Этилен, АБК и полиамины при УФ-B стрессе у растений Arabidopsis thaliana

Тип работы:
Диссертация
Предмет:
Биологические науки
Страниц:
101


Узнать стоимость

Детальная информация о работе

Выдержка из работы

Восприятие растениями условий окружающей среды, передачу полученных сигналов и физиологические ответы на них интенсивно изучают во всем мире. Проблема реакции растений на повышающийся уровень УФ-В радиации находится в ряду наиболее актуальных.

Ультрафиолетовая радиация с длиной волны 280−320 нм (УФ-В), возрастает у поверхности Земли в результате редукции озонового слоя стратосферы. Этот мощный абиотический фактор, способен вызывать снижение продуктивности сельскохозяйственных культур, а в естественных экосистемах вытеснение чувствительных растений устойчивыми, что ведет к уменьшению разнообразия растительных форм [Jansen et al, 1998]. Показано, что УФ-В в зависимости от дозы может воздействовать на рост и морфогенез, повреждать фотосинтетический аппарат и, что особенно опасно, структуру ДНК [Brosche, Strid, 1999- Jansen et al, 1998- Jansen et al, 2000- Strid, 1990- Strid et a/., 1993- 1994- 1996]. УФ-В включает пути трансдукции сигналов, регулирующих экспрессию генов, которые контролируют ряд защитных механизмов, в частности, синтез полиаминов [Predieri et al., 1993- Lin et al, 2002]. Протекторные свойства полиаминов заключаются в их способности стабилизировать структуру макромолекул и служить ловушками активных форм кислорода, причем определяющая роль в этих процессах принадлежит спермидину и спермину [Galston, 1986- Galston, Kaur-Sawhney, 1990- Kaur-Sawhney et al., 2003]. Передача стрессового сигнала происходит с участием вторичных мессенджеров, в качестве которых способны выступать такие фитогормоны как этилен и абсцизовая кислота (АБК) [Larkindale et al, 2002].

Этилен принимает участие в регуляции практически всех физиологических процессов в растениях — от прорастания семян до созревания плодов [Abeles et al, 1992]. Он также регулирует синтез и катаболизм других фитогормонов и, что особенно важно, АБК, которой принадлежит существенная роль в адаптации растений к биотическим и абиотическим стрессам [Grossman et al., 2001]. При холодовом стрессе показано, что АБК участвует в адаптации через стимуляцию синтеза полиаминов [Kim et al, 2002]. АБК также регулирует синтез этилена [Grossman, Hansen, 2001- Ракитина и др., 1994- Ракитина и др., 2001- 2004- Spollen et al., 2000- LeNoble et al, 2003]. Необходимо отметить, что в некоторых случаях чувствительность растений к АБК контролируется геном EIN2, кодирующим белок, который функционирует и в пути передачи этиленового сигнала [Ghassemian et al., 2000- Beaudoin et al, 2000- Gazzarini et al, 2003]. Наличие общих компонентов, участвующих в передаче сигналов этилена и АБК позволяет предположить их взаимодействие в регуляции синтеза полиаминов. Современные представления об участии фитогормонов и полиаминов в ответах растений на стресс приводят к необходимости исследования их совместного действия в защитных реакциях на УФ-В радиацию.

Цель и задачи исследования. Цель работы состояла в исследовании взаимодействия этилена и АБК в регуляции уровня полиаминов в растениях Arabidopsis thaliana при УФ-В стрессе. В связи с этим были поставлены следующие задачи:

1. Определить величины низких, умеренных, высоких и летальных доз УФ-В по их воздействию на рост растений.

2. Изучить динамику образования этилена, содержания АБК, свободных полиаминов и устойчивость растений Arabidopsis thaliana при воздействии низких, умеренных, высоких и летальных доз УФ-В радиации.

3. Выяснить действие экзогенного этилена на содержание АБК и полиаминов в растениях Arabidopsis thaliana.

4. Исследовать влияние экзогенной АБК на выделение этилена, содержание полиаминов и устойчивость растений ЛгаЫ^/сртг'з 1каИапа при УФ-В стрессе.

Ф Научная новизна. Впервые на одном объекте {АгаЫс1ор518 ШаИапа) продемонстрирована динамика выделения этилена, содержания эндогенных АБК и полиаминов после воздействия низкой, умеренной, высокой и летальной доз УФ-В радиации. Впервые показано, что экзогенная АБК в широком диапазоне концентраций ингибирует УФ-В индуцированное образование этилена и стимулирует накопление путресцина, тогда как экзогенный этилен в физиологических концентрациях стимулирует, а в высоких тормозит накопление АБК и полиаминов. Полученные данные показывают, что образующийся при ® УФ-В стрессе этилен вызывает накопление АБК. Абсцизовая кислота в свою очередь ингибирует синтез этилена и дополнительно усиливает индуцированное УФ-В радиацией образование путресцина, предшественника спермидина и спермина, — полиаминов, поддержание определенного уровня которых необходимо для выживания растений при УФ-В стрессе.

Практическая значимость. Полученные в работе данные имеют существенное значение для понимания регулируемых этиленом, АБК и полиаминами процессов, реализующихся при адаптации растений к УФ& reg- В радиации. Результаты работы могут быть теоретическим основанием при создании хозяйственно важных трансгенных растений, устойчивых 'I к УФ-В излучению. Теоретические обобщения и совокупность экспериментальных данных работы могут быть использованы в курсах лекций для студентов биологических факультетов высших учебных заведений.

Апробация работы. Материалы диссертации были представлены # на Всероссийской научно-практической конференции & laquo-Физиология растений и экология на рубеже веков& raquo- (Ярославль, 26−28 мая 2003), V Съезде общества физиологов растений России и Международной конференции & laquo-Физиология растений — основа фитобиотехнологии& raquo- (Пенза, 15−21 сентября 2003), VI Международном симпозиуме & laquo-Новые и нетрадиционные растения и перспективы их использования& raquo- (Пущино, 13−17 июня 2005 г).

Публикации. По материалам диссертации опубликовано 6 работ.

Структура и объем диссертации. Диссертация состоит из введения, обзора литературы, описания объекта и методов исследования, изложения полученных результатов и их обсуждения, заключения и выводов. Работа изложена на 101 странице машинописного текста, включает 1 таблицу и 17 рисунков- библиография содержит 214 названий, в т. ч. 193 на иностранных языках.

ВЫВОДЫ.

