Разработка оптико-электронного устройства для анализа загрязнённости моторного масла двигателя внутреннего сгорания дисперсными частицами

Тип работы:
Реферат
Предмет:
Общие и комплексные проблемы естественных и точных наук


Узнать стоимость

Детальная информация о работе

Выдержка из работы

Разработка оптико-электронного устройства для анализа загрязнённости моторного масла двигателя внутреннего сгорания дисперсными частицами
Ю. Г. Асцатуров, В. В. Семенов, Ю.Б. Ханжонков
В процессе эксплуатации двигателей внутреннего сгорания (ДВС) автомобилей можно, в значительной степени, снизить затраты на ремонтные работы и простои, и предотвратить аварийные ситуации, путем осуществления постоянного контроля состояния фрикционных узлов и своевременно проводя работы по продлению их ресурса. Такой контроль узлов ДВС без их разборки можно осуществлять, анализируя свойства и состав моторных масел, т. е. проводя их непрерывный трибомониторинг [1 — 3].
В последние годы определилась тенденция создания трибомониторинговых систем нового поколения. Они позволяют вести комплексный непрерывный мониторинг в режиме реального времени для чего машины оснащают средствами встроенного (бортового) контроля трибоузлов с помощью датчиков, анализирующих количественный и качественный состав и размеры частиц износа, выделяемых в потоке масла. Такая методика относится к передовому подходу обслуживания оборудования — «обслуживание по его фактическому состоянию». При этом система технического сервиса оборудования ориентируется на проведение ремонтных работ не через заранее запланированные интервалы времени, а по мере необходимости, в соответствии с его техническим состоянием. Как известно, такой подход позволяет снизить затраты на обслуживание до 70%, устранить отказы и простои оборудования, значительно сократить издержки на запасные части. Применение таких мониторинговых систем нового поколения является особенно актуальным на фоне продолжающегося старения основных производственных фондов в России, что требует
значительных средств для поддержания их работоспособности традиционными способами [4 — 10].
Фрикционные узлы и система смазки ДВС подвергаются наиболее агрессивным воздействиям по сравнению с большинством других трибосистем. Для мониторинга загрязнения масла в такой трибосистеме следует контролировать:
— уровень продуктов износа смазываемых фрикционных поверхностей-
— топливное загрязнение (растворением) —
— загрязнение за счет утечки хладагента-
— загрязнение за счет чрезмерного накопления сажи-
— проникновение загрязнений извне, определяемое повышенным уровнем кремния в используемом масле-
— количество конденсирующейся в масляной системе воды-
— изменение основных характеристик масла за счет окисления, старения, взаимодействия с водой и других факторов [1, 6, 7, 11].
По ГОСТ 10 541–78 содержание механических примесей в чистых моторных маслах должно быть не выше 0,015%. Предельным показателем содержания механических примесей в работающих маслах являются значения от 1 до 3% в зависимости от типа двигателя.
Известно [11, 12], что с увеличением срока эксплуатации масла, в нём увеличивается количество механических примесей, в том числе взвешенных частиц металлической (продукты износа деталей цилиндропоршневой группы) и угарной (нерастворимые продукты окисления) природы. При этом частицы угарной природы распределены в слое масла равномерно, а частицы металлической природы, как частицы с большей плотностью, распределены в основном в нижних слоях масла в картере при выключенном двигателе.
Способы анализа загрязнений масел могут быть основаны на различных методах: виброакустическом, электрическом, оптическом, спектральном и др. 1, 13 — 15]. Однако эти способы и устройства, их реализующие, обладают определенными недостатками, в частности,
недостаточной информативностью. Авторами разработан эффективный способ анализа моторных масел, позволяющий проводить интегральную оценку того, является ли загрязнение масла результатом износа деталей двигателя с образованием в масле металлических частиц или же оно носит характер старения масла с образованием в нём угарных частиц [16].
Принцип предлагаемого технического решения поясняется с помощью структурной схемы устройства для определения параметров дисперсных частиц, находящихся в масле картера двигателя, реализующего данный способ. Устройство представлено на рис. 1.
3 11 30
*-& lt-г
X

