Адсорбция и адсорбционные равновесия

Тип работы:
Реферат
Предмет:
Химия


Узнать стоимость

Детальная информация о работе

Выдержка из работы

Адсорбция

Понятие адсорбции. Автоадсорбция. Адсорбент и адсорбат. Абсолютная и Гиббсовская адсорбция. Единицы измерения адсорбции. Зависимость величины адсорбции от концентрации, давления и температуры. Изотерма, изобара, изопикна, изостера адсорбции

Адсорбция — процесс самопроизвольного перераспределения компонентов системы между поверхностным слоем и объемом фазы.

Адсорбция может наблюдаться в многокомпонентных системах и при перераспределении в поверхностный слой уходит тот компонент, который сильнее понижает поверхностное натяжение. В однокомпонентной системе при формировании поверхностного слоя происходит изменение его структуры — уплотнение, которое называется автоадсорбцией.

В общем случае адсорбция может происходить не только благодаря стремлению поверхностной энергии к уменьшению, но и за счет химической реакции компонентов с поверхностью вещества. В этом случае поверхностная энергия может даже увеличиваться на фоне снижения энергии всей системы.

Вещество, на поверхности которого происходит адсорбция, называется адсорбентом, а вещество, которое перераспределяется — адсорбатом.

Обратный процесс перехода вещества с поверхности в объем фазы — десорбция.

В зависимости от агрегатного состояния фаз различают адсорбцию газа на твердых адсорбентах, твердое тело — жидкость, жидкость — жидкость, жидкость — газ. Для количественного описания адсорбции применяют две величины: первая измеряется числом молей или граммами, приходящимися на единицу поверхности или массы адсорбента:

А = m1/m2 — абсолютная адсорбция, А = ni/S.

Величина, определяемая избытком вещества в поверхностном слое, также отнесенным к единице площади поверхности или массы адсорбента, называется Гиббсовской или относительной адсорбцией (Г).

Адсорбция зависит от концентрации компонентов и температуры.

А = f(c,T)— жидкость;

А = f(P,T)— газ

Различают следующие виды зависимостей:

1. Изотерма (рис. 8)

2. Изобара

3. Изостера

А=fT(c)

А=fP(T)

c=fA(T)

A=fT(P)

A=fC(T)

P=fA(T)

Фундаментальное уравнение Гиббса. Определение Гиббсовской адсорбции. Адсорбционное уравнение Гиббса

Считаем Vповерхности раздела = 0.

dU = TdS + dS +

Проинтегрировав, получим: U = TS + S +

Полный дифференциал от этого уравнения:

dU = TdS + SdT + dS + + Sd +.

Подставляя значение dU из (6) в (7) и сократив одинаковые члены правой и левой части, получим:

SdT + Sd + = 0.

Предположим, что T = const:

Разделив правую и левую часть на поверхность S, получим фундаментальное адсорбционное уравнение Гиббса:

;;

.

Определение зависимости поверхностного натяжения от адсорбции одного компонента, при постоянстве химических потенциалов других компонентов.

.

Известно, что, , (где , — равновесный и стандартный химический потенциал компонента i; ln ai— логарифм активности i -го компонента). Тогда уравнение Гиббса будет выглядеть так

Активность связана с концентрацией: с = ?а. Предположим, что ? = 1 (при с 0). Тогда

— для жидкости и газа

Обычно уравнение Гиббса применяют для растворов. Растворителем может быть не только индивидуальное вещество, но и смесь. В разбавленных растворах гиббсовская адсорбция очень мала, а его химический потенциал меняется очень мало с изменением концентрации растворенного вещества, т. е. d?= 0. Поэтому для разбавленного раствора фундаментальное уравнение Гиббса выглядит так:

Из этих уравнений следует, что зная зависимость = f(С) (где С — концентрация растворенного вещества), можно рассчитать изотерму адсорбции, пользуясь адсорбционным уравнением Гиббса. Схема графического расчета показана на рис. 2.2.2. 1: Тангенс угла наклона соответствует значениям производных в этих точках.