1 УФ-В вызывает дозозависимое торможение роста розеток А. ХкаНапа, проявляющееся в снижении накопления биомассы. л

Выявлены низкая (3 кДж/м), умеренные (6−9 кДж/м), высокая (18 кДж/м) и летальная

27 кДж/м) дозы облучения.

2 УФ-В радиация вызывает транзиторный подъем образования и выделения этилена с максимумом через 4 ч после облучения.

Увеличение доз облучения от низких до умеренных приводит к усилению образования этилена, дальнейшее повышение доз вызывает менее интенсивное, но более продолжительное выделение этилена.

3 Содержание АБК в растениях возрастает с увеличением дозы УФ-В радиации. Эффект нарастает в течение 24 ч.

4 Экзогенный этилен в физиологических концентрациях (0,1 — 1 мкл/л) стимулирует, а в высоких (10 — 100 мкл/л) — тормозит накопление АБК. Экзогенная АБК в широком диапазоне концентраций (5- 5000 мкМ) ингибирует УФ-В индуцированное образование этилена.

5 Увеличение доз УФ-В от низких до умеренных значений приводит к транзиторному увеличению содержания путресцина с максимумом через 24 ч после облучения. Высокая доза тормозит, а летальная ингибирует накопление путресцина.

6 УФ-В стресс вызывает дозозависимое расходование пула спермидина и спермина.

7 Экзогенная АБК в концентрациях выше 50 мкМ увеличивает содержание путресцина и уменьшает потерю спермидина и спермина, а также позволяет растениям выживать даже после дозы УФ-В, летальной для необработанных АБК растений.

8 Экзогенный этилен повышает содержание путресцина в необлученных растениях только в концентрациях, способных увеличивать содержание АБК.

9 Этилен и АБК, взаимно регулируя синтез друг друга, принимают участие в поддержании уровня полиаминов, достаточного для сохранения жизнеспособности растений при УФ-В стрессе.

ЗАКЛЮЧЕНИЕ.

В настоящее время сам факт участия фитогормонов в ответе растений на УФ-В не вызывает сомнений. Однако участие этилена в синтезе АБК и роль АБК в синтезе этилена при УФ-В стрессе практически не изучены. Также существует мало сведений о влиянии этих гормонов на синтез полиаминов. Отличительная особенность нашей работы заключается в том, что нам впервые удалось продемонстрировать влияние этилена на синтез АБК и АБК на синтез этилена при УФ-В стрессе. Также впервые было показано участие этой пары фитогормонов в регуляции одного из защитных механизмов -синтеза полиаминов.

Использованное в нашей работе однократное кратковременное облучение растений УФ-В позволило нам обнаружить быстрые изменения исследуемых параметров, которые не удается обнаружить при обычно применяемом перманентном облучении растений УФ-В светом низкой интенсивности.

Подробное изучение влияния низких, умеренных, высоких и летальных доз УФ-В радиации на динамику роста растений, образование этилена, содержание АБК и полиаминов в розетках А. гкаНапа позволило получить дозовую и временную зависимости изменения исследованных параметров. О последовательности событий при УФ-В стрессе может свидетельствовать тот факт, что максимум в образовании этилена был обнаружен через 4 ч, АБК и путресцина — через сутки после облучения УФ-В.

Так как экзогенная АБК подавляла УФ-В-индуцированный синтез этилена, а экзогенный этилен повышал содержание АБК в необлученных растениях можно сделать вывод о взаимной регуляции синтеза и эндогенных этилена и АБК.

УФ-В радиация вызывала возрастание содержания путресцина, вероятно, для компенсации расходования пула спермидина и спермина. Накопление путресцина возрастало по мере увеличения доз УФ-В радиации от низких до умеренных, что обеспечивало приемлемое для преодоления стресса содержание спермидина и спермина. При дальнейшем увеличении доз УФ-В происходило снижение синтеза путресцина, содержание спермидина и спермина уменьшалось в несколько раз, что сопровождалось резким падением устойчивости растений.

Экзогенная АБК повышала устойчивость растений, уменьшая потери спермидина и спермина, вероятно, за счет активации УФ-В-индуцированного синтеза путресцина. Этот вывод подтверждают результаты, полученные с использованием экзогенного этилена. Экзогенный этилен стимулировал накопление путресцина в растениях, но только при концентрациях, способных увеличивать содержание АБК.

Совокупность полученных данных показывает, что этилен и АБК, принимают участие в формировании устойчивости растений к УФ-В радиации, регулируя синтез друг друга и протекторных веществ, в данном случае, полиаминов.

ПоказатьСвернуть

Содержание

Глава 1 ОБЗОР ЛИТЕРАТУРЫ.

1.1 Ультрафиолетовая радиация и озоновый слой атмосферы — экологические факторы жизни растений.

1.2 Восприятие и передача УФ-В сигнала.

1.3 Повреждение растений УФ-В радиацией.

1.4 Адаптация растений к УФ-В радиации.

1.4.1 УФ-рассеивающие и поглощающие экраны.

1.4.2 Восстановление повреждений ДНК

1.4.3 Детоксикация активных форм кислорода при УФ-В стрессе

1.5 Роль полиаминов при стрессах и в регуляции роста и развития растений.

1.5.1 Протекторные свойства полиаминов

1.5.2 Полиамины — регуляторы роста и развития растений.

1.6 Метаболизм полиаминов и его регуляция.

1.6.1 Синтез и катаболизм полиаминов.

1.6.2 Локализация в клетке полиаминов и ферментов их метаболизма.

1.6.3 Влияние стрессоров на содержание полиаминов в растениях.

1.6.4 Участие фитогормонов в регуляции уровня полиаминов.

Глава 2 ОБЪЕКТ И МЕТОДЫ ИССЛЕДОВАНИЯ.

2.1 Объект исследования и условия выращивания.

2.2 Облучение растений УФ-В светом.

2.3 Обработка растений АБК.

2.4 Обработка растений этиленом.

2.5 Определение выхода электролитов

2.6 Определение содержания свободных полиаминов

2.7 Определение содержания АБК.

2.8 Определение выделения этилена.

2.9 Математическая обработка данных.

Глава 3 РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ И ИХ

ОБСУЖДЕНИЕ.

3.1 Влияние УФ-В на рост растений А. МаНапа.

3.2 Влияние УФ-В радиации на выделение этилена и содержание АБК.

3.3 Влияние УФ-В радиации на содержание полиаминов.

3.4 Взаиморегуляция синтеза этилена и АБК.

3.5 Влияние экзогенной АБК на рост А. МаПапа при

УФ-В стрессе.

