Автоматизация известково-обжиговой печи

Тип работы:
Курсовая
Предмет:
Производство и технологии


Узнать стоимость

Детальная информация о работе

Выдержка из работы

СОДЕРЖАНИЕ

Введение

Описание конструкции конкретного объекта автоматизации и

технологического процесса

ППР — Обжиговая печь

Качество известняка

Остаточный СО2

Реакционная способность

Объём воздуха

Загрузка известняка в весовые дозаторы

Газ

Топливо

Зажигательная горелка

Нагревательная горелка

Эксплуатация печи

Известковая печь как объект управления

Построение функциональной схемы автоматизации и выбор технических

средств.

Построение принципиальной схемы контура контроля

Техника безопасности и охрана труда

Расчётный лист

Вывод

Список литературы

Введение

Проектирование автоматизированных систем управления технологическими процессами требует глубоких знаний и практического усвоения методов синтеза автоматических систем управления. Задачи синтеза АСУ решаются на основании динамических свойств объектов управления и требований, предъявляемых к системам.

Развитие современного металлургического производства сопровождается интенсификацией технологических и производственных процессов. Создание крупных металлургических агрегатов и их комплексов позволяет более эффективно использовать сырье, топливо, капиталовложения. В то же время осуществлять управление металлургическими процессами в больших и сложных технологических объектах без использования новейших методов и средств управления — неэффективно или вообще невозможно.

Эффективным средством управления технологическими объектами являются системы централизованного управления, использующие вычислительную и управляющую технику. Такие системы управления получили наименование автоматизированных систем управления технологическими процессами. АСУ ТП включает в себя большую область систем управления технологическими процессами с разной степенью освобождения человека от функций контроля и управления.

АСУ ТП представляют собой качественно новую ступень развития средств и методов управления технологическими объектами, так как в них используются технологические и технико-экономические параметры и критерии, а не только технические, как это имело место ранее. В АСУ ТП воплощены достижения локальной автоматики, систем централизованного контроля, электронной и вычислительной техники. Кроме того, АСУ ТП производит общую централизованную обработку первичной информации в темпе протекания технологического процесса, после чего информация используется не только для управления этим процессом, но и преобразуется в форму, пригодную для использования на вышестоящих уровнях управления для решения оперативных задач.

Так как АСУ ТП выполняет и экономико-информационные функции, то она приобретает огромное значение в управлении агрегатами и процессами.

1. Описание конструкции конкретного объекта автоматизации и

технологического процесса.

Известь — один из ключевых элементов в жизни. Этот естественный материал вовлечен в производство большинства современных изделий. Производство стали, золота, серебра, меди и пластмасс, а также многих химических изделий и пищевых продуктов. Наиболее важные области применения извести и доломита извести:

­ Металлургия

­ Цветные металлы

­ Строительство

­ Химическая промышленность

­ Пищевая промышленность

­ Сельское хозяйство

­ Агрономия

­ Медицина

­ Обработка сточных вод.

По всему миру производится больше чем 120 миллионов тонн в год извести и доломита извести. Черная металлургия — первичный потребитель с ежегодным спросом приблизительно 40 миллионов тонн.

Высококачественный известняк содержит от 97 до 99% СаСO3. Требует приблизительно 1. 75 тонны известняка, чтобы произвести одну тонну известа. Высококачественный доломит содержит 40 — 43% МgСО3 и 57 — 60% СаСО3. Требует приблизительно 2 тонны доломитного известняка, чтобы произвести одну тонну доломитной извести.

Обжиг известняка и доломита — простой химический процесс. Нагрев карбоната и его разложение происходит согласно соответствующего уравнения.

