЛОГИЯ,
  • MICROBIAL SURFACE ACTIVE SUBSTANCES,
  • ANTIMICROBIAL PROPERTIES,
  • ANTIADHESIVE ACTIVITY,
  • GENE THERAPY,
  • BIOLOGY,
  • MEDICINE

Аннотация
научной статьи
по биологии, автор научной работы & mdash- Пирог Т. П., Конон А. Д., Скочко А. Б.

Представлены данные литературы и результаты собственных экспериментальных исследований практического использования микробных поверхностноактивных веществ (ПАВ) в биологии и медицине. Рассмотрены и проанализированы антимикробные (противовирусные, антибактериальные, антифунгальные) свойства ПАВ микробного происхождения, их антиадгезивная активность, перспективы использования этих продуктов микробного синтеза в терапевтических целях (в качестве тромболитических и противоопухолевых агентов, как составляющие липосом для целевой доставки лекарств, для усиления антимикробного действия эфирных масел, применения в генной терапии и др.). Обсуждаются перспективы использования микробных ПАВ в молекулярнобиологических, генетических, цитологических и иммунологических исследованиях.

ПоказатьСвернуть
Заполнить форму текущей работой