3.6 Влияние экзогенной АБК на содержание полиаминов в А. МаИапа при УФ-В стрессе.

3.7 Влияние этилена на содержание полиаминов в растениях А. 1каИапа.

Глава 4 ЗАКЛЮЧЕНИЯ И ВЫВОДЫ.

Список литературы

1. Ан Л., Лиу К., Цанг М., Чен Т., Лиу Я., Фенг X., Ху С., Кянг В., Ванг

2. К. (2004) Влияние повышенных доз УФ-Б радиации на содержание полиаминов и проницаемость мембран листьев огурца. Физиология растений, 51, 732−736.

3. Дам Б. З. (1999) Аккумуляция полиаминов и выделение этилена у растений Mesembryarithemum crystallinum L. при гипертермии и засолении. Дисс. на соискание уч. степени канд. биол. наук, Москва.

4. Доспехов Б. А. (1985) Методика полевого опыта. Москва: Агропромиздат, 259 с.

5. Ежова Т. А., Лебедева О. В., Огаркова O.A., Пенин A.A., Солдатова О. П., Шестаков C.B. (2003) Arabidopsis thaliana модельный объект генетики растений. Москва: Макспресс, 220 с.

6. Запрометов М. Н. (1993) Фенольные соединений. Москва: Наука, 272 с.

7. Карягин В. В. (1998) Фитогормоны в плодах томата при индуцированной 4-хлорфеноксиуксусной кислотойпартенокарпии. Дисс. на соискание уч. степени канд. биол. наук, Москва.

8. Кретович В. Л. (1980) Биохимия растений. Москва: Высшая школа, 445 с.

9. Кузнецов Вл.В., Дмитриева Г. А. (2005) Физиология растений. Москва, Высшая школа, 736 с.

10. Кузнецов Вл.В., Ракитин В. Ю., Садомов Н. Г., Дам Д. В., Стеценко Л. А., Шевякова Н. И. (2002) Участвуют ли полиамины в дистанционной передаче стрессорного сигнала у растений? Физиология растений, 49, 1−12.

11. Кузнецов Вл.В., Хыдыров Б. Т., Рощупкин Б. В, Борисова H.H. (1990) Общие системы устойчивости хлопчатника к засолению и высокойтемпературе: факты и гипотезы. Физиология растений, 37, 987 996.

12. Кузнецов Вл.В., Хыдыров Б. Т., Шевянова Н. И., Ракитин В. Ю. (1991) Индукция тепловым шоком солеустойчивости хлопчатника: участие полиаминов, этилена и пролина. Физиология растений, 38, 877−883.

13. Ракитин В. Ю., Ракитин Л. Ю. (1986) Определение газообмена и содержания этилена, двуокиси углерода и кислорода в тканях растений. Физиология растений, 33,403−413.

14. Ракитина Т. Я., Власов П. В., Жалилова Ф. Х., Кефели В. И. (1994) Абсцизовая кислота и этилен в мутантах АгаЫс1орБ15 ШаИапа, различающихся по устойчивости к ультрафиолетовой (УФ-Б) радиации. Физиология растений, 41, 682−686.

15. Ракитина Т. Я., Власов П. В., Ракитин В. Ю. (2001) Гормональные аспекты различной устойчивости мутантов АгаЫс1ор$ 1з ЖаИапа к ультрафиолетовой радиации. Физиология растений, 48, 414−420.

16. Ракитина Т. Я., Ракитин В. Ю., Власов П. В., Прудникова О. Н. (2004) Влияние АБК на индуцированное УФ-Б выделение этилена у и с/г мутантов АгаЫс1оря18 ЖаНапа. Физиология растений, 51, 737 741.

17. Строгонов Б. П. (1962) Физиологические основы солеустойчивости растений. Москва: Изд-во АН СССР, 257 с.

18. Строгонов Б. П., Шевякова Н. И. (1961) Образование диаминов при солевом отравлении растений. Тез. 5 межд. конгр., т. 2.

19. Шевякова Н. И. (1979) Метаболизм серы в растениях. Москва: Наука, 160 с.

20. Шевякова Н. И. (1981) Метаболизм и физиологическая роль ди- и полиаминов в растениях. Физиология растений, 28, 1052−1060.

21. Шевякова Н. И., Кирьян И. Г., Строгонов Б. П. (1984) Повышенная скорость образования спермидина у NaCl-резистентной линии Nicotiana sylvestris. Физиология растений, 31, 810−816.

22. Abeles F., Morgan P. and Salveit J. (1992) Ethylene in Plant Biology. San Diego, California: Academic Press, 414 p.

23. Antognony F., Pistocchi R, Casali P., Bagni N. (1995) Does calcium regulate polyamine uptake in carrot apoplast? Plant. Physiol., 33, 701 702.

24. Apelbaum A., Goldlust A. and Icekson I. (1979) Control by ethylene of arginine decarboxylase activity in pea seedlings and its application for hormonal regulation of plant grows. Plant Physiol., 8, 635−647.

25. Ascher R.G. (1989) Biosynthesis and antioxidant function of glutatione in plants. Physiol Plant., 77, 457−464.

26. Aziz A., Martin-Tanguy J. and Larher F. (1998) Stress-induced changes in polyamine and tyramine levels can regulate praline accumulation in tomato leaf discs treated with sodium chloride. Physiol Plant., 54, 195 202.

27. Bagga S., Rochford J., Klaene Z., Kuehn G. and Phillips G. (1997) Putrescine aminopropyltransferase is responsible for biosynthesis of spermidine, spermine and multiple uncommon polyamines in osmotic stress-tolerant alfalfa. Plant Physiol, 114, 445−454.

28. Basso L.C. and Smith T.A. (1974) Effect of mineral deficiency on amine formation in higher plants. Phytochem., 13, 875−883.

29. Beaudoin N., Serizet C., Gosti F. and Giraudat J. (2000) Interaction between abscisic acid and ethylene signaling cascades. Plant Cell, 12, 1103−1115.

30. Beggs C.J., Schneider-Ziebert U. and Wellmann E. (1986) UV-B radiation and adaptive mechanisms in plants. In: Stratospheric Ozone Reduction,

31. Solar Ultraviolet Radiation and Plant Life, Worrest R.C., Caldwell M.M. (eds.), Berlin: Springer-Verlag, pp. 235−250.

32. Behe M. and Felsenfeld G. (1981) Effects of methylation on a synthetic polynucleotide. Proc. Natl Acad. Sci. USA, 78, 1619−1623.