СаС03 + приблизительно 3180 кДж (760 килокалорий) = СаО + СО2,

3) 2 + приблизительно 3050 кДж (725 килокалорий) — СаО (МgО) + 2 СО2,

Температура разложения зависит от парциального давления углеродистого диоксида в атмосфере процесса. В атмосфере газа сгорания, нормального давления и 25 % СО2, разложение известняка начинается при 810 °C, в атмосфере 100% С02, начальная температура разложения была бы 900 °C. Доломит разлагается в двух стадиях, начинающихся приблизительно при 550 °C для МgСО3 и приблизительно 810 °C для СаСО3

Чтобы полностью обжигать известняк и не иметь ядро, теплота, через поверхности известняка должна проникнуть к ядру. Температура 900 °C должна быть достигнута в ядре по крайней мере в течение короткого периода времени, так как атмосфера внутри материала — чистый С02. Каменная поверхность должна быть нагрета больше чем нз 900 °C, чтобы поддержать требуемый температурный градиент и преодолеть эффект изолирования сожженного материала на поверхности известняка. При получении мягко-обожженной извести поверхностная температура не должна превысить 1100 1150°С, иначе произойдет рекристаллизация СаО и как следствие — более низкая реакционная способность продукта и изменения свойств обожженной извести.

Некоторая выдержка или время выдержки требуются, чтобы передать теплоту от газов сгорания до поверхности известняка и затем от поверхности до ядра известняка. Большие камни требуют более длительного времени обжига. Обжиг в более высоких температурах уменьшает необходимое время выдержки. Однако слишком высокие температуры неблагоприятно затронут реакционную способность изделия. Отношение между температурой горения и временем выдержки, требуемого для различного фракционного состава показывается далее.

Фракция Температура Обжига Приблизительное время

[Мм] [°С] [часы]

50 1200 0. 7

1000 2. 1

100 1200 2. 9

1000 8. 3

Оборудование для производства извести

Используются два типа обжиговых печей, чтобы обжечь известняк и доломит в современной промышленности:

Ротационные (вращающиеся) обжиговые печи

Вертикальные или шахтные печи.

Ротационные обжиговые печи с подогревателем, обычно перерабатывают известняк фракции 6−50 мм. Тепловой баланс этого типа обжиговых печей характеризован довольно высокими потерями с отходящими газами и через горловину обжиговой печи. Потери с отходящими газами находятся в диапазоне от 20 до 25%, потери через кожух обжиговой печи от 15 до 20% необходимого тепла. Только приблизительно 60% топливной энергии, подаваемой в обжиговые печи с подогревателем, используются для процесса обжига непосредственно.

Для всех типов вертикальных одношахтных печей имеет неустойчивость между теплотой, удалённой от зоны обжига и теплоты, требуемой в зоне прогрева. Даже с идеальным процессом обжига (с избытком воздуха 1. 0) отходящий газ с температурой 100 °C может быть только с известняком, содержащим меньше чем 88% СаСОз. Однако, известь, произведенная из такого известняка, имеет ограниченную область применения. В известняках, на практике, намного более высокое содержание карбоната, более высокая температура отходящего газа при производстве, которая является последствием избытка теплоты в зоне прогрева. Как же может избыточная теплота, в зоне обжига обжиговой печи использоваться, чтобы минимизировать потребление теплоты и как современные типы обжиговой печи соответствуют этому аспекту. Совершенное решение этой проблеме — Прямоточно-Противоточная Регенеративная Обжиговая печь Извести (ППР — ОБЖИГОВАЯ ПЕЧЬ),

1.1 ППР — ОБЖИГОВАЯ ПЕЧЬ

Существуют два главных типа вертикальных шахтных печей. Одна шахта противостоит потоку, нагревающему обжиговую печь и шахта с параллельными потоками, нагревающими обжиговую печь. Стандарт ППР — ОБЖИГОВАЯ ПЕЧЬ — обжиговая печь с двумя шахтами чередуя горящее и не горящее действие шахты. Есть две ключевых характеристики ППР — ПЕЧИ:

1) параллельный поток горячих газов и камня в зоне обжига;

2) регенеративный прогрев всего воздуха для горения в процессе.

Обжиговая ППР — печь идеально подходит для производства мягко-обожженной, высоко реактивной извести и доломит извести из-за условий, созданных параллельным потоком камня и газов сгорания в «горящей шахте». Дополнительно, регенеративный процесс обеспечивает самое низкое потребление тепла всех современных обжиговых печей.

