Евклідова і неевклідова геометрії

Тип работы:
Дипломная
Предмет:
Физико-математические науки


Узнать стоимость

Детальная информация о работе

Выдержка из работы

Зміст

Введення

Глава I. Розвиток геометрії

1.1 Історія геометрії

1.2 Постулати Евкліда

1.3 Аксіоматика Гильберта

1.4 Інші системи аксіом геометрії

Глава II. Неевклідові геометрії в системі Вейля

2.1 Елементи сферичної геометрії

2.2 Еліптична геометрія на площині

2.3 Геометрія Лобачевского в системі Вейля

2.4 Різні моделі площини Лобачевского. Незалежність 5-го постулату Евкліда від інших аксіом Гильберта

Висновок

Список літератури

Введення

Будь-яка теорія сучасної науки вважається єдино вірної, поки не створена наступна. Це своєрідна аксіома розвитку науки.

Цей факт багаторазово підтверджувався. Фізика Ньютона переросла в релятивістську фізику, а та у квантову. Теорія флогістону стала хімією, а самозародження мишей із бруду обернулося біологією. Така доля всіх наук, і не можна сказати, що сьогоднішнє відкриття через двадцять років не виявиться грандіозною помилкою. Але це теж нормально — ще Ломоносов говорив: «Алхімія — мати хімії: дочка не винувата, що її мати дурнувата».

Доля ця не обійшла й геометрію. Традиційна Евклідова геометрія переросла в неевклідову, геометрію Лобачевского. Саме цьому розділу математики, його історії й особливостям і присвячений цей проект.

У даній дипломній роботі я хочу показати, що крім геометрії, що вивчають у школі (Геометрії Евкліда або вживаної геометрії), існує ще одна геометрія, геометрія Лобачевского. Ця геометрія істотно відрізняється від евклідової, наприклад, у ній затверджується, що через дану крапку можна провести нескінченно багато прямих, паралельних даній прямій, що сума кутів трикутника менше 180? У геометрії Лобачевского не існує прямокутників, подібних трикутників і так далі.

Я вибрав дану тему з кількох причин: теорія геометрії Лобачевского допомагає глянути по-іншому на навколишній нас мир, це цікавий, незвичайний і прогресивний розділ сучасної геометрії, вона дає матеріал для міркувань — у ній не все просто, не все ясно з першого погляду, щоб неї зрозуміти, потрібно мати фантазію й просторову уяву. Ситуація з геометрією Лобачевского й геометрією Евкліда багато в чому схожа на ситуацію з Теорією відносності Ейнштейна й класичною фізикою. Геометрія Лобачевского й Ейнштейна це прогресивні взаємозалежні теорії, що виконуються на величезних величинах і відстанях, і, що залишаються вірними на наближеннях до нуля. У просторовій моделі використовується не звичайна евклідова площина, а скривлений простір, на якому вірна теорія Лобачевского.

евклідова геометрія аксіома площа

Глава I. Розвиток геометрії

1.1 Історія геометрії

Геометрія — це одна з найдавніших наук. Досліджувати різні просторові форми здавна спонукувало людей їхня практична діяльність. Давньогрецький учений Едем Родоський в IV столітті до нашої ери писала: «Геометрія була відкрита єгиптянами, і виникла при вимірі Землі. Цей вимір було їм необхідно внаслідок розлиття ріки Нил, що постійно змивала границі. Немає нічого дивного, що ця наука, як і інші, виникла з потреби людини».

Уважається, що геометрія почалася в так званої Їонийської школі. Її засновником уважається Фалес Милетський (640−540 (546?) рр. до н.е.). Він уважався одним із семи мудреців Греції, першим математиком, астрономом і філософом. Він довів, що кути при підставі рівнобедреного трикутника рівні, що вертикальні кути рівні, що діаметр ділить окружність навпіл і ще множина теорем. Пророкування затьмарення сонця в 585 році також приписується йому.

Величезний імпульс розвитку цій школі дав Піфагор (569−470 р. до н.е.). В основному про його особисті якості пишуть те ж саме, що й про Фалесе. Але до цього ще можна додати титул чемпіона з боксу на олімпійських іграх — звання, серед математиків рідке.

Незважаючи на всі його досягнення, думку сучасників добре виразив Геракліт: «Багато знання без розуму». Що ж, це було цілком заслужене: Піфагор засекречував відкриття й приписував собі роботи учнів. Піфагор також змушував своїх вихованців виконувати цілий звід дуже дивних правил: наприклад, не доторкатися до білого півня.

Але факт є факт — і одна з теорем Піфагора тепер відома кожному — це теорема про рівність квадрата гіпотенузи сумі квадратів катетів. Ця теорема настільки популярна у світі математиків, що одних тільки доказів нагромадилося 39 штук.

Платон (428−348) знаменитий введенням принципу дедуктивності в математику, або принципу розвитку від простого до складного. Він також знаменитий постановкою трьох задач на побудову. Використовуючи тільки циркуль і лінійку, треба було:

Розділити кут на три частини (задача про трисекцію кута).

Побудувати квадрат, рівний по площі даному колу (задача про квадратуру кола).

Побудувати куб, рівний по об'єму даному (задача про подвоєння куба).

Не можливість вирішення цих задач була доведена тільки в 19 столітті, але перед цим вони встигли викликати справжню буру: наприклад, задача № 2 викликала появу інтегрального вирахування.

Багато первісних геометричних відомостей одержали також шумеро-вавилонські, китайські й інші вчені найдавніших часів. Установлювалися вони сНачало тільки досвідченим шляхом, без логічних доказів.

Як наука, геометрія вперше сформувалася в Древній Греції, коли геометричні закономірності й залежності, знайдені раніше досвідченим шляхом, були наведені в належну систему й доведені.

Закінчився розвиток традиційної геометрії Евклідом. В III столітті до нашої ери грецький учений привело в систему відомі йому геометричні відомості у великому творі «Начало».

Його книга «Начало» тільки до 1880 року витримала 460 видань, поступившись тільки Біблії. Спосіб побудови став єдино вірним для всіх наукових праць: Перерахування основних, природних понять (Перерахування основних аксіом (Перерахування основних визначень (Формулювання теорем (тверджень) і їхній доказ.

Метод доказу від противного — теж його заслуга. Він же сформулював п’ять постулатів геометрії:

Через дві крапки можна провести одну й тільки одну пряму.

