Аминокислоты

Тип работы:
Реферат
Предмет:
Химия


Узнать стоимость

Детальная информация о работе

Выдержка из работы

Аминокислоты

Любое соединение, которое содержит одновременно карбоксильную и аминогруппу, является аминокислотой. Однако, чаще этот термин применяется для обозначения карбоновых кислот, аминогруппа которых находится в -положении к карбоксильной группе.

Аминокислоты, как правило, входят в состав полимеров — белков. В природе встречается свыше 70 аминокислот, но только 20 играют важную роль в живых организмах. Незаменимыми называются аминокислоты, которые не могут быть синтезированы организмом из веществ, поступающих с пищей, в количествах, достаточных для того, чтобы удовлетворить физиологические потребности организма. Незаменимые аминокислоты приводятся в табл. 1. Для больных фенилкетонурией незаменимой аминокислотой является также тирозин (см. табл. 1).

Таблица 1

Незаменимые аминокислоты R-CHNH2COOH

Название (сокращение)

R

изолейцин (ile, ileu)

CH3CH2CH (CH)3-

лейцин (leu)

(CH3)2CHCH2-

лизин (lys)

NH2CH2CH2CH2CH2-

метионин (met)

CH3SCH2CH2-

фенилаланин (phe)

C6H5CH2-

треонин (thr)

CH3CH (OH) —

триптофан (try)

валин (val)

(CH3)2CH-

тирозин (tyr)

Аминокислоты называют обычно как замещенные соответствующих карбоновых кислот, обозначая положение аминогруппы буквами греческого алфавита. Для простейших аминокислот обычно применяются тривиальные названия (глицин, аланин, изолейцин и т. д.). Изомерия аминокислот связана с расположением функциональных групп и со строением углеводородного скелета. Молекула аминокислоты моет содержать одну или несколько карбоксильных групп и в соответствии с этим аминокислоты различаются по основности. Также в молекуле аминокислоты может находиться разное количество аминогрупп.

СПОСОБЫ ПОЛУЧЕНИЯ АМИНОКИСЛОТ

1. Гидролизом белков можно получить около 25 аминокислот, но полученную смесь трудно разделить. Обычно одна или две кислоты получаются в значительно больших количествах, чем остальные, и эти кислоты удается выделить довольно легко — с помощью ионообменных смол.

2. Из галогензамещенных кислот. Один из наиболее распространенных методов синтеза -аминокислот заключается в аммонолизе -галогензамещенной кислоты, которую обычно получают по реакции Геля-Фольгарда-Зелинского:

Этот метод можно модифицировать, получая -бромзамещенную кислоту через малоновый эфир:

Ввести аминогруппу в эфир -галогензамещенной кислоты можно с помощью фталимида калия (синтез Габриэля):

3. Из карбонильных соединений (синтез Штреккера). Синтез -аминокислот по Штреккеру состоит в реакции карбонильного соединения со смесью хлорида аммония и цианистого натрия (это усовершенствование метода предложено Н. Д. Зелинским и Г. Л. Стадниковым).

Реакции присоединения — отщепления с участием аммиака и карбонильного соединения дают имин, который реагирует с цианистым водородом, образуя -аминонитрил. В результате его гидролиза образуется -аминокислота.

Химические свойства аминокислот

Все -аминокислоты, кроме глицина, содержат хиральный -углеродный атом и могут встречаться в виде энантиомеров:

Было доказано, что почти все природные -аминокислоты обладают одной и той же относительной конфигурацией при -углеродном атоме. -Углеродному атому (-)-серина была условно приписана L-конфигурация, а -углеродному атому (+)-серина — D-конфигурация. При этом, если проекция -аминокислоты по Фишеру написана так, что карбоксильная группа расположена сверху, а R — внизу, у L-аминокислоты аминогруппа будет находиться слева, а у D-аминокислоты — справа. Схема Фишера для определения конфигурации аминокислоты применима ко всем -аминокислотам, обладающим хиральным -углеродным атомом.

Из рисунка видно, что L-аминокислота может быть правовращающей (+) или левовращающей (-) в зависимости от природы радикала. Подавляющее большинство -аминокислот, встречающихся в природе, относится к L-ряду. Их энантиоморфы, т. е. D-аминокислоты, синтезируются только микроорганизмами и называются «неприродными» аминокислотами.

Согласно номенклатуре (R, S), большинство «природных» или L-аминокислот имеет S-конфигурацию.

