Построение модели обработки пространственной информации на основе методов нечеткой логики

Тип работы:
Реферат
Предмет:
Кибернетика


Узнать стоимость

Детальная информация о работе

Выдержка из работы

УДК 004. 942
ПОСТРОЕНИЕ МОДЕЛИ ОБРАБОТКИ ПРОСТРАНСТВЕННОЙ ИНФОРМАЦИИ НА ОСНОВЕ МЕТОДОВ НЕЧЕТКОЙ ЛОГИКИ
Давлетбакова З. Л.
ФГБОУ ВПО «Уфимский Государственный Авиационный Технический Университет», Уфа, Россия (450 000, г.
Уфа ул. К. Маркса, 12), e-mail: davletbakova@mail. ru______________________________________________
В статье рассматривается решение задачи территориального планирования на основе методов нечеткой логики с использованием геоинформационных систем. В процессе этого решения строится модель пространственного описания взаиморасположения объектов на карте. Разработаны способ формализации нечетких суждений о взаимном расположении географических объектов для представления сложных пространственных моделей и система получения на их базе результатов методами нечеткого логического вывода. Выявлено, что для задач такого рода как планирование территорий, следует анализировать всю территории в целом, т. е. необходимо рассматривать все точки исследуемой местности и проводить анализ по представленному в статье алгоритму непосредственно для каждой точки поверхности. В выводах продемонстрированы результаты анализа пригодности территории для установки мусороперегрузочных станций и санитарно-защитных зон полигонов отходов. Ключевые слова: нечеткая логика, геоинформационные системы, задачи территориального планирования, пространственное описание объектов, нечеткий вывод.
BUILDING A MODEL OF SPATIAL INFORMATION PROCESSING ON THE BASIS OF FUZZY LOGICS METHODS Davletbakova Z.L.
Ufa State Aviation Technical University, Ufa, Russia (450 000, Ufa, street K. Marksa, 12), e-mail:
davletbakova@mail. ru____________________________________________________________________________
The article discusses the territorial planning issues based on fuzzy logic methods using geographic information systems. In the process the model of the spatial description of relative position of objects on the map is built. A way of formalizing the fuzzy judgments concerning the relative positions of geographic features and a defuzzification system based on the fuzzy inference methods are developed to represent complex spatial patterns. It was revealed that for tasks such as area planning all the territory as a whole should be analyzed, i.e. it is necessary to consider all the points of the area under study and to analyse each point on the surface directly according to the presented algorithm. The conclusion demonstrates the analysis of the suitability of areas for the installation of transfer stations and landfill sanitary protection zones.
Keywords: fuzzy logic, geographic information systems, the problem of territorial planning, spatial description of objects, fuzzy inference.
Введение
В вопросах территориального планирования и природопользования одной из ведущей технологией, сочетающей возможности традиционной картографии и интеллектуальной обработки данных, является геоинформационная система (ГИС). Наиболее значимая составляющая функциональности ГИС в аналитических задачах заключается в использовании моделей реальных явлений. Характерной чертой этих моделей является комбинирование и преобразование исходных данных в соответствии с алгоритмом решения и последующая интерпретация полученных результатов в виде карты местности. В то же время, для достижения результатов, способных удовлетворить запросы пользователей, нередко приходится сталкиваться с несовершенством применяемых подходов и, как следствие, с недостаточной адекватностью формируемых на их базе выводов. В связи с этим,
наиболее эффективными являются нечеткие методы моделирования, базирующиеся на аппарате нечеткой логики (fuzzy logic), с помощью которых, полагаясь на знания экспертов, могут быть получены позитивные результаты в итерационном процессе уточнения непротиворечивой модели. Такие модели способны учесть неточность (нечеткость) в условиях, свойственных задаче, и обеспечить достижение приемлемого решения.
Использование методов нечеткой логики в ГИС является более продвинутым, приближенным к естественным человеческим суждениям подходом как для традиционных задач, так и тех задач, для которых до недавнего времени решения не были вполне пригодными для использования [4−6]. Само решение задачи может состоять в наложении тематических пространственных данных, например, при выборе подходящих по заданным критериям территорий, и применения моделей пригодности.