33. Ben-Hayyim J., Damon J., Martin-Tanguy J. and Tepfer D. (1994) Changing root sistem architecture throught inhibition of putrescine and feruloil putrescine accumulation. FEBSLett., 342, 145−148.

34. Beyer E. (1979) Effect of silver ion, carbon dioxide and oxygen on ethylene action and metabolism. Plant Physiol, 63, 169−173.

35. Bhatnagar P., Minocha R. and Minocha S. (2002) Genetic maniulation of the metabolism of polyamines in poplar cells. The regulation of putrescine catabolism. Plant. Physiol, 128, 1455−1469.

36. Bieza K. and Lois R. (2001) An arabidopsis mutant tolerant to lethal ultraviolet-B levels shows constitutively elevated accumulation of flavonoid and other phenolics. Plant Physiol, 126, 1105−1115.

37. Bochereau F., Marigo G. and Asta J. (1998) Effect of solar radiation (UV-B and visible) at high altitude on CAM-cycling and phenolic compound biosynthesis in Sedum album. Physiol Plant., 104, 203−210.

38. Borell A., Culianez-Marcia, Atabella T., Besford R.T., Flores D. and Tiburcio A.F. (1996) Arginine decarboxylase is localized in chloroplasts. Plant Physiol, 109, 771−776.

39. Borrell A., Besford R., Altabella T., Masgrau C. and Tiburcio A. (1996) Regulation of arginine decarboxylase by spermine in osmotically-stressed oat leaves. Phisiol. Plant., 98,105−110.

40. Bouchereau A., Aziz A., Larher F. and Martin-Tanguy J. (1999) Polyamines and environmental challenges: recent development. Plant Sci., 140, 103−125.

41. Bowler C., van Montagu M. and Inze D. (1992) Superoxide dismutase and stress tolerance. Annu. Rev. Plant Physiol. Plant Mol. Biol., 43, 83−116.

42. Britt A.B. (1999) Molecular genetics of DNA repair in higher plants. Trends Plant Sci., 4, 20−25.

43. Brosche M. and Strid A. (1999) Cloning, expression and molecular characterisation of a small Pisum sativum gene family regulated by low levels of UV-B radiation and other stresses. Plant Physiol., 121, 479 487.

44. Brosche M. and Strid A. (2003) Molecular events following perception of ultraviolet-B radiation by plants. Physiol. Plant., 117, 1−10.

45. Buchholz G., Ehmann B. and Wellmann E. (1995) Ultraviolet-light inhibition of phytochrome-induced flavonoid biosynthesis and DNA photolyase formation in mustard cotyledons (Synapyis alba L.). Plant Physiol108, 227−234.

46. Caldwell M. (1971) Solar UV irradiation and the growth and development of higher plants. Photobiol., 6, 131−177.

47. Casati P. and Walbot V. (2003) Gene expression profiling in response to ultraviolet radiation in maize genotypes with varying flavonoid content. Plant Physiol., 132, 1739−1754.

48. Chappell J. and Hahlbrock K. (1984) Transcription of plant defense genes in response to UV light or fungal elicitor. Nature, 311, 76−78.

49. Childs A.C., Mehta D.J. and Gerner E.W. (2003) Polyamine-dependent gene expression. Cell Moll Life Sci., 60, 1394−1406.

50. Cohen A. and Heimer M. (1982) Participation of ornithine decarboxylase in early stages of tomato fruit development. Plant Physiol, 70, 540−543.

51. Couee I., Hummel I., Sulmon C., Gouesbet G. and El Amrani A. (2003) Involvement of polyamines in root development. Plant Cell Tissue Organ Cult, 76, 1−10.

52. Datta N., Schell M.B. and Roux S.J. (1987) Spermine stimulation of a nuclear N11 kinase from pea plumules and its role in the phosphorylation of a nuclear polypeptide. Plant Physiol, 84, 13 971 401.

53. Devary R. and DiDonato K. (1993) NF-kB activation by ultraviolet light not dependent on a nuclear signal. Science, 261, 1442−1445.

54. Dhindsa R.S., Plumb-Dhindsa P. and Thorpe T.A. (1981) Leaf senescence: corellated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J. Exp. Bot., 32, 93−101.

55. Dobrovinskaya O.R., Muniz J. and Pottosin I. (1999) Inhibition of vacuolar ion channels by polyamines. J. Membr. Biol, 167, 127−140.

56. Donald T.K., George F.K., Upadhyaya A. and Mireski R.M. (1993) UV-B response of cucumber seedlings grown under metal halide and high pressure sodium/deluxe lamps. Physiol Plant., 88, 350−358.

57. Drolet G., Dumbroff E.B., Legge R. and Thompson J.E. (1986) Radical scavenging properties of polyamines. Phytochem., 25,367−371.

58. Ensminger P. and Schafer E. (1992) Blue and UV-B light photoreceptors in parsley cells. Photochem. Photobiol., 55, 437−447.

59. Flores H. and Galston A. (1982) Polyamines and plant stress: activation of putrescine biosynthesis by osmotic shock. Science, 217, 1259−1261.

60. Flores H., Protacio C. and Sings M. (1989) Primary and secondary metabolism of polyamines in plants. Recent Adv. Phytochem., 23, 3329−393.

61. Flores H.E. and Galston A.W. (1982) Analysis of polyamines in higher plants by high performance liquid chromatography. Plant Physiol., 69, 701−706.

62. Fos M., Proano K., Alabadi D., Nuez F., Carbonell J. and Garcia-Martinez J.L. (2003) Polyamine metabolism is altered in unpollinated parthenocarpic pat-2 tomato ovaries. Plant Physiol., 131, 359−366.

63. Fowler M.R., Kurby M.J., Scott N.W., Slater A. and Elliott M.C. (1996) Polyamine metabolism and gene regulation in the transition of autonomous sugar beet cell in suspension culture from quiescence to division. Physiol. Plant., 98, 439−446.

64. Frohnmeyer H. and Staiger D. (2003) Ultraviolet-B radiation-mediated responses in plants: balancing damage and protection. Plant Physiol., 133, 1420−1428.

65. Frohnmeyer H., Loyall L., Blatt M. and Grabov A. (1999) Millisecond UV-B irradiation evokes prolonged elevation of cytosolic-free Ca and stimulates gene expression in transgenic parsley cell culture. Plant J., 20, 109−117.

66. Galland P. and Senger H. (1988) The role of pterins in the photopercettion and metabolism in plants. Photochem. Photobiol., 48, 811−820.

