Расчет сваи на действие вертикальной и горизонтальной сил

Тип работы:
Реферат
Предмет:
Строительство. Архитектура


Узнать стоимость

Детальная информация о работе

Выдержка из работы

РАСЧЕТ СВАИ НА ДЕЙСТВИЕ ВЕРТИКАЛЬНОЙ И ГОРИЗОНТАЛЬНОЙ СИЛ
И. И. Шишов, А. Г. Дашков
Дано решение о продольно-поперечном изгибе стержня, который защемлен верхним и нижним концами и нижней своей частью погружен в песчаную подсыпку. Работа выполнена в связи с проектированием свайных фундаментов для объектов, возводимых в условиях вечной мерз-у лоты.
В районах Севера строительство часто ведется на территориях, имеющих песчаную подсыпку. Здание опирается на сваи из металлических труб и для сохранения мерзлоты понимается над поверхностью подсыпки на некоторую высоту открытого продуваемого подполья. В расчетной схеме для сваи может быть принято: нижним концом она защемляется в вечномерзлом грунте, а верхним — в ростверке здания. Свая проходит подсыпку, мощность слоя которой может достигать 7,0 м и продуваемое подполье (1−1,5 м). Большая длина делает ее гибкой- важное значение приобретает определение сопротивление сваи горизонтальным перемещениям при одновременном действии вертикальной и горизонтальной сил. Решение, приведенное в СНиП [1], предназначено для свай постоянного сечения и при определении горизонтальных перемещений действие вертикальной силы не учитывает.
В работе [2] приводится решение задачи про-дольно-поперечного изгиба стержня методом конечных разностей. Геометрическая нелинейность учитывается при записи дифференциальной зависимости между внутренними силовыми факторами
где (2, М, N — поперечная сила, изгибающий момент и продольная сила в сечении стержня- а -угол наклона упругой линии к продольной оси л
В качестве основных неизвестных приняты прогибы стержня V] в точках у = 1,2,… п, нанесенных на стержне с некоторым шагом Ъ. Условие равновесия участка стержня, выделенного в окрестности рядовой точки /, имеет вид
х, а у ^ к3, у = /¦ - 2, / -1, и / +1,! + 2 ,
где щ — коэффициенты, зависящие от изгибных жесткостей стержня, которые для каждой точки у могут иметь свое значение, и продольной сжимающей силы ТУ- - внешняя поперечная сила, приложенная в точке /.
Для проверки алгоритма был решен ряд задач по определению усилий в опорных связях от еди-
ничных кинематических воздействий при различных значениях продольной сжимающей силы. При шаге точек, равном 1/20 длины стержня, отклонения от точных значений [3], не превысили 1%. Хорошие результаты получились также при сравнении с точными решениями [4]. Решались также примеры на определение критической силы для центрально сжатого стержня. Описанный метод, видимо, может быть применен к расчету сваи.
В работе [5] рассматривается деформирование балки, опирающейся на грунтовое основание и воспринимающей вертикальную нагрузку Осадки основания определяются методом эквивалентного слоя, предложенным Н. А. Цитовичем, который, по мнению авторов, может быть применен и к основанию, неоднородному в плане. Равномерно распределенная вертикальная нагрузка, действующая на поверхности основани, определяется формулой 5 = ртуЬэ,
где р — интенсивность нагрузки- ту — коэффициент сжимаемости грунта- Иэ — мощность эквивалентного слоя.
Если загруженная площадь имеет вид прямоугольника, то
К = ЬАШ, (1)
где Ь — ширина прямоугольника- Аа — коэффициент эквивалентного слоя.
Величины Аа могут быть взяты из [6, табл. 11. 4] в зависимости от соотношения сторон прямоугольника и коэффициента поперечной деформации грунта у0.
Для системы «балка-основание» приняты следующие предпосылки: балка деформируется по закону гука- справедлива гипотеза плоских сечений Бернулли- вертикальные перемещения балки и поверхности основания тождественны- действие касательных сил на подошву не учитывается.
Задача решается методом конечных разностей. В качестве основных неизвестны принимаются вертикальные перемещения балки и поверхности основания в точках, намеченных с шагом, А по длине балки. Для каждой точки / рассматривается ряд загруженных площадей прямоугольной формы с центром в точке I. Ширина всех площадей одинакова и равна ширине балки, длина I = И, 3к, 5А,…, т. е. / = (1 + 2т) к, т = 0,1, 2, … Мощности эквивалентного слоя, соответствующие каждой из этих длин, обозначаются через 1гт (по значению т). Осадку, возникающую в точке / от нагрузки, распределенной по площади длиной /? в
*
Шишов Иван Иванович Владимир, доцент каф. строительных конструкций ВГУ, к.т.н.
Серия «Строительство и архитектура», выпуск 5
67
Экспериментальные исследования
окрестности ТОЧКИ 1+т (рис. 1), можно определить по формуле
~ Ьт-)& gt- (2)
где р!+т- интенсивность нагрузки в точке 1+т.
Когда основание слоисто по глубине, формула (1) записывается в виде
5 =-----------. (3)
2ЪЭ
где тч, А, — коэффициент сжимаемости и мощность у-го слоя- г} - расстояние от середины у-го слоя до низа сжимаемой толщи, в качестве которой берется 2/, э.
Таблица
При этом важно, чтобы суммарная мощность слоев в выражении (3) была равна сжимаемой толще, которую предлагается определять усреднено по формуле
2 К
X*,
где /гэ- - мощность эквивалентного слоя, определенная по характеристикаму-го слоя.
Когда основание неоднородно по площади, формула (2) заменяется усредненной формулой
г+1 — і+т-1
& gt-Э[, 1+т ^і,і +
5,
+ 2 г +… + 2 с + с
і і