Зная эти производные уравнения Гиббса, можно рассчитать значение Г, что позволяет построить зависимость Г = f(С). Уравнение Гиббса показывает, что единица измерения гиббсовской адсорбции не зависит от единицы измерений концентрации, а зависит от размерности величины R. Так как величина R отнесена к молю вещества, а - к единице площади, то Г = [моль/ единица площади]. Если выразить в [Дж/м2], то R нужно подставлять: R = 8,314 Дж/мольК.

Поверхностная активность. Поверхностно-активные и поверхностно-инактивные вещества. Анализ уравнения Гиббса. ПАВ. Эффект Ребиндера. Правило Дюкло-Траубе

В уравнении Гиббса влияние природы вещества на адсорбцию отражается производной. Эта производная определяет и знак гиббсовской адсорбции, и может служить характеристикой вещества при адсорбции. Чтобы исключить влияние концентрации на производную берут ее предельные значения, т. е. при стремлении концентрации к нулю. Эту величину Ребиндер назвал поверхностной активностью.

;

g = [Джм/моль] = [Нм2/моль]; [эрг см/моль] = [Гиббс].

Уравнение показывает, что чем сильнее снижается = f(c) с увеличением концентрации, тем больше поверхностная активность этого вещества.

Физический смысл поверхностной активности состоит в том, что она представляет силу, удерживающую вещество на поверхности и отнесенную к единице гиббсовской адсорбции.

Поверхностную активность можно представить как отрицательный тангенс угла наклона к касательной, проведенной к кривой Г = f(C) в точке пересечения с осью ординат. Поверхностная активность может быть положительной и отрицательной. Значение и знак ее зависят от природы растворенного вещества и растворителя.

1. 2< 1, тогда <0 и Г> 0: g> 0 с увеличением концентрации поверхностное натяжение на границе раздела фаз убывает и вещество поверхностно-активно.

2< 1, то g< 0: Г <0 вещество поверхностно-инактивно.

g = 0, Г = 0 — адсорбции нет, т. е. вещество индифферентно.

Поверхностно-активными веществами являются органические вещества, состоящие из углеводородного радикала и функциональной группы. Неорганические соли являются поверхностно-инактивными веществами. Ребиндер и Щукин в своих работах показали, что развитие микротрещин в твердых телах при деформации может происходить гораздо легче при адсорбции веществ из среды, в которой ведется деформирование: адсорбироваться могут как ионы электролитов, так и молекулы поверхностно-активного вещества (ПАВ), образуя на адсорбирующей поверхности их двумерный газ в результате нелокализованной адсорбции. Молекулы под давлением этого газа проникают в устье трещин и стремятся раздвинуть их, таким образом содействуя внешним силам, т. е. наблюдается адсорбционное понижение твердости твердого тела, что получило название эффекта Ребиндера. Поверхностная активность в гомологическом ряду поверхностно-активных веществ (ПАВ) повышается в среднем в 3,2 раза на каждую группу СН2 (в водных растворах)— правило Дюкло — Траубе.

Адсорбционные равновесия

Адсорбционное равновесие в системе «газ — жидкость». Закон Генри. Мономолекулярная адсорбция в системах «газ — жидкость», «жидкость — жидкость», «газ — твердое». Изотерма адсорбции Ленгмюра. Уравнение Фрейндлиха. Теория полимолекулярной адсорбции БЭТ. Уравнение БЭТ

Предположим, что имеются компоненты-неэлектролиты. Будем считать, что адсорбат образует на поверхности адсорбента мономолекулярный слой. Мономолекулярная адсорбция с точки зрения термодинамики процесса выражается химическим потенциалом в адсорбционном слое и объемной фазе:

;

;

,

где — химический потенциал вещества в адсорбционном слое;

— химический потенциал вещества в объемной фазе.

При равновесии потенциалы равны:.

Преобразуем:

; - адсорбция; аi = c.