67. Galloway G., Malmberg R. and Price R. (1998) Phylogenetic utility of the nuclear gene arginine decarboxilase: an example from Brassicaceae. Mol. Biol. Evol., 15, 1312−1320.

68. Galston A., Kaur-Sawhney R., Atabella T. and Tiburcio A. (1997) Plant polyamines in reproductive activity and response to abiotic stress. Bot. Acta, 110, 159−178.

69. Galston A.W. (1983) Polyamines as modulators of plant development. Bioscience, 3, 382−388.

70. Galston A.W. (1986) Plant morphogenesis. In: McGraw-Hill Yearbook of Science and Technology, pp. 351−354.

71. Galston A.W. and Kaur-Sawhney R. (1979) Interaction of polyamines and light in biochemical processes involved in leaf senescence. Plant Cell Environ., 2,189−196.

72. Galston A.W. and Kaur-Sawhney R. (1990) Polyamines in plant physiology. Plant Physiol., 94, 406−410.

73. Galston R.W. (1985) Prevention of a plant disease by specific inhibition of fungal polyamine biosynthesis. Proc. Natl. Acad. Sci. USA, 82, 68 746 878.

74. Galston R.W. (1985) The effect of some polyamine biosynthetic inhibitors on growth and morphology of phytopathogenic fungi. Plant Cell Physiol, 26, 683−692.

75. Gazzarini S. and McCourt P. (2003) Cross-talk in plant hormone signaling: what arabidopsis mutants are telling us. Ann. Bot., 91, 605−612.

76. Ghassemian M., Nambara E., Cutler S., Kawaide H., Kamiya Y. and McCourt P. (2000) Regulation of abscisic acid signaling by ethylene response pathway in arabidopsis. Plant Cell, 12, 1117−1126.

77. Gonzales R., Paul N.D., Percy K., Ambrose M., McLaughlin C.K., Barnes J.D., Areses M. and Wellburn A.R. (1996) Responses to ultraviolet-B radiation (280−350 nm) of pea (Pisum sativum) lines differing in leaf surface wax. Physiol Plant., 98, 852−860.

78. Grossmann K. and Hansen H. (2001) Ethylene-triggered abscisic acid: a principle in plant growth regulation. Physiol Plant., 113, 9−14.

79. Ha H.L., Sirisoma N., Kuppusamy P., Zweier J.L., Woster P.M. and Casero R.A. (1998) The natural polyamine spermine functions directly as a free radical scavenger. Proc. Natl Acad. Sci. USA, 95, 1 114 011 145.

80. Hada M. (1999) Photoregulation of DNA photolyase in broom Sorghum seedlings. Photochem. Photobiol., 69, 681−685.

81. Hada M., Hino K. and Takeuchi Yu. (2001) Development of UV defense mechanisms during growth of spinach seedlings. Plant Cell Physiol, 42, 784−787.

82. Hahlbrock K. and Griesbach H. (1979) Enzymic controls in the biosynthesis of lignin and flavonoids. Annu. Rev. Plant Physiol, 30, 105−130.

83. Hahlbrock K. and Scheeld D. (1989) Physiology and molecular biology of phenilpropanoid metabolism. Annu. Rev. Plant Physiol Plant Mol. Biol, 40, 347−369.

84. Hanower P., Brzozowska J. and Niamien Ngoran M. (1977) Absorption des acides amines par les lutoTdes du latex d’Hevea brasiliensis. Physiol Plant., 39, 299−304.

85. Hansava Y., Takahashi S., Michael A., Burtin D., Long D., Pineiro M., Coupland G. and Komeda Y. (2000) ACAULIS5, an Arabidopsis gene required for stem elongation, encodes a spermine synthase. EMBO J., 16, 4248−4256.

86. Hansen H. and Grossmann K. (2000) Auxin-induced ethylene triggers abscisic acid biosynthesis and grows inhibition. Plant Physiol., 124, 1437−1448.

87. Harkess R. and Kushad L. (1992) Floral morphogenesis in Rudbeckia hirta in relation to polyamines concentration. Physiol Plant., 86, 575−582.

88. Harter K., Frohnmeyer H., Kircher S., Kunkel T., Muhlbauer S. and Schafer E. (1994) Light induced rapid changes of the phosporylationpattern in the cytosol of evacuolated parsley protoplasts. Proc. Natl Acad. Sci. USA, 91, 5038−5042.

89. Henkov L., Strid A., Berglund T., Ridstrom J. and Ohlsson A. (1996) Alteration of gene expression in Pisum sativum tissue cultures caused by free radical-generating agent 2,2'-azobis (2-amidinopropane) dihidrochloride. Physiol Plant., 96, 6−12.

90. Hidema J. and Kumagai T. (1998) UVB-induced cyclobutyl pyrimidine dimer and photorepair with progress of growth and leaf age in rice. J. Photochem. Photobiol., 43, 121−127.

91. Hoffman P., Batschauer A. and Hays J. (1996) PHH1, a novel gene from Arabidopsis thaliana that encodes a protein similar to plant blue-light photoreceptors and microbial photolyases. Mol. Gen. Genet., 253, 259 265.

92. Huang X.L., Li X.J. and Huang L.Z. (2001) The effect of AOA on ethylene and polyamine metabolism during early phases of somatic embryogenesis in Medicago sativa. Physiol Plant., 113, 424−429.

93. Hummel I., Couee I., Amrani E., Martin-Tanguy J. and Hennion F. (2002) Involvement of polyamines in root development at low temperature in the subantarctic cruciferous species Pringlea antiscorbutica. J. Exp. Bot., 53, 1463−1473.

94. Jansen M. (2002) Ultraviolet-B radiation effects on plants: induction of morphogenetic response. Physiol Plant., 116, 423−429.

95. Jansen M.A.C., Gaba V. and Greenberg B.M. (1998) Higher plants and UV-B radiation: balancing damage, repair and acclimation. Trends Plant Sci., 3,131−135.

96. Jenkins J. (1997) UV and blue light signal transduction an Arabidopsis thaliana. Plant Cell Environ., 20, 773−778.

97. Jordan A. (1996) The effect of ultraviolet-B radiation on plants: a molecular perspective. Adv. Bot. Res., 22, 97−162.

98. Kagawa T., Sakai T., Suetsugu N., Oicawa K., Ishiguro S., Kato T., Tabata S., Okado K. and Wada M. (2001). Arabidopsis NPL1: a phototropin homolog controlling the chloroplast high-light avoidance response. Science, 291, 2138−2141.