осадки, определяемые
в которой с, с
О!, 1+т 1,1+т
по формуле (2) при характеристиках грунта, взятых в точках 1,1+1, …
Для проверки алгоритма расчитывались балки на однородном основании с модулем упругости Е0=50 МПа и коэффициентом поперечной деформации v0=0,3. Сравнение производилось с решением для балки на упругом полупространстве по М.И. Горбунову-Посадову [7]. В частности были расчитаны две балки одинаковой длины 18 модальное и ширины 2 модальное, нагруженные со-средоточеной силой Т7 в середине, имеющиепока-лЕда3Ъ
затели гибкости г — т~, равные 2 и 10 (а —
2(1-у0)?/
полудлина, Ь — полуширина балки). Получилось хорошее совпадение эпюр перемещений, изгибающих моментов и реактивных давлений со стороны основания. В таблице приводятся значения этих величин для середины балки: в числителе -по Горбунову-Посадову, в знаменателе — по описанному алгоритму.
Пока затель гиб кости / Сила Р, мН Переме- щение, см Моменты, мНм Реактивные давления, мН/м2
4,0 1. 108 7. 884 0. 293
1. 108 8,462 0,266
10 3,0 1,116 3,942 0. 340
1,155 4,222 0,322
На основе описанных алгоритмов выполняются расчеты свай на совместное действие вертикальной и горизонтальной сил. Расчетная схема показана на рис. 2.
Рис. 2. Расчетная схема сваи:
/о- высота подполья- / -мощность слоя подсыпки
Литература
1. СНиП 2. 02. 03−85. Свайные фундаменты / Госсторй СССР- М. ЦИТП Госстроя СССР, 1986. -48 с.
2. Малышев, М. В. Исследование сжатия с изгибом на основе дифференциальных связей между внутренними усилиями. /М. В Малышев, И. И. Шишов //НАСКР — 2001. Материалы Третьей Всероссийской конференции. — Чебоксары, 2001. -С. 81−86.
3. Строительная механика: под общей редакцией А. В. Даркова. -М. Высшая школа. 1976. -С. 499−500.
4. Прочность, устойчивость, колебания. Том 1 / под общей редакцией И. А. Биргера и Я. Г Пановко. — М. Машиностроение, 1968. — С. 229−238.
5. Дашков, А. Г Определение осадок грунтового основания при расчете бачок / А. Г Дашков, И.И. Шишов// Итоги строительной науки: мате-риачы IV международой научно-технической конференции. — Владимир, 2005. — С. 14−18.
6. Веселов, В. А. Проектирование оснований и фундаментов./ В. А. Веселов — М. Стройиздат, 1990. — 304 с.
7 Горбунов-Посадов, М. И. Расчет конструкций на упругом основании. — 3-е изд., перераб. и доп./ М.И. Горбунов-Посадов, Т. А. Маликова, В. И. Соломин. — М. Стройиздат, 1984. -679 с., ил.
68
Вестник ЮУрГУ, № 22, 2007

ПоказатьСвернуть
Заполнить форму текущей работой