Исследование возможности аппроксимации экспериментальных данных для процесса ионной имплантации бора в кремнии

Тип работы:
Реферат
Предмет:
Физико-математические науки


Узнать стоимость

Детальная информация о работе

Выдержка из работы

УДК 519. 248
ИССЛЕДОВАНИЕ ВОЗМОЖНОСТИ АППРОКСИМАЦИИ ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ ДЛЯ ПРОЦЕССА ИОННОЙ ИМПЛАНТАЦИИ БОРА В КРЕМНИИ
Салеев Д. В.
АНОО ВПО «Воронежский институт высоких технологий», Воронеж, e-mail: saleevd@gmail. com
Формирование математической модели каждой операции технологического процесса производства интегральных схем является ключевым этапом разработки подсистемы оптимизации. В работе рассмотрены основные подходы аппроксимации экспериментальных данных для процесса ионной имплантации бора в кремнии. Проанализированы наиболее часто используемые аппроксимации зависимости концентрации бора от глубины залегания в кремнии с точки зрения использования в моделях и алгоритмах разрабатываемой подсистемы оптимизации. Установлено, что, несмотря на учет большого числа параметров, влияющих на результат на реальном производстве, что привело к достаточно сложным аналитическим выражениям, функции распределения (Гаусса и Пирсон IV) при энергиях имплантации 5 и 10 кэВ существенно отличаются от экспериментальных данных. Для аппроксимации зависимости предложено использовать метод наименьших квадратов. По результатам моделирования установлено, что требуемая точность аппроксимации может быть достигнута с применением многочлена не менее четвертой степени.
Ключевые слова: аппроксимация, интегральные схемы, метод наименьших квадратов, эксперимент
INVESTIGATION OF THE POSSIBILITY OF APPROXIMATING THE EXPERIMENTAL DATA FOR THE PROCESS OF ION IMPLANTATION OF BORON IN SILICON
Saleev D.V.
Voronezh Institute of High Technologies, Voronezh, e-mail: saleevd@gmail. com
Formation of a mathematical model of each operation process of the production of integrated circuits is a key step in the development of optimization subsystem. The paper considers the main approaches of approximating the experimental data for the process of ion implantation of boron in silicon. It is found that, despite the large number of records the parameters affecting the result on the real production, what led to a rather complicated analytical expressions, the distribution function of implantation (Gauss and Pearson IV) at energies of 5 and 10 keV are substantially different from the experimental data. For approximation of this dependence is suggested to use the method of least squares. According to simulation, established that the required accuracy of approximation can be achieved by using polynomial of polynomial of the 4th power.
Keywords: approximation, chip, method of least squares, experiment
Одной из важнейших задач при оптимизации технологического процесса (ТП) производства интегральных схем является формирование математических моделей для каждой технологической операции [7]. Для предлагаемой подсистемы оптимизации [8] необходимы модели, наиболее точно описывающие поведение выходных характеристик изготавливаемой микросхемы.
При формировании таких моделей проблемой является нелинейность зависимости выходного параметра изготавливаемой микросхемы от величины текущего влияния на нее со стороны системы управления ТП. В некоторых случаях невозможно найти аналитическое выражение для описания физического или физико-химического процесса, так как эти процессы зависят одновременно от нескольких факторов, в связи с чем для представления нелинейных функций ТП используются аппроксимации различного вида [3].
Применение численных методов позволяет решить данную задачу: основное
их достоинство состоит в том, что большинство из них сводится к многократному повторению простейших арифметических операций для конкретных данных: то есть возможно получить решение для определенного (частного) случая — с учетом особенностей производства интегральных схем. Существующие методы аппроксимации нелинейных функций позволяют получить аналитические зависимости, которые приводят к численным решениям с меньшими временными затратами, при этом выбор метода аппроксимации для конкретной задачи определяется максимальным допустимым временем расчета, погрешностью аппроксимации и прочим [3]. Выбор метода аппроксимации зависит от конкретной задачи, необходимой точности вычислений. Фактически при построении модели необходимо идти на компромисс между точностью модели и сложностью ее вычислений [3].
Необходимо также отметить, что в большинстве случаев для использования в алго-
¦ ТЕХНИЧЕСКИЕ НАУКИ ¦
2673
ритмах управления технологического процесса работа проводится на ограниченном промежутке (отрезке) функции, в связи с чем для решения задач на производстве требуется аппроксимация только части кривой функций.
Цели работы. По данным работ [1, 4], одними из наиболее важных операций при производстве ИС являются ионная имплантация, отжиг и травление. Исследование и моделирование позволяет разработать алгоритмы контроля и эффективного управления технологического процесса на данных операциях. Целью настоящей работы является исследование существующих математических моделей зависимостей легирующего элемента от глубины залегания в кремнии после ионной имплантации и разработка предложений по их улучшению.
Результаты исследования и их обсуждение
Из теоретических данных [1] известно, что профиль внедренных ионов представляется в виде гауссовой кривой с максимумом концентрации примеси на глубине Яр:
Щх) = 1-К[Ь2(х-Яр)2+Ь1(х-Кр)]'-2Ь2ех1Р
Щх) =

