Математическое и компьютерное моделирование несущей способности одиночной винтовой сваи с учетом уплотнения грунта

Тип работы:
Реферат
Предмет:
Общие и комплексные проблемы естественных и точных наук


Узнать стоимость

Детальная информация о работе

Выдержка из работы

УДК 624. 131. 5
МАТЕМАТИЧЕСКОЕ И КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ НЕСУЩЕЙ СПОСОБНОСТИ ОДИНОЧНОЙ ВИНТОВОЙ СВАИ С УЧЕТОМ УПЛОТНЕНИЯ ГРУНТА
Д. В. ПРОКОПЕНКО
Учреждение образования «Гомельский государственный университет имени Ф. Скорины», Республика Беларусь
Введение
Одной из проблем удешевления жилья является задача разработки и внедрения рациональных конструкций фундаментов зданий. При определенных свойствах грунтового основания и способе устройства фундамента здания экономически целесообразным может оказаться фундамент на основе винтовых свай. Такой фундамент и грунтовое основание образуют сложную нелинейную систему деформируемых твердых тел. При завинчивании сваи в грунтовое основание происходит уплотнение грунта вокруг ствола с постепенным убыванием до его первоначального состояния. Неучет этой особенности приводит к недоиспользованию несущей способности грунтового основания и, как следствие, к повышению стоимости фундамента возводимого здания.
Постановка задачи
Рассматривается винтовая свая в нелинейно-деформируемом грунтовом основании. На винтовую сваю действует нормальная равномерно распределенная внешняя нагрузка. Необходимо исследовать несущую способность грунтового основания винтовой сваи с учетом уплотнения грунта вокруг ствола сваи.
Решение этой задачи проводилось посредством специальных натурных экспериментов, выполненных в БЕЛНИИС (г. Минск).
В настоящей работе винтовая свая и грунтовое основание рассматриваются как единая нелинейная физическая система. Для исследования указанной нелинейной физической системы используются методы математического и компьютерного объектноориентированного моделирования на основе метода конечных элементов и метода энергетической линеаризации [1], [2].
Математическая модель системы
Ядро математической модели будем строить на основе принципа минимума полной энергии системы. Для краевых задач нелинейной механики грунтов математическая модель исследуемой физической системы будет иметь вид [1], [2]:
1) геометрическая модель деформируемой среды-
2) механико-математическая модель элементов системы:
— при линейно-упругом деформировании: = Ев{-
-при нелинейно-упругом деформировании: = f (вг.), в частности
= Авгт, А & gt- 0, 0 & lt- т & lt- 1,
где, в1 — интенсивности напряжений и деформаций- Е — модуль деформации- А, т —
параметры закона нелинейного деформирования-
3) система краевых условий, задается в соответствии с классификацией поставленной задачи как краевой задачи математической физики-
4) условия равновесия системы (ядро математической модели):
ЭТ = 0,
д{и}
где
П = 2 |{е}г {,№-{и} {Р},
V
где П,{Р} - полная энергия деформируемой системы и вектор внешних сил- {а},{в},{Ц} -векторы напряжений, деформаций и перемещений- V — объем области существования исследуемой системы-
5) математическая модель (форма) искомого решения: ф = а0 + а1х + а2у + а32.
Учет уплотнения грунта при математическом моделировании несущей
способности грунтового основания винтовой сваи
Уплотнение грунта изменяет значение основных физико-механических характеристик грунта. Следовательно, использование приведенных значений нормативных характеристик грунтового основания без их коррекции при расчете осадки сваи будет неправомочным.
Характер взаимодействия винтовой сваи с грунтовым основанием существенно влияет на величину осадки отдельной сваи и свайного фундамента в целом. При анализе деформационного процесса грунтового основания винтовой сваи можно выделить два этапа: завинчивание сваи и взаимодействие сваи с грунтовым основанием при действии сжимающей нагрузки. При завинчивании сваи происходит смятие грунта и его уплотнение вследствие внедрения тела сваи. При действии на винтовую сваю сжимающей нагрузки образуется деформируемая область. Геометрия уплотнения может быть определена только экспериментально, что очень трудоемко и дорого. Учет уплотнения математическими методами или методом компьютерного моделирования приводит к необходимости принятия некоторой модели структуры и свойств рассматриваемой физической системы [3]. Наиболее эффективными могут быть два подхода: рассмотреть некоторое однородное грунтовое основание эквивалентное по несущей способности исходному уплотненному грунтовому основанию, другим вариантом может быть неоднородно-уплотненное грунтовое основание с изменяющимся модулем деформации.