Пряма триває нескінченно.

З будь-якого центра можна провести окружність будь-яким радіусом.

Всі прямі кути рівні між собою.

П’ятий постулат є своєрідним філософським каменем геометрії.

Неевклідова геометрія з’явилася внаслідок довгих спроб довести V постулат Евкліда, аксіому паралельності. Ця геометрія багато в чому дивна, незвичайна й багато в чому не відповідає нашим звичним уявленням про реальний світ. Але в логічному відношенні дана геометрія не уступає геометрії Евкліда.

1.2 Постулати Евкліда

Евклід — автор першого логічної побудови, що дійшло до нас строгого, геометрії. У ньому виклад настільки бездоганно для свого часу, що протягом двох тисяч років з моменту появи його праці «Начало» воно було єдиним керівництвом для вивчаючу геометрію.

«Начало» складаються з 13 книг, присвячених геометрії й арифметиці в геометричному викладі.

Кожна книга «Начало» починається визначенням понять, які зустрічаються вперше. Так, наприклад, першій книзі подані 23 визначення. Зокрема,

Визначення 1. Крапка є те, що не має частин.

Визначення 2. Лінія є довжини без ширини

Визначення 3. Границі лінії суть крапки.

Слідом за визначеннями Евклід приводить постулати й аксіоми, тобто твердження, прийняті без доказу.

Постулати

I. Потрібно, щоб від кожної крапки до всякої іншої крапки можна було провести пряму лінію.

II. І щоб кожну пряму можна було невиразно продовжити.

III. І щоб з будь-якого центра можна було описати окружність будь-яким радіусом.

IV. І щоб всі прямі кути були рівні.

V. І щоб щораз, коли пряма при перетинанні із двома іншими прямими утворить із ними однобічні внутрішні кути, сума яких менше двох прямих, ці прямі перетиналися з тієї сторони, з якої ця сума менше двох прямих.

Аксіоми

I. Рівні порізно третьому рівні між собою.

II. І якщо до них додамо рівні, то одержимо рівні.

III. І якщо від рівних віднімемо рівні, то одержимо рівні.

IV. І якщо до нерівного додамо рівні, то одержимо нерівні.

V. І якщо подвоїмо рівні, то одержимо рівні.

VI. І половини рівних рівні між собою.

VII. І сумісні рівні.

VIII. І ціле більше частини.

IX. І дві прямі не можуть містити простори.

Іноді IV і V постулати відносять до числа аксіом. Тому п’ятий постулат іноді називають XI аксіомою. По якому принципі одні твердження ставляться до постулатів, а інші до аксіом, невідомо.

Ніхто не сумнівався в істинності постулатів Евкліда, що стосується й V постулату. Тим часом уже зі стародавності саме постулат про паралельні залучив до себе особлива увага ряду геометрів, що вважали неприродним приміщення його серед постулатів. Імовірно, це було пов’язане з відносно меншою очевидністю й наочністю V постулату: у неявному виді він припускає досяжність будь-яких, як завгодно далеких частин площини, виражаючи властивість, що виявляється тільки при нескінченному продовженні прямих.

Можливо, що вже сам Евклід намагався довести постулат про паралельні. На користь цього говорить та обставина, що перші 28 пропозицій «Начало» не опираються на V постулат. Евклід як би намагався відсунути застосування цього постулату доти, поки використання його не стане настійно необхідним.

Одні математики намагалися довести постулат про паралельний, застосовуючи тільки інші постулати й ті теореми, які можна вивести з останніх, не використовуючи сам V постулат. Всі такі спроби виявилися невдалими. Їхній загальний недолік у тім, що в доказі неявно застосовувалося яке-небудь припущення, рівносильне доказуваному постулату.

Інші пропонували по-новому визначити паралельні прямі або ж замінити V постулат яким-небудь, на їхню думку, більше очевидною пропозицією. Так, наприклад, в XI столітті Омар Хайям увело замість V постулату «принцип», відповідно до якого дві лежачі в одній площині збіжні прямі перетинаються й не можуть розходитися в напрямку сходження. За допомогою цього принципу Хайям доводить, що в чотирикутнику ABCD, у якому кути при підставі А и В — прямі й сторони АС, ВD рівні, кути С и D так само прямі, а із цієї пропозиції про існування прямокутника виводиться V постулат. Міркування Хайяма одержали оригінальний розвиток в XIII столітті в Насиредина ат-туси, роботи якого у свою чергу стимулювали дослідження Д. Валлиса. В 1663 році Валлис довів постулат про паралельний, виходячи з явного допущення, що для кожної фігури існує подібна їй фігура довільної величини. Це допущення він уважав, що випливає з істоти просторових відносин.

З логічної точки зору результати Хайяма або Валлиса лише виявляли рівносиль V постулату й деяких інших пропозицій геометрії. Так, Хайям, по суті, установив еквівалентність постулату й пропозиції про суму кутів трикутника, а Валлис показав, що не тільки з V постулату можна вивести вчення про подобу, але й обернено — їх Евклідова вчення про подобу треба V постулат.

Один з підбадьорюючих способів підходу до доказу п’ятого постулату, яким користувалися багато геометрів XVIII і першої половини XIX століть, полягає в тому, що п’ятий постулат заміняється його запереченням або яким-небудь твердженням, еквівалентним запереченню. Опираючись на змінену в такий спосіб систему постулатів і аксіом, доводяться всілякі пропозиції, логічно з її що випливають. Якщо п’ятий постулат дійсно випливає з інших постулатів і аксіом, то змінена зазначеним образом система постулатів мі аксіом суперечлива. Тому рано або пізно ми прийдемо у двом взаємно, що виключають висновкам. Цим і буде доведений п’ятий постулат.

Саме таким шляхом намагалися довести п’ятий постулат Д. Саккери (1667−1733), И. Г. Ламберт (1728−1777) і А. М. Лежандр (1752−1833).

Дослідження Саккери були опубліковані в 1733 році за назвою «Евклід, очищений від усяких плям, або досвід, що встановлює найперші принципи універсальної геометрії».