ехр

2АЯ:
где Щх) — концентрация внедренной примеси- Ь — доза ионов- Я — средний пробег ионов, АЯ — дисперсия среднего проективного пробега.
Однако на практике при имплантации, форма профиля внедренных ионов может существенно отличаться от гауссовой. Причины данного несоответствия теоретических и практических данных связаны, в частности, с тем, что происходит диффузионное перераспределение примеси, наблюдается эффект каналирования, а также влияют другие факторы [4].
В работе [6] показано, что при использовании распределения Гаусса при низких энергиях имплантации ошибка может быть существенной (более 5%) и ввиду этого не может быть использована в предлагаемой подсистеме оптимизации.
В работах [2, 6] для уменьшения ошибки аппроксимации предлагается использовать Гауссианы более высоких порядков -в частности распределение Пирсон IV [2]:
(Ь1/Ь2)+2а 2Ъ2{х-Кр) + Ъх
~ (АЪА-ЪТ 8 (46Л-Ь, 2)½ ,
где а0, Ь0, Ь1, Ь2 — константы четырех центральных моментов [2]- К — константа нормализации для распределения.
На рис. 1 представлено сравнение экспериментальных и теоретических данных зависимости концентрации бора от глубины залегания в кремнии после ионной имплантации. Практические данные взяты из работы [6].
Видно, что экспериментальные и теоретические (распределение Пирсон IV) данные имеют достаточно сильные расхождения: несмотря на учет большого числа факторов, что ведет к громоздким формулам и усложнению вычислений вследствие большого числа арифметических операций [2], на некоторых участках зависимости (рис. 1) существует существенное расхождение теоретических и экспериментальных данных (относительная ошибка при значениях х & gt- 1000 нм и энергии 10 кэВ составляет до 11%), что делает невозможным применение распределения Пирсон IV в подсистеме оптимизации ТП производства интегральных схем для процесса ионной имплантации. Ошибка аппроксимации для распределения Пирсон IV составляет 0,11 для 5 кэВ и 0,25 для 10 кэВ. Согласно работам [2, 6] допустимым считается уровень ошибки аппроксимации не более 1%.
Следовательно, для применения в подсистеме оптимизации ТП производства ИС производством интегральных схем необходимо использовать более точные для вычисления функции.
В качестве метода аппроксимации предлагается использовать метод наименьших квадратов [5], который состоит в следующем: проводится поиск таких значений ко -эффициентов регрессии, при которых сумма квадратов отклонений теоретического распределения от фактического (экспериментального) была бы наименьшей:
л — я*$} - V г=1
где (х1, у1), (х2, у2), …, (хЩ уЩ) — заданный набор точек (экспериментальные данные).
Аппроксимационная функция ищется в виде многочлена т-й степени:
т
Ж) = «0 +аЛ +а2Х? ± + атХ? =
7=0
Требуется найти набор коэффициентов аппроксимации для которых значение функции Ах) будет максимально
приближено к практическим данным. к нулю. В общем случае получается систе-Для этого (1) дифференцируется по каж- ма уравнений, которая решается в матрич-дому из параметров а. и приравнивается ном виде.
Рис. 1. Зависимости концентрации бора от глубины залегания в кремнии, полученные экспериментально (точки) и теоретически (Пирсон IV) — кривые при дозе 1015 см-2 и энергии 5 и 10 кэВ
Рис. 2. Результаты аппроксимации экспериментальных данных зависимости концентрации бора от глубины залегания в кремнии при дозе 1015 см-2 методом наименьших квадратов
для степени многочлена т = 3
¦ ТЕХНИЧЕСКИЕ НАУКИ ¦
2675
м & quot-3
А/, см
2К5
X, нм
Рис. 3. Результаты аппроксимации экспериментальных данных зависимости концентрации бора от глубины залегания в кремнии при дозе 1015 см-2 методом наименьших квадратов для степени многочлена т = 3
Результаты аппроксимации экспериментальных данных зависимости концентрации бора от глубины залегания в кремнии после ионной имплантации представлены на рис. 2 и 3.