99. Kalbin J., Ohlsson A., Berglund T., Rydstrom J. and Strid A. (1997) Ultraviolet-B radiation-induced changes in nicotinamide and glutathione metabolism and gene expression in plants. Eur. J. Biochem., 249, 465−472.

100. Karabourniotis G. and Fasseas C. (1996) The dense indumentum with its polyphenol content may replace the protective role of the epidermis in some young xeromorphic leaves. Can. J. Bot., 74, 347−351.

101. Karabourniotis G., Kofidis G., Fasseas C., Drossopoulos I. and Liakoura V. (1998) Polyphenol deposition on the cell walls of some nonglandular leaf hairs during their development. Am. J. Bot., 5, 10 071 012.

102. Karabourniotis G., Kypaissi A. and Mantas Y. (1993) Leaf hears of Olea europaea L. protect underlying tissues against ultraviolet-B radiation damage. Environ. Exp. Bot., 33, 341−345.

103. Kaur-Sawhney R. and Applewhite P. (1993) Endogenous protein-bound polyamines: correlation with regions of cell division in tobacco leaves, internodes and ovaries. Plant Growth Regul., 12, 223−228.

104. Kaur-Sawhney R. and Galston A. (1993) Spermidine biosynthesis is affected by osmotic stress in oat leaves. Plant Growth Regul., 13, 103 109.

105. Kaur-Sawhney R., Smith L., Flores H. and Galston A. (1982) Relation of polyamine synthesis and titer to ageing and senescence in oat leaves. Plant Physiol., 69, 405−410.

106. Kaur-Sawhney R., Tiburcio A., Altabella T. and Galston A.W. (2003) Polyamines in plants: an overview. J. Cell Mol. Biol, 2, 1−12.

107. Kaur-Sawhney R., Tiburcio A.F. and Galston A.W. (1981) Polyamine oxydase in oat leaves: a cell wall-localized enzyme. Plant Physiol., 68, 494−498.

108. Kaur-Sawhney R., Tiburcio A.F. and Galston A.W. (1988) Spermidine and floral bud differentiation in thin-layer explants of tobacco. Planta, 173, 282−284.

109. Kawashima M., Takeda K. and Kondo N. (2000) Enhancement of oxidative stress tolerance and antioxidative systems in UV-B irradiated cucumber (Cucumber sativus L.) seedlings. Environ. Sci., 13, 539−548.

110. Kim T, Kim S., Lee J. and Chang S. (2002) ABA and polyamines act independently in primary leaves of cold-stressed tomato (Lycopersicon esculentum). Physiol. Plant., 115, 370−376.

111. Kramer G., Wang C. and Conway W. (1989) Correlation of reduced softening and increased polyamine levels during low oxygen storage in Mcintosh apple. J. Am. Soc. Hort. Sci., 114, 942−946.

112. Kramer G.F., Norman H.A., Krizek D. and Mirecki R. (1991) Influence of UV-B radiation on polyamines, lipid peroxidation and membrane lipids of cucumber. Phytochem., 30,2101 2108.

113. Kubis J. (2003) Polyamines and «scavenging system»: influence of exogenous spermidine on catalase and guaicol peroxidase activities, and free polyamine level in barley leaves under water deficit. Acta Physiol. Plant., 25, 337−343.

114. Kuehn G., Rodriguez-Garay B., Bagga S. and Phillips G. (1990) Novel occurrence of uncommon polyamines in higher plants. Plant Physiol, 94, 855−857.

115. Rudulier D. and Goas G. (1975) Etude de l’activite de l’arginine decarboxylase dans les jeunes plantes de Glycine max privees de leurs cotyledons. Pytochem., 14, 1723−1725.

116. Noble M., Spollen W. and Sharp R. (2003) Maintenance of shoot growth endogenous ABA: genetic assessment of the involvement of ethylene suppression. J. Exp. Bot., 55,237−245.

117. Mackerness S.A.H. (2000) Plant responses to ultraviolet-B (UV-B: 280−320 nm) stress: what are the key regulators? Plant Growth Regul., 37, 2739.

118. Mackerness S.A.H., John C.F., Jordan B. and Thomas B. (2001) Early signaling components in ultraviolet-B responses: distinct roles for different reactive oxygen species and nitric oxide. FEBS Lett., 489, 237−242.

119. Malmberg E. (1989) Do polyamines have roles in plant development? Annu. Rev. Plant Physiol. Plant Mol Biol, 40, 235−269.

120. Mamont P., Duchesne M., Grove J. and Bey P. (1978) Anti-proliferative properties of a-DFMO in cultured cells. Biochim. Biophys. Acta, 81, 58−66.

121. Mandronich S. (1992) Implications of recent total atmospheric ozone measurements for biologically active ultraviolet radiation reaching the ears surface. Geophys. Res. Lett., 19, 37−40.

122. Manoharan G. (1992) Growth stimulation by conditioned medium and spermidine in low-density suspension cultures of rice. Plant Cell Physiol., 33,1243−1246.

123. Markham K.R., Tanner G.J., Caasi-Lit M., Whitecross M.I., Nayudu M. and Mitchell K.A. (1998) Possible protective role for 34'-dihydroxyflavones induced by enhanced UV-B in a UV-tolerant rice cultivar. Phytochem., 49, 1913−1919.

124. Martin-Tanguy C. (1985) The occurrence and possible function of hydroxycinnamoil acid amides in plant. Plant Growth Regul., 3, 383 399.

125. Martin-Tanguy C. and Martin C. (1977) Phenolamines associees a l’induction floral et a l’etat reproducteur du Nicotiana tabacum. Xanthin C Physiiologie, 15, 429−443.

126. Martin-Tanguy J. (2001) Metabolism and functions of polyamines in plants: resent development. Plant Growth Regul., 34, 135−148.

127. Martin-Tanguy J. and Carre M. (1993) Polyamines in grapevine microcutting cultivated in-vitro: effects of amines and inhibitors of polyamine biosynthesis on polyamine levels and microcutting growth and development. Plant Growth Regul., 13, 269−280.

128. McDonald R. and Kushad M. (1986) Accumulation of putrescine during chilling injury of fruits. Plant Physiol., 82, 324−326.

129. McLennan A. (1987) The rear of UV light-induced DNA damage in plant cells. Mut. Res., 181, 1−7.

130. Melis A., Nemson J. and Harrison M. (1992) Damage to functional components and partial degradation of photosystem II reaction center proteins upon chloroplast exposure to UV-B radiation. Biochim. Biophys. Acta, 1110, 312−320.