,

, где D — коэффициент распределения.

Выражение — константа Генри. Она не зависит от концентрации, определяется при постоянной температуре, A/a=Kг,

А=аКг — закон Генри, т. е. при разбавлении системы коэффициент распределения стремится к постоянному значению, равному константе Генри. Если концентрация в сорбционном слое стремится к нулю, то а с; а = ?с; ? 1. Поэтому на практике закон Генри используют в следующем виде: а=Кгсi. Если одна из фаз — газ, то имеем следующий вид: a = КгРi,

Кг = Кг/RT.

Эти уравнения представляют собой уравнения изотермы адсорбции при малых концентрациях. В соответствии с этими уравнениями можно по другому сформулировать закон Генри: величина адсорбции при малых давлениях газа (малых концентрациях вещества в растворе) прямо пропорциональна давлению (концентрации). Эти зависимости показаны на рисунке 2.3.1.1. При адсорбции на твердых телах область действия закона мала из-за неоднородности поверхности, но даже на однородной поверхности при увеличении концентрации обнаруживается отклонение от закона. При малых концентрациях распределенного вещества отклонения обусловлены в основном соотношением между взаимодействием молекул друг с другом и с поверхностью адсорбента. Если когезионные взаимодействия адсорбата больше, то отклонение от закона отрицательно и ? < 1, и коэффициент распределения увеличивается (кривая 1 на рис. 2.3.1. 1). Если сильнее взаимодействие «адсорбат — адсорбент», то отклонение положительно и D уменьшается (кривая 2 на рис. 2.3.1. 1). При дальнейшем увеличении концентрации происходит уменьшение свободной поверхности, снижается реакционная способность и кривые загибаются к оси абсцисс. Константу Генри получают экстраполяцией коэффициента распределения на нулевую концентрацию. В соответствии с правилом фаз Гиббса в гетерогенных системах равновесные параметры зависят от дисперсности или удельной поверхности. Для адсорбционных систем эта зависимость выражается в уменьшенных концентрациях вещества в объемной фазе с увеличением удельной поверхности адсорбента. Если в такой системе содержание распределяемого вещества постоянно, то

АmSуд + сV = const,

где m — масса адсорбента;

Sуд— удельная поверхность адсорбента;

V — объем фазы, из которой извлекается вещество;

const — постоянное количество вещества в системе.

,

или: разделим второй член на с;

D — коэффициент распределения;

;.

Из соотношения следует, что с увеличением удельной поверхности при постоянной концентрации адсорбата концентрация уменьшается и тем сильнее, чем больше константа Генри и меньше объем фазы.

Теория Ленгмюра позволяет учесть наиболее сильные отклонения от закона Генри, что связано с ограничением адсорбционного объема или поверхности адсорбента. Ограниченность этого параметра приводит к адсорбционному насыщению поверхности адсорбента по мере увеличения концентрации распределяемого вещества. Это положение уточняется следующими утверждениями.

Адсорбция локализована на отдельных адсорбционных центрах, каждый из которых взаимодействует только с одной молекулой адсорбента — образуется мономолекулярный слой.

Адсорбционные центры энергетически эквивалентны — поверхность адсорбента эквипотенциальна.

Адсорбированные молекулы не взаимодействуют друг с другом.

Ленгмюр предположил, что при адсорбции происходит квазихимическая реакция между распределяемым компонентом и адсорбционными центрами поверхности:

,

где А — адсорбционые центры поверхности;

В — распределенное вещество;

АВ — образующийся комплекс на поверхности.

Константа равновесия процесса: ,

где сав = А — величина адсорбции;

са = А0 = А — А,

где А — емкость адсорбционного монослоя или число адсорбционных центров, приходящихся на единицу поверхности или единицу массы адсорбента; А0 — число оставшихся свободных адсорбционных центров, приходящихся на единицу площади или единицу массы адсорбента; св — концентрация распределенного вещества.