Постановка задачи
В ГИС изучение территории зачастую основывается на поиске определенных закономерностей во взаимном расположении пространственных объектов. Анализируя такой параметр как расстояние, эксперт как правило характеризует его как & quot-далеко"-, & quot-близко"- и др., в соответствии с чем и описывает необходимое условие для поиска определенного местоположения. Постановка задачи состоит в формализации описания суждений экспертов в терминах нечеткой логики совместно с описанием пространственного взаиморасположения объектов на карте. В последующем решение задачи выполняется на основе методов, применяемых к нечетким множествам, результаты которой проходят процедуру дефаззификации и визуализации их на карте как более удобного и понятного способа предоставления вывода пространственного анализа [1].
Тем не менее, существует целый ряд задач, в рамках решения которых лежит изучение поверхности территории в целом, т. е. требуется анализ всего множества точек, из которых состоит непрерывная поверхность. В таком случае, устанавливается пространственное взаимоотношение географических объектов непосредственно с каждой точкой местности, результат вычисления которых будет представлен в виде новой поверхности, отражающей участки в той или иной степени удовлетворяющие заданным условиям задачи.
Рассмотрим векторную карту местности K (рис. 1), описывающую пространственное расположение множества объектов O, принадлежащих одному из n типов и
сгруппированных в соответствии с типами в слои
О = {О,}
Рис. 1 — Карта, состоящая из векторных слоев {8,} Пространственные характеристики объектов на плоскости, описываемых картой заданного фиксированного масштаба М, охарактеризуем следующим образом:
— точечные объекты (колодцы, посты гидрологического контроля и др.) — парой координат:
Г (о р) = (, ур) —
5
— линейные объекты (реки, авто- и ж/д дороги и др.) — упорядоченным набором из г пар координат:
Г (оі) = {(V, у!)} Ч = 1 г-
5
— полигональные объекты (населенные пункты, озера, лесные массивы и др.) -упорядоченным набором из г пар координат, причем координаты начальной точки совпадают с координатами конечной точки:
Г (о ро1) = {(х1, у/ы)х0 рЫ = х/р', *0рЫ = УҐ}, Ч = й
Как было отмечено, одной из основных количественных характеристик положения объектов является расстояние от одного объекта до другого. В случае с анализом поверхности это расстояние от точки пространства Р до объекта О, (рис. 2).
Рис. 2 — Взаиморасположение объектов на карте Если рассматриваются точечные объекты, расстояние определяется согласно евклидовой метрике:
Яр = ^(хо — *р)2 + (Уо — Ур)2. (1)
При оценке расстояния от линейного объекта до точки, необходимо оперировать понятием кратчайшего расстояния, определяемого как:
Я, = ттR{(Xо, УоМ*/, У,)} = тп^х, -х,)2 + (у, -у '-)2} (2)
. (2)
Аналогичным образом определяется расстояние между точкой и объектом полигонального типа:
ЯрЫ =™П Я{(Х0, Уо),(Х, Р°', У, Р°')} =
= тт{д/(Хо- Х, рЫ)2 +(У, — Ур°1)2} (3)
Определив расстояния для каждой точки пространства и обозначив набор расстояний
от одной точки до всех объектов на карте как г = {г1}, I = 1, п, приступим к определению
условий задачи, которые в качестве параметров будут использовать расстояния между различными группами объектов.
Допустим, необходимо выбрать местоположение для объектов Оиск, на которое
оказывают влияние факторы Л1п = {Л, }, i = 1, п, характеризующие расстояние г, от
объектов ОО до искомого положения объекта Оиск.
Каждый фактор Л/п в рамках нечеткой логики будет называться лингвистической переменной, которая определяется некоторым набором термов:
Л'-& quot- е Г'-& quot-: Г'-& quot- = {а,}, I = 1Г^Т.
Для факторов расстояний в качестве термов могут выступать следующие лингвистические значения «близко», «недалеко», «далеко». Степень отношения значений г, к определенному терму лингвистической переменной выражается функцией принадлежности
(г) е [0,1], где Г е Я — область определения входных переменных г, (рис. 3) [2−3].
Рис. 3 — График функции принадлежности для входной лингвистической переменной
А1пр
В зависимости от выбора задачи, пригодность местоположения объекта Оиск характеризуется лингвистической переменной AOut. Задачей нечеткого вывода является
~ '-¦'-Л Out
определение числового значения для выходной переменной A, согласно условиям задачи
AIn:
AOut = AOut (A^, A2 In,…, AnIn). (2. 4)
Соответственно, каждой выходной переменной присуще свои значения термов, характеризующие степень пригодности искомого участка как «не пригодно», «не
достаточно пригодно», «пригодно» и т. д. :
AOut е TOut: TOut={d. }, j=