131. Messner B., Boll M. and Berndt J. (1991) L- Phenylalanine ammonia-Iyase in suspension culture cells of spruce {Picea abies): induction by UV-light and fungial elicitor. Plant Cell Tissue Organ Cult., 27, 261−21 A.

132. Minocha R., Aber J., Long S., Magill A. and McDowel W. (2000) Foliar polyamine and inorganic ion content in relation to soil and soil solution chemistry in two fertilized forest stands at the Harvard forest, Massachusets. Plant Soil, 222, 119−137.

133. Minocha R., Walter S., Lawrence G., David M. and Minocha S. (1997) A relationship among foliar chemistry, foliar polyamines, and soil chemistry in red spruce trees growing across the northeastern United States. Plant Soil, 191, 109−122.

134. Mireski R.M. and Teramura A.H. (1984) Effect of ultraviolet-B irradiance on soybean. The dependence of plant sensitivity on the photosynthetic photon flux density during and after leaf expansion. Plant Physiol., 74, 475−480.

135. Murphy T.M. (1983) Membranes as targets of ultraviolet radiation. Physiol. Plant, 58, 381−388.

136. Muzukami H., Tomita K. and Ohashi H. (1989) Anthocyanin accumulation and changes in activities of phenylalanine ammonia-lyase and chalcone synthase in roselle {Hibiscus sabdariffa L.) callus cultures. Plant Cell Rep., 8, 467−470.

137. Nagy F. and Schafer E. (2000) Nuclear and cytosolic events of light-induced phytochrome-regulated signaling in higher plants. EMBO J., 19, 157 163.

138. Nara A. and Takeuchi Y. (2002) Ethylene evolution from tobacco leaves irradiated with UV-B. Plant Res., 115, 247−253.

139. National Aeronautics and Space Administration (1988) Executive summary of the Ozone Trends Panel. NASA, Washington, DC.

140. Olsson L.C., Veit M., Weisenbok G. and Bornman J.F. (1998) Differential flavonoid response to enhanced UV-B radiation in Brassica napus. Phytochem., 49, 1021−1028.

141. Oshima T.A. (1983) Novel polyamines in Thermus thermophilics: isolation identification and chemical synthesis. Methods Enzymol., 94, 401−411.

142. Panagopoulos I., Bornman J. F. and Bjorn L.O. (1989) The effect of UV-B and UV-C radiation on Hibiscus leaves determined by ultraweak luminescence and florescence induction. Physiol. Plant., 86. 461−465.

143. Predieri D., Krizek T., Wang Ch.Y., Mirecki R.M. and Zimmerman R.H. (1993) Influence of UV-B radiation on developmental changes, ethylene, C02 flux and polyamines in cv. Doenne d’Hiveer pear shoots grown in vitro. Physiol Plant., 87, 109−117.

144. Priebe A., Klein F. and Jager H.F. (1978) Role of polyamines in SO2-polluted pea plants. J. Exp. Bot., 29, 1045−1050.

145. Pyle J. (1996) Global ozone depletion: observation and theory. In: Plants and UV-B. Responses to Environmental Change, Lumbsden P.J. (ed.), Cambridge: Cambridge University Press, pp. 3−12.

146. Rajam M., Weinstein L. and Galston A. (1985) Prevention of a plant disease by specific inhibition of fungal polyamine biosynthesis. Proc.

147. Natl Acad. Sci. USA, 82, 6874−6878.

148. Rastogi R. and Davies P.J. (1990) Polyamine metabolism in ripening tomato fruit Plant Physiol, 94, 1449−1455.

149. Richard F.J. (1954) Potassium deficiency in relation to putrescine production. Abstr. Huitieme Congr. Int. Bot. Soc., p. 44.

150. Richards F. and Coleman R. (1952) Occurrence of putrescine in potassium deficit barley. Nature, 170, 460−469.

151. Ries G., Buchholz G., Frohnmeyer H. and Hohn B. (2000) UV-damage-mediated induction of homologous recombination in Arabidopsis is dependent on photosynthetically active radiation. Proc. Natl Acad. Sci. USA, 97, 13 425−13 429.

152. RioV.J. and Yang S. (1982) Autoinhibition of ethylene production in citrus peel discs. Supression of 1-aminocyclopropan-l-carboxylic acid synthesis. Plant Physiol, 69, 687−690.

153. Robberech R., Caldwell M. and Billngs W.D. (1980) Leaf ultraviolet optical properties along a latitudinal gradient in the arctic-alpine life zone. Ecology, 61, 612−619.

154. Robie C. and Minocha S. (1989) Polyamines and somatic embryogenesis in carrot. Plant Sci., 65,45−54.

155. Sato N., Ohtake Y., Kato H., Abe S., Kohno H. and Ohkubo Y. (2003) Effects of polyamines on histone polymereization. Protein Chem., 22, 303−307.

156. Schneider Z.U. and Beggs C.J. (1984) UV-B inhibition of phytochrome-mediated anthocyanin formation in Sinais alba L. cotyledons. Action spectrum and the role of photoreactivation. Plant Physiol., 75, 97−100.

157. Schofer P. (1975) Phytochrome-mediated de novo synthesis of phenylalanine ammonia-lyase in cell suspension cultures of parsley. Plant Physiol, 55, 822−827.

158. Semerdjieva S.I., Sheffield E., Phoenix G.K., Gwynn-Jones D., Callaghan T.V. and Johnson G.N. (2003) Contrasting strategies for UV-B screening in sub-Arctic dwarf shrub. Plant Cell Environ., 26, 957−964.

159. Shafer E. (1992) Blue and UV-B light photoreceptors in parsley cells. Photochem. Photobiol., 55,437−447.

160. Shen H. and Galston A. (1985) Correlation between polyamine ratios and growth patterns in seedling roots. Plant Growth Regul, 3, 353−363.

161. Sisson W. and Caldwell M.M. (1976) Atmospheric ozone depletion: reduction of photosynthesis and growth of a sensitive higher plant exposed to enhanced UV-B radiation. J. Exp. Bot., 28, 691−705.

162. Skaltsa H., Verykokidou E., Harvala C., Karabourniotis G. and Manetas Y. (1994) UV-B protective potential and flavonoid content of leaf hairs of Quercus ilex. Photochem., 37, 987−990.

163. Slocum R.D. (1991) Polyamine biosynthesis in plant. In: Biochemistry and Physiology of Polyamines in Plants, Slocum R.D. and Flores H.E. (eds.), Boca Raton: CRC Press, pp. 23−40.