Саккери виходив з розгляду чотирикутника із двома прямими кутами при підставі й із двома рівними бічними сторонами й. Із симетрії фігури щодо перпендикуляра до середини підстави треба, що кути при вершинах і рівні. Якщо прийняти п’ятий постулат і, отже, Евклідову теорію паралельних, то можна встановити, що кути й прямі й — прямокутник. Обернено, як доводить Саккери, якщо хоча б в одному чотирикутнику зазначеного виду кути при верхній підставі виявляться прямими, то буде мати місце Евклідов постулат про паралельні. Бажаючи довести цей постулат Саккери робить три можливих припущення: або кути й прямі, або тупі, або гострі (гіпотези прямого, гострого й тупого кута). Для доказу п’ятого постулату необхідно спростувати гіпотези гострого й тупого кута. Зовсім точними міркуваннями Саккери приводить до протиріччя гіпотезу тупого кута. Слідом за тим, прийнявши гіпотезу гострого кута, він виводить досить що далеко йдуть її наслідки для того, щоб і тут одержати протиріччя. Розвиваючи ці наслідки Саккери будує складну геометричну систему, не містячи про протиріччя тільки тому, що отримані їм висновки не відповідають звичним уявленням про розташування прямих. У результаті він «знаходить» логічне протиріччя, але в результаті обчислювальної помилки.

Ідеї Ламберта, розвинені їм у творі «теорія паралельних ліній» (1766р.), близько примикають до міркувань Саккери.

Він розглядає чотирикутник із трьома прямими кутами. Щодо четвертого кута так само виникають три гіпотези: цей кут прямий, тупий або гострий. Довівши еквівалентність п’ятого постулату гіпотезі прямого кута й звівши до протиріччя гіпотезу тупого кута, Ламберт, подібно Саккери, змушений займатися гіпотезою гострого кута. Вона приводить Ламберта до складної геометричної системи, у якій йому не вдалося зустріти логічного протиріччя. Ламберт ніде у своєму творі не затверджує, що V постулат їм доведений, і приходить до твердого висновку, що й всі інші спроби в цьому напрямку не привели до мети.

«Доказом Евклідова постулату, — пише Ламберт, — можуть бути доведені настільки далеко, що залишається, очевидно, незначний дріб'язок. Але при ретельному аналізі виявляється, що в цьому гаданому дріб'язку й полягає вся суть питання; звичайно вона містить або доказувану пропозицію, або рівносильний йому постулат».

Більше того, розвиваючи систему гіпотези гострого кута, Ламберт виявляє аналогію цієї системи зі сферичною геометрією й у цьому вбачає можливість її існування.

«Я схильний навіть думати, що третя гіпотеза справедлива на якій-небудь мнимій сфері. Повинна ж бути причина, внаслідок якої вона на площині далеко не піддається спростуванню, як це легко може бути зроблене із другою гіпотезою».

Лежандр у своєму доказі п’ятого постулату розглядає три гіпотези щодо суми кутів трикутника.

Сума кутів трикутника дорівнює двом прямим.

Сума кутів трикутника більше двох прямих.

Сума кутів трикутника менше двох прямих.

Він довів, що перша гіпотеза еквівалентна п’ятому постулату, друга гіпотеза неможлива; і прийнявши третю гіпотезу приходить до протиріччя, неявно скориставшись у доказі п’ятим постулатом через один з його еквівалентів.

У результаті проблема паралельних залишалася до Начало XIX століття недозволеної й положення здавалося безвихідним. Великий знавець питання угорський математик Фаркаш Бояи в 1820 році писав своєму синові Яношу: «Молю тебе, не роби тільки й ти спроб здолати теорію паралельних ліній: ти затратиш на це увесь свій час, а пропозиції цього ви не доведете всі разом. Не намагайся здолати теорію паралельних ліній ні тим способом, що ти повідомляєш мене, ні яким-небудь іншим. Я вивчив всі шляхи до кінця: я не зустрів ні однієї ідеї, який би я не розробляв. Я пройшов весь безпросвітний морок цієї ночі, і всякий світоч, усяку радість життя я в ній поховав… Цей безпросвітний морок… ніколи не проясниться на землі, і ніколи нещасний рід людський не буде володіти чим-небудь зробленим навіть у геометрії. Це більша й вічна рана в моїй душі…». Безпросвітний морок, про яке з гіркотою писав старший Бойяи, розсіяв Лобачевский і, трохи пізніше, Я. Бояи.

Але багатовікові спроби доказу п’ятого постулату Евкліда привели зрештою до появи нової геометрії, що відрізняється від евклідової тем, що в ній V постулат не виконується. Ця геометрія тепер називається неевклідової, а в Росії має ім'я Лобачевского, що вперше опублікував роботу з її викладом.

І однієї з передумов геометричних відкриттів Н. И. Лобачевского (1792−1856) був саме його матеріалістичний підхід до проблем пізнання. Лобачевский Він був твердо впевнений в об'єктивному й не залежному від людської свідомості існуванні матеріального світу й у можливості його пізнання. У мові «Про найважливіші предмети виховання» (Казань, 1828) Лобачевский співчутливо наводить слова Ф. Бекона: «залишіть трудитися дарма, намагаючись витягти з одного розуму всю мудрість; запитуйте природу, вона зберігає всі істини й на всі питання ваші буде відповідати вам неодмінно й задовільно». У своєму творі «Про початки геометрії», що є першою публікацією відкритої їм геометрії, Лобачевский писав: «перші поняття, з яких починається яка-небудь наука, повинні бути ясні й наведені до найменшого числа. Тоді тільки вони можуть служити міцною й достатньою підставою навчання. Такі поняття здобуваються почуттями; уродженим — не повинне вірити». Тим самим Лобачевский відкидав ідею про апріорний характер геометричних понять, що підтримувалася И. Кантом.

Перші спроби Лобачевского довести п’ятий постулат ставляться до 1823 року. До 1826 року він переконався в тім, що V постулат не залежить від інших аксіом геометрії Евкліда й 11(23) лютого 1826 року зробив на засіданні факультету казанського університету доповідь «Стислий виклад Начало геометрії зі строгим доказом теореми про паралельний», у якому були викладені початки відкритої їм «уявлюваної геометрії», як він називав систему, що пізніше одержала назву неевклідової геометрії. Доповідь 1826р. увійшов до складу першої публікації Лобачевского по неевклідовій геометрії - статті «Про початки геометрії», надрукованої в журналі Казанського університету «Казанський вісник» в 1829−1820р. подальшому розвитку й додаткам відкритої їм геометрії були присвячені мемуари «Уявлювана геометрія», «Застосування уявлюваної геометрії до деяких інтегралів» і «Нові початки геометрії з повною теорією паралельних», опубліковані в «Учених записках» відповідно в 1835, 1836 і 1835−1838 р. Перероблений текст «Уявлюваної геометрії» з’явився у французькому перекладі в Берліні, там же в 1840р. вийшли окремою книгою німецькою мовою «Геометричні дослідження з теорії паралельних ліній» Лобачевского. Нарешті, в 1855 і 1856 р. він видав у Казані на російській і французькій мовах «Пангеометрію».