Ошибка аппроксимации составляет для степени многочлена т = 3 — 0,01 для энергии 5 кэВ, 0,017 для 10 кэВ- при т = 4 -3,2Т0−3 для 5 кэВ и 1,45 10−3 для 10 кэВ. При этом требуется выполнить меньше арифметических операций: асимптотическая оценка [5, 6] для метода наименьших квадратов — О (т), для аппроксимации Пирсон IV — О (т2).
Выводы
Таким образом, установлено, что метод наименьших квадратов дает высокую точность аппроксимации для различных значений энергий ионной имплантации бора, является более быстродействующим в сравнении с аппроксимацией Пирсон IV. Для использования в составе разрабаты-
ваемой подсистемы оптимизации технологического процесса производства интегральных схем достаточно использовать в методе наименьших квадратов многочлен четвертой степени.
Список литературы
1. Ануфриев Д. Л. Конструкционные методы повышения надёжности интегральных схем / Д. Л. Ануфриев, М. И. Горлов, А. П. Достанко. — Минск: Интегралполиграф, 2007. — 264 с.
2. Быкадорова Г. В., Битюцкая Л. А., Гольдфарб В. А. Математическое моделирование технологических процессов в микроэлектронике. — Воронеж: ВГУ, 1997. — 160 с.
3. Голубинский А. Н. Методы аппроксимации экспериментальных данных и построения моделей // Вестник Воронежского института МВД России — 2008. — № 1. -С. 128−134.
4. Курносов А. И., Юдин В. В. Технология производства полупроводниковых приборов и интегральных микросхем. — М.: Высшая школа, 1986. — 256 с.
5. Линник Ю. В. Метод наименьших квадратов и основы математико-статистической теории обработки наблюдений. — 2-е изд. — М.: Физматлит, 1962. — 336 с.
6. Мустафаев М. Г. Повышение эффективности управления технологическим процессом формирования структур интегральных элементов: дис. … канд. технич. наук. — Владикавказ. 2002. — 139 с.
7. Салеев Д. В. Управление качеством технологического процесса производства интегральных схем // Вестник Воронежского института высоких технологий. — 2013. — № 10. -С. 53−57.
8. Lvovich I.Y., Preobrazhenskiy A.P., Saleev D.V. Development of Optimization Subsystem for Integrated Circuits // Life Science Journal. — 2014. — № 1108. — P. 724−728.
References
1. Anufriev D.L. Konstrukcionnye metody povysheniya na-dezhnosti integral'-nyh shem [Construction methods to improve the reliability of integrated circuits]. Minsk, Integralpoligraf Publ., 1986. 264 p.
2. Bykadorova G.V., Bityutskaja L.A., Gol'-dfarb V.A. Matematicheskoe modelirovanie tehnologicheskih processov v mikroelektronike [Mathematical modeling of technological processes in microelectronics]. Voronezh, VGU Publ. 1997. 160 p.
3. Golybinskiy A.N. Vestnik Voronezhkogo Instituta MVD Rossii — Herald of Voronezh Institute of MIA Russia, 2008, no. 1. pp. 128−134.
4. Kurnosov A.I., Yudin V.V. Tehnologiya proizvodstva poluprovodnikovyhpriborov i integral'-nyh mikroshem [Technology of production of semiconductor devices and integrated circuits]. Moscow: Vysshaya shkola Publ., 1986. 256 p.
5. Linnik Y.V. Metod naimen'-shih kvadratov i osnovy matematiko-statisticheskoy teorii obrabotki nabljudeniy [Least squares method and the fundamentals of mathematics and statistical theory of the observations analysis] Moscow, Fizmatlit Publ. 1962. 336 p.
6. Mustafaev M.G. Povyshenie effektivnosti uprav-leniya tehnologicheskim processom formirovaniya struktur integral'-nyh elementov [Improving the efficiency of the process control structure formation of integral elements] Vladikavkaz, 2011. 139 p.
7. Saleev D.V. Vestnik Voronezhkogo Instituta Vysokikh Technologiy — Herald of Voronezh Institute of High Technologies, 2013, no. 10. pp. 53−57.
8. Lvovich I.Y., Preobrazhenskiy A.P., Saleev D. V Development of Optimization Subsystem for Integrated Circuits // Life Science Journal. 2014. no. 1108. pp. 724−728.
Рецензенты:
Кострова В. Н., д.т.н., профессор, проректор по мониторингу качества, Воронежский институт высоких технологий, г. Воронеж-
Чопоров О. Н., д.т.н., профессор, проректор по научной работе, Воронежский институт высоких технологий, г. Воронеж.
Работа поступила в редакцию 23. 09. 2014.

ПоказатьСвернуть
Заполнить форму текущей работой