164. Slocum R.D. and Flores H.E. (1991) Biochemistry and Physiology of Polyamines in Plants. Boca Raton: CRC Press.

165. Slocum R.D. and Galston A.W. (1985) Changes in polyamine biosynthesis associated with post-fertilization growth and development in tobacco ovary tissues. Plant Physiol., 79, 336−343.

166. Slocum R.D., Kaur-Sawhney R. and Galston A.W. (1984) The physiology and biochemistry of polyamines in plants. Arch. Biochem. Biophys., 235,283−303.

167. Smith D.R. (1985) Pole of polyamines in gibberellin-induced internode growth in peas. Plant Physiol., 78, 92−99.

168. Smith T. A. (1985) Polyamines. Annu. Rev. Plant Physiol., 36, 117−143.

169. Smith T.A. (1981) Amines. In: Biochemistry of Plants. Secondary Plant Products. Conn E. (ed.), New-York: Academic Press, pp. 249−265.

170. Solomon K.R., Tang X., Wilson S.R., Zanis P. and Bias A.F. (2003) Changes in tropospheric composition and air quality due to stratospheric ozone depletion. Photochem. Photobiol., 2, 62−67.

171. Solovchenko A. and Merzlyak M. (2003) Optical properties and contribution of cuticle to UV protection in plants: experiments with apple fruit. Photochem. Photobiol., 2, 861−866.

172. Solovchenko A. and Schmitz-Eiberger M. (2003) Significance of skin flavonoids for UV-B protection in apple fruits. J. Exp. Bot., 54, 19 771 984.

173. Spollen W., LeNoble M., Samuels T., Bernstein N. and Sharp R. (2000) Abscisic acid accumulation maintains maize primary root elongation at low water potentials by restricting ethylene production. Plant Physiol., 122,967−976.

174. Strid A. (1993) Increased expression of defense genes in Pisum sativum after exposure to supplementary ultraviolet-B radiation. Plant Cell Physiol., 34, 949−953.

175. Strid A., Chow W. and Anderson J. (1990) Effect of supplementary UV-B radiation on photosynthesis in Pisum sativum. Biochim. Biophys. Acta, 1020, 260−268.

176. Strid A., Chow W.S. and Anderson J.M. (1994) UV damage and protection at the molecular level in plants. Photosynthesis, 39, 475−489.

177. Tabor C.W. and Tabor H. (1984) Polyamines. Annu. Rev. Biochem., 53, 740−790.

178. Takahashi A., Takeda K. and Ohnishi T. (1991) Light-induced anthocyanin reduces the extent of damage to DNA in UV-irradiated Centaurea cyanus cells in culture. Plant Cell Physiol., 32, 541−547.

179. Takahashi S., Nakajima N., Saji H. and Kondo N. (2002) Diurnal change of cucumber CPD photolyase gene (CsPHR) expression and its physiological role in growth under UV-B irradiation. Plant Cell Physiol., 43,342−349.

180. Tassoni A., Antogoni F., Battistini M. L., Sandivo O. and Bagny N. (2000) Characterization of spermidine binding to solubilized plasma membrane proteins from Zuccini hypocotyls. Plant Physiol., 117, 971 977.

181. Taylor R.M., Tobin A.K. and Bray S.M. (1997) DNA damage and repair in plants. In: Plants and UV-B: Response to Environmental Change, Lumsden PJ. (ed.), Cambridge: Cambridge University Press, pp. 5376.

182. Teramura A.H. and Tevini M. (1990) The changing solar ultraviolet climate and the ecological consequences for higher plants. Trands Ecol. Evol., 4, 363−367.

183. Tevini M. and Teramura A. (1989) UV-B effects on terrestrial plants. Potochem. Photobiol., 50,479−487.

184. Tiburcio A.F., Atabella T., Borell A. and Masgrau C. (1997) Polyamine metabolism and its regulation. Physiol. Plant., 100, 664−674.

185. Tiburcio A.F., Kaur-Sawhney R. and Galston A.W. (1985) Correlation between polyamines and pyrrolidine alkaloids in developing tobacco callus. Plant Physiol, 78, 323−326.

186. Tiburcio A.F., Kaur-Sawhney R. and Galston A.W. (1993) Spermidine biosynthesis as affected by osmotic stress in oat leaves. Plant Grows Regul., 13, 103−109.

187. Tkachenko A.G. and Nesterova L.Y. (2003). Polyamines as moderators of gene expression under oxdative stress in Escherichia coli. Biochemistry (Moscow), 68, 850−856.

188. Ulm R., Revenkova E., di Sansebastiano, Bechtold N. and Paszkovski J. (2001) Mitogen-activated protein kinase phosphatase is required for genotoxic stress relief in Arabidopsi. Genes Dev., 15, 799−709.

189. Walters D.R. (2003) Polyamines and plant disease. Phytochem., 64, 97−107.

190. Wang C.Y. and Wellburn A.R. (1990) Role of ethylene under stress conditions. In: Stress Responses in Plants: Adaptation and Acclimation Mechanisms, Alscher R. and Cucumming J. (eds.) New-York: Willey-Liss, pp. 147−173.

191. Watson M., Emory K., Piatak R. and Malmberg R. (1998) Arginine decarboxylase (polyamine synthesis) mutants of Arabidopsis thaliana exhibit altered root growth. Plant J., 13,231−239.

192. Wellburn F.A. and Wellburn A.R. (1996) Variable patterns of antioxidant protection but similar ethylene emission differences in several ozone-sensitive and ozone-tolerant plant selection. Plant Cell Environ., 19, 754−760.

193. Wellman E. (1982) Phenylpropanoid pigment synthesis and growth reduction as adaptive reactions to increased UV-B radiation. In: Biological Effects of UV-B Radiation, Bauer H., Caldwell M.M., Tvin M. and Worrest R.C. (eds.), pp. 145−149.

194. Yang S. and Hoffman N. (1984) Ethylene biosynthesis and its regulation in higher plants. Annu. Rev. Plant Physiol, 35, 155−189.

195. Yang X.X., Choi H.W., Yang S.F. and Li N. (1999) A UV-light activated cinnamic acid isomer regulates plant growth and gravitropism via an ethylene receptor-independent pathway. Aust. J. Plant Physiol., 26, 325−335.

196. Yoda H., Yamaguchi Y. and Sano H. (2003) Induction of hypersensitive cell death by hydrogen peroxide produced through polyamine degradation in tobacco plants. Plant Physiol., 132, 1973−1981.

Заполнить форму текущей работой