Високо оцінив «Геометричні дослідження» Гаусс, що провів Лобачевского (1842) у члени-кореспонденти Геттингенського вченого суспільства, що було по суті Академією наук гановерського королівства. Однак у пресі в оцінкою нової геометричної системи Гаусс не виступив.

Висока оцінка гауссом відкриття Лобачевского була пов’язана з тим, що Гаусс, ще з 90-х років XVIII в. займався теорією паралельності ліній, прийшов до тих же висновкам, що й Лобачевский. Свої погляди по цьому питанню Гаусс не публікував, вони збереглися тільки в його чорнових записках і в деяких листам до друзів. В 1818 р. у листі до австрійського астронома Герлингу (1788−1864) він писав: «Я радуюся, що ви маєте мужність висловитися так, ніби Ви визнавали хибність нашої теорії паралельних, а разом з тим і всієї нашої геометрії. Але оси, гніздо яких Ви потривожите, полетять Вам на голову»; очевидно, під «потривоженими осами» Гаусс мав на увазі прихильників традиційних поглядів на геометрію, а також апріорізму математичних понять.

Незалежно від Лобачевского й Гаусса до відкриття неевклідової геометрії прийшов угорський математик Янош Бояи (1802−1860), син Ф. Бояи.

Коли Я. Бояи прийшов до тих же ідеям, що Лобачевский і Гаусс, батько не зрозумів його, однак запропонував надрукувати короткий виклад його відкриття у вигляді додатка до свого посібника з математики, що вышли в 1832р. Повна назва праці Я. Бояи — «Додаток, що містить науку про простір, абсолютно щиру, що не залежить від істинності або хибності XI аксіоми Евкліда (що a priori ніколи вирішено бути не може)» і його звичайно коротко називають просто «Апендикс». Відкриття Я. Бояи не було визнано при його житті; Гаусс, якому Ф. Бояи послав «Апендикс», зрозумів його, але ніяк не сприяв визнанню відкриття Я. Бояи.

1.3 Аксіоматика Гильберта

Хоча в сучасному аксіоматичному викладі геометрії Евкліда не завжди користуються аксіоматикою Гильберта, приведемо її, як першу повну, незалежну й несуперечливу систему аксіом.

Всі двадцять аксіом системи Гильберта підрозділені на п’ять груп.

Група I містить вісім аксіом приналежності.

Група II містить чотири аксіоми порядку.

Група III містить п’ять аксіом конгруентності.

Група IV містить дві аксіоми безперервності.

Група V містить одну аксіому паралельності.

Переходимо до формулювання аксіом по групах. Одночасно будемо вказувати деякі твердження, що випливають із аксіом.

I. Аксіоми приналежності

I, 1. Які б не були дві крапки A і B, існує пряма a, що належать ці крапки.

I, 2. Які б не були дві крапки A і B, існує не більше одній прямій, який належать ці крапки.

I, 3. Кожній прямій a належать принаймні дві крапки. Існують принаймні три крапки, що не належать одній прямій.

Зазначені три аксіоми вичерпують список аксіом приналежності планіметрії. Наступні п’ять аксіом разом із зазначеними трьома завершують список аксіом приналежності стереометрії.

I, 4. Які б не були три крапки A, B і C, що не належать одній прямій, існує площина ?, що належать ці три крапки. Кожної площини належить хоча б одна крапка.

I, 5. Які б не були три крапки A, B і C, що не належать одній прямій, існує не більше однієї площини, який належать ці крапки.

I, 6. Якщо дві приналежні прямі a різні крапки A і B належать деякій площині ?, те кожна приналежній прямій a крапка належить зазначеній площині.

I, 7. Якщо існує одна крапка A, що належить двом площинам? і ?, те існує принаймні ще одна крапка B, що належить обом цим площинам.

I, 8. Існують принаймні чотири крапки, що не належать однієї площини.

З метою використання звичної для нас геометричної лексики домовимося ототожнювати між собою наступні вираження: 1) «крапка А належить прямій a (площини б)», 2) «пряма а (площина б) проходить через крапку А» 3) «крапка А лежить на прямій а (площини б)» 4) «крапка А є крапкою прямій а (площини б)» і тому подібні.

Теорема 1. Дві різні прямі не можуть мати більше однієї загальної крапки.

Теорема 2. Дві площини або зовсім не мають загальних крапок, або мають загальну пряму, на якій лежать всі їхні загальні крапки.

Теорема 3. Площина й не лежача на ній пряма не можуть мати більше однієї загальної крапки.

Теорема 4. Через пряму й не лежачу на ній крапку, або через дві різні прямі із загальною крапкою проходить одна й тільки одна площина.

Теорема 5. Кожна площина містить принаймні три крапки.

II. Аксіоми порядку

II, 1. Якщо крапка B прямій, а лежить між крапками, А и С тієї ж прямої, то А, У и С — різні крапки зазначеної прямої, причому В лежить також і між С и А.

II, 2. Які б не були дві різні крапки, А и С, на обумовленій ними прямій існує принаймні вона крапка В така, що З лежить між, А и В.

II, 3. Серед будь-яких трьох крапок, що лежать на одній прямій існує не більше однієї крапки, що лежить між двома іншими.

Сформульовані три аксіоми ставляться до розташування об'єктів на прямій і тому називаються лінійними аксіомами порядку. Нижче остання аксіома порядку ставиться до розташування геометричних об'єктів на площині. Для того, щоб сформулювати цю аксіому, уведемо поняття відрізка.

Пари різних крапок, А и В назвемо відрізком і будемо позначати символом АВ або ВА. Крапки прямій, обумовленої А и В, що лежать між ними, будемо називати внутрішніми крапками, або просто крапками відрізка АВ. Інші крапки зазначеної прямої будемо називати зовнішніми крапками відрізка АВ.