Подставляя величину концентрации в уравнение константы, получим выражения

, св = с,

А = АКс — АКс, — для жидкостей;

— для газов.

Эти выражения — уравнения изотермы адсорбции Ленгмюра. К и Кр в уравнении характеризуют энергию взаимодействия адсорбента с адсорбатом. Адсорбционное уравнение часто представляют относительно степени заполнения поверхности, т. е. как отношение А/А:

,

.

Экспериментальные результаты по определению изотермы адсорбции обычно обрабатывают с помощью уравнения, записанного в линейной форме;

, т. е. уравнение типа y = b + ax.

Такая линейная зависимость позволяет графически определить А и К. Зная А, можно определить удельную поверхность адсорбента (поверхность единицы массы адсорбента):

,

где А — предельная адсорбция, выражаемая числом молей адсорбата на единицу массы адсорбента;

NA — число Авогадро;

0 — площадь, занимаемая одной молекулой адсорбата.

1. Если с 0, тогда уравнение примет вид:

А=АКс;; А = Кгс, =Кс,

т.е. при с 0 уравнение Ленгмюра переходит в уравнение Генри.

2. Если с, тогда А = А , А/А = 1. Это случай предельной адсорбции.

3. Пусть адсорбция идет из смеси компонентов, в этом случае уравнение Ленгмюра записывается следующим образом:

.

Все рассмотренные выше уравнения справедливы для мономолекулярной адсорбции на адсорбенте с энергетически эквивалентными адсорбционными центрами. Однако реальные поверхности этим свойством не обладают. Приближенной к реальности является возможность распределения адсорбционных центров по энергии. Приняв линейное распределение, Темкин использовал формулу уравнения Ленгмюра и получил уравнение для средних степеней заполнения адсорбента.

,

где ? — константа, характеризующая линейное распределение;

К0 — константа уравнения Ленгмюра, отвечающая максимальной теплоте адсорбции.

Из уравнения следует, что увеличение парциального давления (из-за увеличения концентрации) одного компонента подавляет адсорбцию другого и тем сильнее, чем больше его адсорбционная константа равновесия. Уравнение часто называют логарифмической изотермой адсорбции. Если принять экспоненциальное распределение центров по поверхности, то в области средних заполнений получается ранее найденное эмпирическим путем уравнение Фрейндлиха:

.

Прологарифмировав, получим ,

где K, n — постоянные.

Использование уравнения Фрейндлиха в логарифмической форме позволяет определить константу уравнения.

Уравнение Ленгмюра можно использовать только при адсорбции в мономолекулярном слое. Это условие выполняется при хемосорбции, физической адсорбции газов при меньшем давлении и температуре выше критической. Однако в большинстве случаев мономолекулярный адсорбционный слой не компенсирует полностью избыточную поверхностную энергию и поэтому остается возможность влияния поверхностных сил на второй и т. д. адсорбционные слои. Это реализуется в том случае, когда газы и пары адсорбируются при температуре ниже критической, т. е. образуются полимолекулярные слои на поверхности адсорбента, что можно представить как вынужденную конденсацию (рис. 2.3.1.2 и 2.3.1. 3).

В результате этих представлений была выведена следующая формула:

— уравнение полимолекулярной адсорбции БЭТ,

где;

KL = aжп — константа конденсации пара;

аж — активность вещества в жидкости;

ап — активность вещества в состоянии насыщенного пара;

ап = Рs.

Физический смысл С: характеризует разность энергии Гиббса в процессах чистой адсорбции и конденсации. Это уравнение получило название БЭТ (Бранауэр-Эммет- Теллер).

При р/рs< <1, уравнение БЭТ превращается в уравнение Легмюра, которое при дальнейшем уменьшении давления (Р 0) переходит в закон Генри:

.

При обработке экспериментальных данных уравнение БЭТ используют в линейной форме (рис. 2.3.1. 4):

; ,

таким образом графически находят обе константы уравнения, А и С.

ПоказатьСвернуть
Заполнить форму текущей работой