L-Изолейцин и L-треонин, содержащие по два хиральных центра в молекуле, могут быть любыми членами пары диастереомеров в зависимости от конфигурации при -углеродном атоме. Ниже приводятся правильные абсолютные конфигурации этих аминокислот.

КИСЛОТНО-ОСНОВНЫЕ СВОЙСТВА АМИНОКИСЛОТ

Аминокислоты — амфотерные вещества, которые могут существовать в виде катионов или анионов. Это свойство объясняется наличием как кислотной (-СООН), так и основной (-NH2) группы в одной и той же молекуле. В очень кислых растворах NH2-группа кислоты протонируется и кислота становится катионом. В сильнощелочных растворах карбоксильная группа аминокислоты депротонируется и кислота превращается в анион.

В твердом состоянии аминокислоты существуют в виде цвиттер-ионов (биполярных ионов, внутренних солей). В цвиттер-ионах протон переносится от карбоксильной группы к аминогруппе:

Если поместить аминокислоту в среду, обладающую проводимостью, и опустить туда пару электродов, то в кислых растворах аминокислота будет мигрировать к катоду, а в щелочных растворах — к аноду. При некотором значении рН, характерном для данной аминокислоты, она не будет передвигаться ни к аноду, ни к катоду, так как каждая молекула находится в виде цвиттер-иона (несет и положительный, и отрицательный заряд). Это значение рН называется изоэлектрической точкой (pI) данной аминокислоты.

РЕАКЦИИ АМИНОКИСЛОТ

Большинство реакций, в которые аминокислоты вступают в лабораторных условиях (in vitro), свойственны всем аминам или карбоновым кислотам.

1. образование амидов по карбоксильной группе. При реакции карбонильной группы аминокислоты с аминогруппой амина параллельно протекает реакция поликонденсации аминокислоты, приводящей к образованию амидов. Чтобы предотвратить полимеризацию, аминогруппу кислоты блокируют с тем, чтобы в реакцию вступала только аминогруппа амина. С этой целью используют карбобензоксихлорид (карбобензилоксихлорид, бензилхлорформиат), трет-бутоксикарбоксазид и др. Для реакции с амином карбоксильную группу активируют, воздействуя на нее этилхлорформиатом. Защитную группу затем удаляют путем каталитического гидрогенолиза или действием холодного раствора бромистого водорода в уксусной кислоте.

2. образование амидов по аминогруппе. При ацилировании аминогруппы -аминокислоты образуется амид.

Реакция лучше идет в основной среде, так как при этом обеспечивается высокая концентрация свободного амина.

3. образование сложных эфиров. Карбоксильная группа аминокислоты легко этерифицируется обычными методами. Например, метиловые эфиры получают, пропуская сухой газообразный хлористый водород через раствор аминокислоты в метаноле:

Аминокислоты способны к поликонденсации, в результате которой образуется полиамид. Полиамиды, состоящие из -аминокислот, называются пептидами или полипептидами. Амидная связь в таких полимерах называется пептидной связью. Полипептиды с молекулярной массой не меньше 5000 называют белками. В состав белков входит около 25 различных аминокислот. При гидролизе данного белка могут образовываться все эти аминокислоты или некоторые из них в определенных пропорциях, характерных для отдельного белка.

Уникальная последовательность аминокислотных остатков в цепи, присущая данному белку, называется первичной структурой белка. Особенности скручивания цепей белковых молекул (взаимное расположение фрагментов в пространстве) называются вторичной структурой белков. Полипептидные цепи белков могут соединяться между собой с образованием амидных, дисульфидных, водородных и иных связей за счет боковых цепей аминокислот. В результате этого происходит закручивание спирали в клубок. Эта особенность строения называется третичной структурой белка. Для проявления биологической активности некоторые белки должны сначала образовать макрокомплекс (олигопротеин), состоящий из нескольких полноценных белковых субъединиц. Четвертичная структура определяет степень ассоциации таких мономеров в биологически активном материале.

Белки делятся на две большие группы — фибриллярные (отношение длины молекулы к ширине больше 10) и глобулярные (отношение меньше 10). К фибриллярным белкам относится коллаген, наиболее распространенный белок позвоночных; на его долю приходится почти 50% сухого веса хрящей и около 30% твердого вещества кости. В большинстве регуляторных систем растений и животных катализ осуществляется глобулярными белками, которые носят название ферментов.

ПоказатьСвернуть
Заполнить форму текущей работой