II, 4 (Аксіома Паша). Якщо А, У и С — три крапки, що не лежать на одній прямій, і а — якась пряма в площині, обумовленої цими крапками, не утримуюча ні однієї із зазначених крапок і минаюча через деяку крапку відрізка АВ, то ця пряма проходить також або через деяку крапку відрізка АС, або через деяку крапку відрізка ВР.

Підкреслимо, що з одних аксіом порядку II, 1 — 4 ще не випливає, що будь-який відрізок має внутрішні крапки. Однак залучаючи ще аксіоми приналежності I, 1 — 3 можна довести наступне твердження:

Теорема 6. Які б не були дві різні крапки, А и В на прямій, ними обумовленої, існує принаймні одна крапка С, що лежить між, А и В.

Теорема 7. Серед будь-яких трьох крапок однієї прямої завжди існує одна крапка, що лежить між двома іншими.

Теорема 8. Якщо крапки А, У и С не належать одній прямій і якщо деяка пряма, а перетинає які-небудь два з відрізків АВ, ВР і АС, то ця пряма не перетинає третій із зазначених відрізків.

Теорема 9. Якщо В лежить на відрізку АС, і С — на відрізку ВD, то В и С лежать на відрізку АD.

Теорема 10. Якщо З лежить на відрізку АD, а В — на відрізку АС, то В лежить також на відрізку АD, а С — на відрізку BD.

Теорема 11. Між будь-якими двома крапками прямої існує нескінченно багато інших її крапок.

Теорема 12. Нехай кожна із крапок С и D лежить між крапками, А и В. Тоді якщо М лежить між С и D, те М лежить і між, А и В.

Теорема 13. Якщо крапки С и D лежать між крапками, А и В, то всі крапки відрізка СD належать відрізку АВ (у цьому випадку ми будемо говорити, що відрізок СD лежить усередині відрізка АВ).

Теорема 14. Якщо крапка З лежить між крапками, А и В, то 1) ніяка крапка відрізка АС не може бути крапкою відрізка CВ, 2) кожна відмінна від Із крапка відрізка АВ належить або відрізку АС, або відрізку СВ.

Зазначені твердження дозволяють упорядкувати множину крапок будь-якій прямій і вибрати на цій прямій напрямок.

Будемо говорити, що дві різні крапки, А и В прямій a лежать по різні сторони (по одну сторону) від третьої крапки Про ту ж пряму, якщо крапка Про лежить (не лежить) між, А и В.

Із зазначених вище тверджень випливає наступна теорема.

Теорема 15. Довільна крапка Про кожну пряму, а розбиває всі інші крапки цієї прямої на два непустих класи так, що будь-які дві крапки прямій а, що належать тому самому класу, лежать по одну сторону від ПРО, а будь-які дві крапки, що належать різним класам, лежать по різні сторони від О.

Таким чином, завдання на будь-якій прямій двох різних крапок О и Е визначає на цієї прямий промінь або напівпряму ОЕ, що володіє тим властивістю, що будь-яка її крапка й крапка Е лежать по одну сторону від О.

Вибравши на прямій а дві різні крапки О и Е, ми можемо тепер визначити порядок проходження крапок на прямій за наступним правилом: 1) якщо, А и В — будь-які крапки променя ОЕ, то будемо говорити, що, А передує В, якщо, А лежить між О и В, 2) будемо говорити, що крапка Про передує будь-якій крапці променя ОЕ, 3) будемо говорити, що будь-яка крапка, що належить тій же прямій і не приналежна лучу ОЕ, передує як крапці ПРО, так і будь-яку крапку променя ОЕ, 4) якщо, А и В — будь-які крапки, що не належать лучу ОЕ, то ми будемо говорити, що, А передує В, якщо В лежить між, А и О.

Легко перевірити, що для обраного нами порядку проходження крапок прямій а справедлива властивість транзитивності: якщо, А передує В, а В передує З, те, А передує С.

Аксіоми, наведені вище, дозволяють упорядкувати й крапки, що належать довільної площини ?.

Теорема 16. Кожна пряма а, що належить площини б, розділяє не лежачі на ній крапки цієї площини на два непустих класи так, що будь-які дві крапки, А и В з різних класів визначають відрізок АВ, що містить крапку прямій а, а будь-які дві крапки, А и А' з одного класу визначають відрізок АА', усередині якого не лежить жодна крапка прямій а.

У відповідність із твердженням цієї теореми ми можемо говорити, що крапки, А и А' (одного класу) лежать у площині б по одну сторону від прямій а, а крапки, А и В (різних класів) лежать у площині б по різні сторони від прямій а.

III. Аксіоми конгруентності

III, 1. Якщо, А и В — дві крапки на прямій а, А' - крапка на тій же прямій або на іншій прямій а', то по дану від крапки А' сторону прямій а' найдеться, і притім тільки одна, крапка В' така, що відрізок А'' конгруентний відрізку АВ. Кожний відрізок АВ конгруентний відрізку ВА.

III, 2. Якщо відрізки А'' і А"B" конгруентні тому самому відрізку АВ, то вони конгруентні й між собою.

III, 3. Нехай АВ і ВР — два відрізки прямій а, що не мають загальних внутрішніх крапок, А'' і B'' - два відрізки тій же прямій, або іншій прямій а', що також не мають загальних внутрішніх крапок. Тоді якщо відрізок АВ конгруентний відрізку А'', а відрізок ВР конгруентний відрізку B'', те відрізок АС конгруентний відрізку А''.

Сформульовані три аксіоми ставляться до конгруентності відрізків. Для формулювання наступних аксіом нам знадобляться поняття кута і його внутрішніх крапок.

Пари напівпрямих h і k, що виходять із однієї й тієї ж крапки О и не лежачих на одній прямій, називається кутом і позначається символом або.

Якщо напівпрямі задаються двома своїми крапками ОА й ОВ, то ми будемо позначати кут символом або. У силу теореми 4 будь-які два промені h і k, тридцятилітні кут, визначають, і притім єдину, площина б.

Внутрішніми крапками будемо називати ті крапки площини б, які, по-перше, лежать по ту сторону від прямої, що містить промінь h, що й будь-яка крапка променя k, і, по-друге, лежать по ту сторону від прямої, що містить промінь k, що й будь-яка крапка променя h.