В обоих случаях необходимо определять физико-механические характеристики грунта в пределах расчетной области. Для этого были разработаны формулы для определения модуля деформации грунтового основания [4].
Для эквивалентного грунтового основания:
Е
Е = Ео •
экв
I=
1 — д1 '
-тах
— г '
где Еэкв — модуль деформации для эквивалентного грунтового основания- Е0 — начальный модуль деформации грунтового основания- -тах — радиус деформируемой области- гсв -радиус сваи- д — коэффициент Пуассона.
Для неоднородно-уплотненного грунтового основания:
чД I
-о -тах |
Ґ -
Еі = Е) тах
где Еі - модуль деформации і-й точки деформируемой области грунтового основания- Гі -расстояние от ствола сваи до і-й точки деформируемой области грунтового основания.
В настоящей работе рассмотрены оба подхода.
Компьютерное моделирование несущей способности грунтового основания
винтовой сваи
Модельная задача. Железобетонная одиночная свая сечением 0,20 см погружена на 4,1 см в грунтовое основание, на сваю действует вертикальная статическая нагрузка Р. Приведенные начальные характеристики грунтового основания: Е =32 МПа. Необходимо определить осадку сваи. Уравнение состояния было принято в виде & lt-з1 = Лг™. Значения параметров, А и т равны: А = 10, т = 0,55. Размеры расчетной области: 115×760 см.
Задача решалась в линейной и в нелинейной постановках.
Результаты вычислений приведены в таблице.
д = 0,3-
Еэкв = 508 кг/см2 = 50,8 МПа-
Е = 573 кг/см2 = 57,3 МПа- Ег2 = 412 кг/см2 = 41,2 МПа- Е3 = 344 кг/см2 = 34,4 МПа.
Осадка винтовой сваи в грунтовом основании при вдавливающей нагрузке
Е 10 000 15 000 17 500 20 000 22 500 25 000
п 1,2 2,4 3 4 5 6,6
Ео с *-, лин 1,63 2,44 2,84 3,25 3,65 4,1
Ео снел 1,88 3,34 4,2 5,18 6,29 7,5
Е -^экв с *-, лин 1,12 1,69 1,97 2,25 2,53 2,81
Е -^экв с *-, нел 1,19 2,55 3,29 4,14 5,2 6,47
Е с *-, лин 1,18 1,18 2,1 2,37 2,66 2,97
Е с *-, нел 1,23 2,7 3,38 4,25 5,24 6,5
Примечание. 5Лин, Sнел — осадки сваи при линейном и нелинейном деформировании основания соответственно, см.- Sоп — нелинейные осадки сваи, определенные опытным путем, см- Р — вдавливающая нагрузка, действующая на сваю, кг.
Нагрузка
9000 11 000 13 000 15 000 17 000 19 000 21 000 23 000 25 000
Рис. 1. Осадка винтовой сваи в нелинейно-деформируемом грунтовом основании методами натурного эксперимента и компьютерного моделирования с учетом
и без учета уплотнения
Анализ результатов, полученных экспериментально и методом компьютерного моделирования
1. Осадки винтовой сваи для вертикально действующей нагрузки при условии нелинейного деформирования грунтового основания с начальными характеристиками уменьшают несущую способность грунтового основания в среднем на 34% по сравнению с экспериментальными данными.
2. Осадки винтовой сваи для вертикально действующей нагрузки при условии нелинейного деформирования грунтового основания с эквивалентными характеристиками отличаются в среднем на 5% от экспериментальных данных.
3. Осадки винтовой сваи для вертикально действующей нагрузки при условии нелинейного деформирования грунтового основания при учете реальной закономерности уплотнения грунта вокруг сваи отличаются в среднем на 8% от экспериментальных данных.
4. При расчете осадки винтовой сваи в эквивалентном грунтовом основании несущая способность грунтового основания увеличилась в среднем на 29% по сравнению с осадкой винтовой сваи в грунтовом основании с начальными характеристиками.
5. При расчете осадки винтовой сваи в грунтовом основании с изменяющимися характеристиками несущая способность грунтового основания увеличилась в среднем на 26% по сравнению с осадкой винтовой сваи в грунтовом основании с начальными характеристиками.
Литература
1. Быховцев, В. Е. Компьютерное объектно-ориентированное моделирование нелинейных систем деформируемых твердых тел / В. Е. Быховцев. — Гомель: ГГУ им. Ф. Скорины, 2007. — 219 с.
2. Быховцев, В. Е. Методология исследования деформаций нелинейных систем твердых тел методом компьютерного объектно-ориентированного моделирования / В. Е. Быховцев, В. В. Бондарева, Д. В. Прокопенко // Материалы юбилей. Респ. науч. -техн. конф. ГГУ. — Гомель, 2009.
3. Быховцев, В. Е. Методология, методы и технология компьютерного объектноориентированного моделирования нелинейных систем деформируемых твердых тел / В. Е. Быховцев // Проблемы физики, математики и техники. — 2011. — С. 89−99.
4. Прокопенко, Д. В. Приближенный аналитический метод определения осадки винтовой сваи в нелинейно-деформируемом грунтовом основании с учетом его уплотнения / Д. В. Прокопенко, В. Е. Быховцев // Изв. ГГУ. — 2012. — С. 110−114.
Получено 18. 09. 2013 г.

ПоказатьСвернуть
Заполнить форму текущей работой