*-
14
*-(г
12
14 15
16
17
/
14
18
13
/
19 24
Ук Г-7^
29
У-
20 25
¦А г-т2
21
т
/
26
22 27
23 28
Рис. 1. — Структурная схема устройства для определения параметров дисперсных частиц
Устройство, реализующее предложенный способ, формирует три измерительных канала: эталонный канал — в кювете с чистым маслом 1- измерительный канал контроля угарных частиц, расположенный ниже верхнего уровня масла 4 на высоте минимального уровня масла 5 в картере двигателя 3- измерительный канал контроля металлических частиц, расположенный внизу масляного поддона картера двигателя. Устройство содержит эталонную кювету с чистым маслом 1- лазер 13 в качестве источника зондирующего излучения- смотровые окна 6- светоделители (полупрозрачные зеркала) 12- световую ловушку 11- объективы 14- фотоприёмники 15, 17, 18- датчик температуры 9- ультразвуковой излучатель канала контроля угарных частиц 7- ультразвуковой излучатель канала контроля металлических частиц 8- ультразвуковой излучатель эталонного канала 10- усилители 19, 20, 21, 23- аналого-цифровые преобразователи 24, 25, 26, 28- цифроаналоговой преобразователь 27- генератор ультразвуковых колебаний 22- коммутатор 16- электронно-вычислительную машину 29. Оптическая часть устройства помещена в корпус 30, защищенный от посторонней засветки и от попадания пыли и влаги.
Устройство функционирует следующим образом. Исследуемая дисперсная система 2 контактирует с зондирующим излучением с длиной волны Л, которое генерируется лазером 13 и ультразвуковыми колебаниями, формируемыми излучателями ультразвуковых колебаний 7, 8, 10, соответственно, в измерительных каналах контроля: угарных частиц, металлических частиц и в эталонном. Через светоделители 12 зондирующее излучение через смотровые окна 6 подводится к дисперсионной среде (сплошной фазе) 2. При прохождении этой волны через исследуемую дисперсную систему происходит рассеяние, отражение и поглощение излучения. Рассеянное и отраженное (под малыми углами относительно направления распространения) от дисперсных частиц 2 излучение проходит через смотровые окна 6 и попадает на светоделители 12, которые направляют его на объективы 14. Объективы 14 проецируют излучение непосредственно
на фотоприёмники 15, 17, 18, соответственно, измерительных каналов контроля угарных частиц, металлических частиц и эталонного канала. Далее аналоговый сигнал с фотоприёмников усиливается в усилителях 19, 20, 23 и преобразуется к цифровому виду при помощи аналого-цифровых преобразователей 24, 25, 28, и поступает для дальнейшей обработки и регистрации на ЭВМ 29. Для контроля изменения температуры масла в картере двигателя внутреннего сгорания введен датчик температуры 9, информация с которого через усилитель 21 и АЦП 26 так же поступает в ЭВМ 29. ЭВМ координирует работу всех узлов системы. Она управляет процессом оцифровки сигнала с фотоприёмников и датчика температуры посредством аналого-цифровых преобразователей 24, 25, 26, 28- управляет работой ультразвукового генератора 22 через цифроаналоговый преобразователь 27 и коммутатор 16, обрабатывает и регистрирует результаты измерений. ЭВМ, используя математическую модель оптимального взаимодействия ультразвуковых колебаний с дисперсными частицами, рассчитывает параметры воздействующих импульсов таким образом, чтобы колебания поверхности дисперсной частицы происходили по гармоническому закону с собственной частотой ^ При этом учитывается температура дисперсной системы и характерное время затухания колебаний дисперсных частиц за счет вязких сил.
Устройство начинает функционировать в момент включения зажигания. Его работа делится на три периода: период старта, период разогрева двигателя, период нормальной эксплуатации двигателя при рабочей температуре.
В первом периоде при включении зажигания в зависимости от температуры масла выбирается частота ультразвуковых излучателей, затем попеременно проводится опрос измерительных каналов: эталонного канала -канала контроля металлических частиц и эталонного канала — канала контроля угарных частиц для выявления процентного содержания угарных и металлических частиц.
При разогреве двигателя, в зависимости от температуры масла меняется частота ультразвуковых колебаний, затем, как и в первом периоде, попеременно проводится опрос измерительных каналов: эталонного канала -канала контроля металлических частиц и эталонного канала — канала контроля угарных частиц для выявления процентного содержания угарных и металлических частиц.
На третьем отрезке времени в зависимости от температуры масла устанавливается частота ультразвуковых излучателей, и затем попеременно проводится опрос измерительных каналов: эталонного канала — канала контроля металлических частиц и эталонного канала — канал контроля угарных частиц для фиксации резкого увеличения процентного содержания угарных и металлических частиц в моторном масле.