III, 4. Нехай дані на площині б, пряма а' на цій же або на якій-небудь іншій площині б' і задана певна сторона площини б' відносно прямій а'. Нехай h' - промінь прямій а', що виходить із деякої крапки О'. Тоді на площині б' існує один і тільки один промінь k' такий, що конгруентний, і при цьому всі внутрішні крапки лежать по задану сторону від прямій а'. Кожний кут конгруентний самому собі.

III, 5. Нехай А, У и С — три крапки, що не лежать на одній прямій, А', B' і С' - інші три крапки, що також не лежать на одній прямій. Тоді якщо відрізок АВ конгруентний відрізку А'', відрізок АС конгруентний відрізку А'' і конгруентний , те конгруентний і конгруентний

Домовимося тепер про порівняння неконгруентних відрізків і кутів.

Будемо говорити, що відрізок АВ більше відрізка А'', якщо на прямій, обумовленої крапками, А и В, найдеться лежача між цими крапками крапка З така, що відрізок АС конгруентний відрізку А’В'. Будемо говорити, що відрізок АВ менше відрізка А'', якщо відрізок А'' більше відрізка АВ.

Символічно той факт, що відрізок АВ менше відрізка А'' (конгруентний відрізку А'') будемо записувати так:

АВ< A'' (AB=A'').

Будемо говорити, що більше, якщо в площині, обумовленої, найдеться промінь ОС, всі крапки якого є внутрішніми крапками, такий, що конгруентний. Будемо говорити, що менше, якщо більше.

За допомогою аксіом приналежності, порядку й конгруентності можна довести цілий ряд теорем елементарної геометрії. Сюди ставляться: 1) три широко відомі теореми про конгруентність (рівності) двох трикутників, 2) теорема про конгруентність вертикальних кутів, 3) теорема про конгруентність всіх прямих кутів, 4) теорема про одиничність перпендикуляра, опущеного із крапки на пряму, 5) теорема про одиничність перпендикуляра, проведеного до даної крапки прямій, 6) теорема про зовнішній кут трикутника, 7) теорема про порівняння перпендикуляра й похилої.

IV. Аксіоми безперервності

За допомогою аксіом приналежності, порядку й конгруентності ми зробили порівняння відрізків, що дозволяє укласти, яким із трьох знаків <, = або > зв’язані ці відрізки.

Зазначених аксіом, однак, недостатньо 1) для обґрунтування можливості виміру відрізків, що дозволяє поставити у відповідність кожному відрізку певне речовинне число, 2) для обґрунтування того, що зазначена відповідність є взаємно однозначним.

Для проведення такого обґрунтування варто приєднати до аксіом I, II і III дві аксіоми безперервності.

IV, 1 (аксіома Архімеда). Нехай АВ і СD — довільні відрізки. Тоді на прямій, обумовленої крапками, А и В існує кінцеве число крапок А1, А2, …, Аn, розташованих так, що крапка А1 лежить між, А и А2, крапка А2 лежить між А1 і А3, …, крапка Аn-1 лежить між Аn-2 і Аn, причому відрізки АА1, А1А2, …, Аn-1An конгруентні відрізку CD і крапка В лежить між, А и Аn.

IV, 2 (аксіома лінійної повноти). Сукупність всіх крапок довільної прямої а не можна поповнити новими об'єктами (крапками) так, щоб 1) на поповненій прямій були визначені співвідношення «лежить між» і «конгруентний», визначений порядок проходження крапок і справедливі аксіоми конгруентності III, 1 — 3 і аксіома Архімеда IV, 1, 2) стосовно колишніх крапок прямій певні на поповненій прямій співвідношення «лежить між» і «конгруентний» зберігали старий зміст.

Приєднання до аксіом I, 1 — 3, II і III, 1- 3 аксіоми Архімеда дозволяє поставити у відповідність кожній крапці довільної прямої а певне речовинне число х, називане координатою цієї крапки, а приєднання ще й аксіоми лінійної повноти дозволяє затверджувати, що координати всіх крапок прямій а вичерпують множину всіх речовинних чисел. Користуючись цим, можна обґрунтувати метод координат.

V. Аксіома паралельності

Сама остання аксіома грає в геометрії особливу роль, визначаючи поділ геометрії на дві логічно несуперечливі й взаємно виключають один одного системи: Евклідову й неевклідову геометрії.

У геометрії Евкліда ця аксіома формулюється так.

V. Нехай, а — довільна пряма й, А — крапка, що лежить поза прямій а, тоді в площині б, обумовленою крапкою, А и прямої а існує не більше одній прямій, що проходить через, А и не перетинає а.

Довгий час геометри намагалися з’ясувати, чи не є аксіома паралельності наслідком всіх інших аксіом. Це питання було вирішено Миколою Івановичем Лобачевским, що довів незалежність аксіоми V від аксіом I — IV.

По-іншому результат Лобачевского можна сформулювати так: якщо до аксіом I — IV приєднати твердження, що заперечує справедливість аксіоми V, те наслідку всіх цих положень будуть становити логічно несуперечливу систему (неевклідову геометрію Лобачевского).

Систему наслідків, що випливають із одних тільки аксіом I — IV звичайно називають абсолютною геометрією. Абсолютна геометрія є загальною частиною як евклідової, так і неевклідової геометрий, тому що всі пропозиції, які можуть бути доведені тільки за допомогою аксіом I — IV, вірні як у геометрії Евкліда, так і в геометрії Лобачевского.

Доказ несуперечності аксіоматики Гильберта

Щоб довести несуперечність якоїсь теорії Х, необхідно з матеріалу інший, свідомо несуперечливої, теорії А побудувати така модель, у котрої виконуються всі аксіоми теорії Х. Якщо ц удасться, теорію Х можна вважати несуперечливої. Отже, для того, щоб довести несуперечність гильбертовой системи, необхідно побудувати таку модель евклідової геометрії, у якій виконувалися б всі аксіоми, запропоновані Гильбертом.