Областью определения в этом случае будет выступать m-бальная шкала, которая обозначает степень пригодности местоположения 0) = {1,2,…, m}[3]. Функции
принадлежности Mj (m)? [°Л], где m? W для нечетких множеств {dj} представлены d2 на рисунке 4.
Рис. 4 — График функции принадлежности для выходной лингвистической
переменной Л°ш
После определения входных и выходных значений, необходимо установить между ними зависимость, т. е. сформировать базу правил систем нечеткого вывода.
В качестве правил логического вывода будем использовать операцию нечеткого И (минимум), с помощью которой принадлежность выводу «отсекается» по высоте, соответствующей степени истинности предпосылки правила. Далее нечеткие подмножества, назначенные для каждой выходной переменной, объединяются для формирования единого нечеткого подмножества для каждой переменной:
ЕСЛИ Г1 = а1(] И г2 = а2& lt- И… И гп = ап& lt-
к2 _________________________к2 ____________________________________к2
Ґ
ИЛИ Г1 — аі И Г2 — а2, И… И Гп — ап
ИЛИ Г1 — аі/ ] И Г2 — а2& lt- ] И. И Гп — ап/ к
ТО у — & lt-^. -, к — 1,2,
где ащ — нечеткий терм, которым оценивается значение входа в строчке с
номером кР (Р -1, к к), кк — количество строчек-коньюкций, в которых выход у оценивается
нечетким термом ёк, 2 — количество термов, используемых для лингвистической оценки выходных данных.
Таким образом, приведенная выше система логических высказываний записывается с помощью операций объединения и (ИЛИ) и пересечения 1 (И):
иР-1 ІП'-ІХ (г — & lt-) I ® у — Лк, к -12 (5)
Нечеткая база знаний вида (5) является базой знаний Мамдани с МТБО-структурой
(Multiple Input — Single Output) [1−3].
Теперь полученные результаты нечеткого вывода следует преобразовать в обычные количественные значения, чтобы оценить степень удовлетворенности каждой точки пространства местоположению согласно условиям задачи. В данной задаче рассматривается деффазификация по методу центра тяжести:
Физическим аналогом этой формулы является нахождение центра тяжести плоской фигуры, ограниченной осями координат и графиком функции принадлежности нечеткого
получим новую поверхность, отображающую желательные и нежелательные участки для установления объектов °иск в соответствии с мнениями экспертов.
На рисунке 5 представлены территории пригодности местоположения санитарнозащитной зоны полигона отходов (СЗЗ) (5а) и мусороперегрузочных станций (МПС) (5б),, полученных в результате описанного выше анализа. Для решения приведенных примеров задач в основном учитывался такой фактор как взаиморасположение объектов на карте, участвующих в сфере обращения с отходами и влияющих на пригодность территории для установки СЗЗ и МПС.
Заключительная часть
Разработаны способ формализации нечетких суждений о взаимном расположении географических объектов для представления сложных пространственных моделей и система получения на их базе результатов методами нечеткого логического вывода. Этот метод благодаря свободе и многообразию рассуждений о поставленной задаче, повышает гибкость и выразительность анализа и интерпретации данных, и потому может служить основой для проведения интеллектуального анализа географических данных
(6)
множества.
Подобным образом, вычислив значения для всего множества точек пространства
— степень пригодности участка для установления границы СЗЗ
a) б)
Рис. 5 — Результат нечеткого вывода на карте
исок литературы
1. Васильев В. И. Интеллектуальные системы управления с использованием нечеткой логики: учебное пособие/ Васильев В. И., Ильясов Б.Г.- Уфа: УГАТУ — 1995.- 390 с.
2. Макеева А. В. Основы нечеткой логики. Учебное пособие для вузов / Макеева А. В. -Н. Новгорд: ВГИПУ, 2009. -59 с.
3. Штовба С. Д. Введение в теорию нечетких множеств и нечеткую логику/ Штовба С. Д. -Винница: Континент-Прим. -2007.- 198 с.
4. Daniel Z Sui. A fuzzy GIS modeling approach land evaluation/ Computing Environment and Urban Systems. — 1992. — vol 16 — pp 101−115.
5. Hongyou Liang. Study of fuzzy uncertainty of GIS products/ Hongyou Liang, Shengwu Hu, Chaofei Qiao// ISPRS Workshop on Service and Application of Spatial Data Infrastructure.- 2011. -XXXVI (4/W6) Oct. 14−16.- pp 225−229.
6. Mesgari M.S. Implementation of Overlay Function Based on Fuzzy Logic in Spatial Decision Support System/ M.S. Mesgari, A. Pirmoradi, G.R. Fallahi// World Applied Sciences Journal. -2008. -№ 3 — pp. 60−65.
Рецензенты:
Куликов Г. Г., д.т. н, профессор, зав. кафедрой АСУ, ФГБОУ ВПО УГАТУ, г. Уфа.
Христодуло О. И., д.т.н., доцент, зав. кафедрой ГИС, ФГБОУ ВПО УГАТУ, г. Уфа.

ПоказатьСвернуть
Заполнить форму текущей работой