Кроме этого, постоянно проводится контроль соотношений между усредненными сигналами эталонного канала и канала контроля металлических частиц, и сигналами эталонного канала и канала контроля угарных частиц для определения интегрального показателя загрязненности моторного масла в соответствии с существующими стандартами.
Таким образом, рассмотренное оптико-электронное устройство, позволяет существенно повысить информативность данных для оценки концентрации взвешенных металлических и угарных дисперсных частиц, находящихся в масле, и в частности, дает возможность контролировать качество работы двигателя, оставшийся ресурс работы масла до его замены. Данное устройство может быть использовано не только при эксплуатации ДВС, но и на стадии их испытаний.
Литература:
1. Хулла, В. Д. Электрохимический трибомониторинг [Текст]: Монография /В.Д. Хулла. — Ростов н/Д: Изд-во журн. «Изв. вузов. Сев. -Кавк. Регион», 2006. — 184 с.
2. Ступин, В. Е. Тенденции интеграции радиотехнических и мехатронных средств [Электронный ресурс]// «Инженерный вестник Дона. Научные исследования и разработки», 2007. — № 1. — Режим доступа: http: //www. ivdon. ru/magazine/archive/n1y2007/39 (доступ свободный) — Загл. с экрана. — Яз. рус.
3. Семенов В. В., Асцатуров Ю. Г., Ханжонков Ю. Б. Совершенствование устройств для трибомониторинга узлов машин и механизмов с применением оптоэлектроники [Электронный ресурс] // «Инженерный вестник Дона», 2013. — № 1. — Режим доступа: http: //www. ivdon. ru/magazine/archive/n1y 2013/ 1541 (доступ свободный) — Загл. с экрана. — Яз. рус.
4. Voynov K.N., Shwarts M.A., Belyh V.V. Prognostication and estimation of the residual period of operation for pair of friction. In Zakopane, International conf. KONMOT, vol. 2, Poland. 21−30. 09. 2004, pр. 651−656.
5. Кукоз В. Ф., Шкрет Л. Я., Подгайный Н. Г., Балакай В. И. Экспресс-оценка эксплуатационных свойств моторного масла [Текст] // Проблемы исследования и проектирования машин: сб. ст. II Междунар. науч. -техн. конф., г. Пенза, 28−29 ноября 2006 г. — Пенза: Изд-во АНОО «Приволжский Дом знаний».- С. 180−183.
6. Кукоз В. Ф., Шкрет Л. Я., Мамаев Н. М. Условия работы и качество моторного масла [Текст] // Изв. вузов. Сев. -Кавк. регион. Техн. науки. — 2005. — Спецвыпуск: Проблемы электрохимии. — С. 109−110.
7. Хулла В. Д., Кукоз В. Ф., Подгайный Н. Г., Хулла М. В. Технические смазочные масла — объект электрохимического трибомониторинга [Текст] //Динамика технологических систем: тр. Междунар. науч. -техн. конф. /Донск. гос. техн. ун-т. — Ростов н/Д, 2007. — С. 46−50.
8. Способ контроля технического состояния машин и механизмов [Текст]: пат. 2 310 187 Рос. Федерация: МПК G01N 15/06 /Хулла В.Д., Кукоз Ф. И., Хулла М. В., Кукоз В.Ф.- заявитель и патентообладатель ГОУ ВПО «Южно-Российский государственный технический университет
(Новочеркасский политехнический институт)». — № 2 006 116 805/28 — заявл. 16. 05. 06 — опубл. 10. 11. 07, Бюл. № 31.
9. Кукоз В. Ф., Хулла В. Д., Тарасов А. В., Подгайный Н. Г. Экспресс-метод оценки работоспособности моторных масел [Текст] //Изв. вузов. Сев. -Кавк. регион. Техн. науки. — 2007. — № 3. — С. 75−76.
10. Хулла В. Д., Кукоз В. Ф., Подгайный Н. Г., Тарасов А. В. Экспресс-трибомониторинг технического состояния машин и механизмов [Текст] //Вестник РГУПС. Ростов н/Д. 2007. — № 4. — С. 10−14.
11. Корнеев, С. В. Критерии работоспособности моторных масел [Текст] //Строительно-дорожные машины. — 2004. — № 4. — С. 28−29.
12. Гармаш С. Н., Решенкин А. С. Новый принцип контроля состояния автомобильных масел в процессе эксплуатации [Текст] //Автомобильная промышленность. — 2005. — № 9. — С. 30−32.
13. Ермаков, О. Н. Прикладная оптоэлектроника [Текст] / О. Н. Ермаков. — Москва: Техносфера, 2004 — 416 с.
14. Семенов В. В., Ханжонков Ю. Б., Асцатуров Ю. Г. Оценка потенциальной опасности возникновения поллинозов телевизионным анализатором аэрозолей [Электронный ресурс] // «Инженерный вестник Дона», 2012.- № 4 (часть 1). Режим доступа:
http: //www. ivdon. ru/magazine/archive/n4p1y2012/1278 (доступ свободный) -Загл. с экрана. — Яз. рус.
15. Dickey F.M., Holswade S.C., Hornak L.A., Brown K.S. OPTICAL METHODS FOR MICROMACHINE MONITORING AND FEEDBACK. Sensors and Actuators A: Physical. 1999. Т. 78. № 2−3. рр. 220−235.
16. Способ анализа загрязненности моторного масла двигателя внутреннего сгорания дисперсными частицами [Текст]: пат. № 2 498 269 Рос. Федерация: МПК G01N15/02 / Семенов В. В., Ханжонков Ю. Б., Асцатуров Ю.Г.- заявитель и патентообладатель ФГБОУ ВПО «Южно-Российский государственный университет экономики и сервиса». — № 2 012 115 075/28- заявл. 16. 04. 12- опубл. 10. 11. 13, Бюл. № 31.

ПоказатьСвернуть
Заполнить форму текущей работой