Для побудови такої моделі, необхідна вищезгадана свідомо несуперечлива теорія. У моделі, побудованої Гильбертом, такою теорією служить теорія дійсних чисел. Ідея побудови моделі складалася в розгляді системи координат на площині. У такій системі кожній крапці М площини відповідають два числа х и в — її координати. Щоб зрозуміти суть побудови моделі забудемо про площину й наявної на ній координатній системі, «крапками» будемо називати впорядковані пари дійсних чисел (х; у) тобто пари (х; у) і (в; х) з різними х и в будемо вважати різними. Тепер спробуємо визначити «пряму». Згадаємо, що кожна пряма описується в координатах лінійним рівнянням виду ax + by + c = 0, де хоча б один з коефіцієнтів a і b відмінний від нуля. Наприклад, рівняння прямій, не паралельної осі ординат, має вигляд в = kx + l, або, що те ж саме, ax + by + c = 0, де a = k, b = -1, c = l. Якщо ж пряма паралельна осі ординат, їй відповідає рівняння x = p (тобто рівняння ax + by + c = 0, де a = 1, b = 0, c = -p;). При цьому якщо всі коефіцієнти рівняння ax + by + c = 0 помножити на те саме число k? 0, те отримане рівняння буде описувати ту ж пряму. Ми ж у своїй моделі будемо називати «прямій» будь-яке лінійне рівняння виду ax + by + c = 0, у якому хоча б один з коефіцієнтів a і b відмінний від нуля, причому коефіцієнти розглядаються з точністю до ненульового множника пропорційності (при k? 0 рівняння ax + by + c = 0 і (ak)x + (bk)y + kc = 0 уважаються однієї й тій же прямій).

Далі, «крапка» (х1; в1) лежить на «прямій», якщо числа х1 і в1 задовольняють зазначеному рівнянню. Як бачимо, для визначення «прямих», «крапок» і розташування «крапок» на «прямій» досить обпертися на теорію дійсних чисел. Легко перевірити, що в зазначеній моделі виконуються, наприклад, такі аксіоми:

1. Через дві різні «крапки» проходить «пряма»

2. На «прямій» є не менш двох «крапок»

Легко визначити випадок, при якому одна із трьох «крапок» лежить на «прямій» «між» двома іншими. Коли A (x1; y1), B (x2; y2) і C (x3; y3) — три «крапки», що лежать на одній «прямій», «крапка» B уважається розташованої «між» A і C за умови, що число x2 укладено між числами x1 і x3 (якщо x1 = x2 = x3, то y2 укладено між y1 і y3). Тоді очевидно, що

3. Із трьох «крапок», що лежать на одній «прямій», одна й тільки одна розташована між двома іншими.

Виконуються й інші аксіоми порядку (зокрема, аксіома Паша). Помітимо, що ми спеціально не ілюструємо зміст аксіом кресленнями, оскільки при чисто аксіоматичному викладі не слід використовувати звичні геометричні подання.

Будемо говорити, що дві «прямі» a1x + b1y + c1 = 0 і a2x + b2y + c2 = 0 «паралельні», якщо коефіцієнти a1, b1 і a2, b2 пропорційні. Це можна коротко записати рівністю a1b2 — a2b1 = 0. Неважко перевірити, що дві «паралельні» «прямі» або не мають ні однієї загальної «крапки», або збігаються (у звичайній геометрії теж часто приймають, що пряма паралельна самої собі). Більше того,

4. Через будь-яку «крапку» A1(x1; y1) проходить одна й тільки одна «пряма», паралельна даної «прямій» Ax + By + C = 0.

Інакше кажучи, у зазначеній моделі виконується аксіома паралельності. Можна тут говорити й про довжини відрізків, і про величини кутів. Наприклад, «відстанню» між двома «крапками» A1(x1; y1) і A2(x2; y2) називається число

A1A2 =

Далі, у звичній евклідовій геометрії справедлива теорема косинусів:

cos C =

(величина кута З дорівнює арккосинусу правої частини рівності. Можна заперечити, що тригонометричні функції (і, зокрема, косинус) визначаються геометрично й обійтися без звичайної евклідової геометрії в цьому випадку неможливо.

Однак це невірно. У математичному аналізі доводиться, що функція cos x задається нескінченним рядом

cos x = ,

який сходиться для будь-якого дійсного x. Таким чином, у розглянутій моделі припустимо говорити й про відстані, і про величини кутів.

Так само легко перевірити, що в ній виконуються й аксіоми конгруентності (зокрема, перша й друга ознаки рівності трикутників). У підсумку всі гильбертови аксіоми (які виявляють собою розвиток і уточнення аксіом Евкліда) у розглянутій моделі виконуються. Це й означає, що система аксіом евклідової геометрії умовно несуперечлива. Інакше кажучи, вона несуперечлива, якщо несуперечливо теорію дійсних чисел.

1.4 Інші системи аксіом геометрії

Повернемося, однак, до евклідової геометрії. У цей час систему аксіом Гильберта часто заміняють еквівалентної їй системою. Ми приведемо ті групи аксіом однієї такої системи, по яких вона відрізняється від вищевикладеної системи (групи аксіом порядку й руху, що заміняє в цій системі групу аксіом конгруентності).

Перевага цієї системи полягає в тім, що вона дозволяє простіше й швидше одержати первісні геометричні факти, краще, як здається, описує властивості основних геометричних об'єктів з погляду звичних уявлень.

II. Аксіоми порядку

Будемо думати, що на прямій є два напрямки, взаємно протилежних один одному, і по відношенню кожному з них кожна пара крапок, А и В перебуває у відомому відношенні, що виражається словом «передувати». Це відношення позначається знаком <, так що вираження «А передує В» можна символічно записати так:

А < B.

Потрібно, щоб зазначене відношення для крапок на прямій задовольняло нижченаведеним п’яти аксіомам.

II, 1. Якщо, А < У в одному напрямку, то В < А в протилежному напрямку.

II, 2. В одному із двох напрямків, А < У виключає В < А.

II, 3. В одному із двох напрямків якщо, А < У и В < З, те, А < С.

II, 4. В одному із двох напрямків для кожної крапки В найдуться крапки, А и С такі, що, А < B < C.

Кожне із тверджень аксіом II, 2 — 4 ставиться до одному із двох напрямків на прямій. По аксіомі II, 1 воно вірно також і для протилежного напрямку.

Перш ніж сформулювати останню аксіому, визначимо деякі поняття. Нехай а — пряма й, А — крапка на ній. При фіксованому напрямку на прямій крапка, А розбиває її на дві частини (напівпрямі), для кожної крапки Х однієї з них Х < А, а для кожної крапки Х іншій напівпрямій А < X. Очевидно, ця розбивка прямої на частині не залежить від обраного на ній напрямку (аксіома II, 1).

Нехай, А и В — дві крапки прямій а. Якщо для крапки Із прямої а виконується умова, А < C < В або В < C < А, то ми будемо говорити, що крапка З лежить між крапками, А и В. Очевидно, властивість крапки лежати між двома даними не залежить від напрямку на прямій. Частина прямій а, всі крапки якої лежать між, А и В, ми будемо називати відрізком АВ, а крапки, А и В — кінцями відрізка.

II, 5. Пряма а, що лежить у площині ?, розбиває цю площину на дві напівплощини так, що якщо X і Y — дві крапки однієї напівплощини, то відрізок XY не перетинається із прямій а, якщо ж X і Y належать різним напівплощинам, то відрізок XY перетинається із прямій а.

З аксіом приналежності (зв'язку), які в цій системі аксіом аналогічні аксіомам приналежності Гильберта, і аксіом порядку виводяться наступні наслідки.

Теорема 1. Серед крапок А, В, З на прямій, а одна й тільки одна лежить між двома іншими.

Теорема 2. Кожний відрізок містить принаймні одну крапку.

Теорема 3. Якщо В — крапка відрізка АС, то відрізки АВ і ВР належать АС, тобто кожна крапка відрізка АС і кожна крапка відрізка ВР належить відрізку АС.

Теорема 4. Якщо В — крапка відрізка АС і X — крапка того ж відрізка, відмінна від В, то вона належить або відрізку АВ, або ВР.

Теорема 5. Нехай б — площина, і а — лежача на ній пряма, b — інша пряма, або напівпряма, або відрізок у тій же площині б.

Тоді, якщо b не перетинає а, те всі крапки b лежать по одну сторону від а, тобто в одній з напівплощин, обумовлених прямій а.

Нехай А, У и С — три крапки, що не лежать на одній прямій. Фігура, складена із трьох відрізків АВ, ВР і АС називається трикутником, крапки А, У и С — вершинами трикутника, а відрізки АВ, ВР і АС — сторонами трикутника.

Теорема 9. Нехай АВС — трикутник у площині б і а — пряма в цій площині, не минаюча ні через одну із крапок А, В, С. Тоді якщо ця пряма перетинає сторону АВ, те вона перетинає й притім тільки одну із двох інших сторін ВР або АС.

Не можна не помітити, що остання наведена теорема майже аналогічна аксіомі Паша, що входить у систему Гильберта (див. сторінку 9), і відрізняється від її тільки тим, що в аксіомі не затверджується одиничність другої пересічної сторони трикутника.

III. Аксіоми руху

У даній системі група аксіом конгруентності замінена цією групою аксіом. Втім, треті групи аксіом обох систем в остаточному підсумку виконують ту саму задачу, визначаючи різними способами ті самі явища (група аксіом конгруентності в Гильберта визначає відносини конгруентності прямо, аксіоми руху — через свої наслідки).

Отже, будемо вимагати, щоб існували такі відбиття крапок, прямих і площин на крапки, прямі й площини, іменовані рухами, що задовольняють наступним аксіомам.

III, 1. Кожний рух Н зберігає відношення приналежності.

Тобто, якщо крапка А належить прямій а (площини б), те її образ при русі Н (позначуваний НА) належить образу прямої На (відповідно образу площини Нб).

III, 2. Кожний рух Н зберігає відношення порядку на прямій.

Це означає, як, напевно, уже догадався читач, що кожному із двох напрямків на прямій а можна зіставити такий напрямок на прямій На, що щораз, коли для крапок X і Y прямій а має місце X < Y, для відповідних їм крапок прямої На має місце HX < HY.

Із цих двох аксіом треба, що кожний рух переводить напівпряму в напівпряму, напівплощина в напівплощину.

III, 3. Руху утворять групу.

Це значить:

а) Зіставлення Н0 кожному елементу х (крапці, прямій, площини) його самого є рух. Цей рух називається тотожним.

б) Якщо рух Н1 зіставляє довільному елементу х елемент y, а рух Н2 зіставляє y елемент z, те зіставлення елементу х елемента z є рух. Воно позначається Н2Н1 і називається добутком рухів.

в) Для кожного руху Н існує рух Н-1 таке, що Н-1Н=Н0. Рух Н-1 будемо називати зворотним.

III, 4. Якщо при русі Н пряма h, як ціле, і її початкова крапка, А залишаються нерухливими, то всі крапки напівпрямій h залишаються нерухливими.

III, 5. Для кожної пари крапок, А и В існує рух Н, котре переставляє їх місцями: НА=В, НВ=А

III, 6. Для кожної пари променів h, k (напівпрямих), що виходять із однієї крапки, існує рух Н, їх що переставляє: Нh=k, Hk=h.

III, 7. Нехай б і в — будь-які площини, а й b — прямі в цих площинах, А и В — крапки на прямих, а й b. Тоді існує рух, що переводить крапку, А в У, задану напівпряму прямій а, обумовлену крапкою А, — у задану напівпряму прямій b, обумовлену крапкою В, задану напівплощину площини б, обумовлену прямій а, — у задану напівплощину площини в, обумовлену прямій b.

Теорема 10. Нехай б — площина, і а — приналежна їй пряма. Тоді якщо рух Н переводить кожну з напівплощин площини б, обумовлених прямій а, у себе й залишає нерухливими крапки прямій а, те воно є тотожним.

Дійсно, тотожний рух Н0 має зазначеними в теоремі властивостями Н, а отже, по аксіомі III, 7 збігається з ним.

Визначимо тепер поняття конгруентності. Фігуру F1 ми будемо називати конгруентній фігурі F2, якщо існує рух Н, що переводить F1 в F2: HF1=F2. Із групових властивостей руху (аксіома III, 3) випливають наступні властивості відносини конгруентності:

Кожна фігура F конгруентна сама собі.

Дійсно, тотожний рух Н0 переводить F в F.

Якщо фігура F1 конгруентна F2, то фігура F2 конгруентна F1.

Справді, якщо Н — рух, що переводить фігуру F1 в F2, то рух Н-1 переводить фігуру F2 у фігуру F1.

Якщо фігура F1 конгруентна F2, а фігура F2 конгруентна фігурі F3, то фігура F1 конгруентна F3.

ПоказатьСвернуть
Заполнить форму текущей работой