Поскольку количество охлаждения воздуха — не достаточно для полного сгорания топлива, дополнительный воздух, должен быть подан через боковые горелки. Как в этом типе обжиговой печи топливо подаётся в нижней части зоны обжига (где материал уже обожжен) температура в этой области значительно выше, чем требуется для производства высоко-реактивной извести.

В ППР обжиговых печах топливо подается в верхнюю часть зоны обжига и выхода газов сгорания, параллельно материалу. Поскольку топливо введено в верхний коней зоны обжига, где материал может поглощать большинство теплоты освобождаемой топливом температура в зоне обжига — обычно 950 °C. Из-за этого, параллельное нагревание потока — лучшее решение по производству мягко-обожженной, реактивной извести и доломит извести.

Вторая важная характеристика ППР — ПЕЧИ — регенеративный подогрев воздуха для горения. В обжиговых печах со встречным потоками, воздух для горения — подогревается в охлаждающейся зоне в обожженной извести. Однако прогрев ограничен энтальпией извести. Во встречном процессе нагревания потока есть излишек теплосодержания годного к употреблению, содержимого в отходящем газе, который не восстановлен до истощения. Некоторые отдельные проекты шахтной печи, поэтому включили рекуператоры, чтобы возвратить это отработанное тепло, но такие теплообменники восприимчивы к разрушениям, вызванными пылью, содержащейся вгорячих отходящих газах.

Регенеративный процесс требует двух связанных шахт. Каждая шахта подчинена двум различным режимам работы, «горения» и «не горения». Одна шахта работает на «горение» и одновременно, вторая шахта работает в противотоке. Каждая шахта проводит равное количество времени в режимах работы «не горения» и «горения».

В «горящем способе», шахта характеризована параллельным потоком газов сгорания и сырого камня, принимая во внимание, что, в «не горящем» способе шахта характеризована противоточным потоком сырого камня и отходящих газов.

Регенеративный прогрев воздуха для горения делает тепловую эффективность обжиговой печи фактически независимой от фактора избытка воздуха для горения. Это значительно упрощает регулирование правильной длины пламени, чтобы произвести желательное качество мягко-обожженной извести. Большее количество избытка воздуха — более короткое пламя, и меньшее количество избытка воздуха — более длинное пламя. Длина пламени — один из ключевых факторов, чтобы управлять реакционной способностью негашеной извести. Вообще короткий факел и более горячий огонь уменьшает реакционную способность обожженного изделияю.

Две шахты, обозначили 1 и 2, содержат материал, который будет обожжен. Шахты поочередно или одновременно наполняют известняком в зависимости от вместимости обжиговой печи. Известь выгружается непрерывно из обеих шахт. Топливо подаётся только в одну из двух шахт. Например шахта № 1 горящая шахта и шахта № 2 не горящая шахта. Топливо подается через газовые трубы, фурмы, которые вертикально простираются до зоны прогрева. Более низкий конец трубы, фурмы, отмечает переход к зоне обжига от зоны прогрева. Топливо введено через эти фурмы и равномерно распределено по всей области шахты.

Воздух для горения подаётся под давлением наверху зоны прогрева выше футеровки. Вся система герметична. Воздух для горения — подогревается камнем в регенераторе (зона прогрева) до смешивания с топливом. Воздушно-топливное пламя находится в прямом контакте с материалом обжига, поскольку это проходит через зону обжига сверху донизу (параллельное нагревание потока).

Дымовые газы через соединительный канал проходят из шахты, работающей в прямотоке, в шахту, работающую в противотоке, путешествуя во встречном потоке к камню. Теплота передаётся от газов камню и футеровке в не горящей шахте. Отходящие газы подогревают футеровку в зоне прогрева и подготавливают шахту к следующему циклу горения в этой шахте.

Смена от «горения» до «не горения называется» «периодом переключения». В течение каждого «периода переключения» взвешенное количество известняка наполняет обжиговую печь. Продукт обжига выгружается из обеих шахт непрерывно во время цикла обжига столами разгрузки в герметичный бункер. Воздух на охлаждение непрерывно подаётся снизу в обе шахты, чтобы уменьшить температуру изделия до выгрузки в бункер извести. Во время переключения, когда обжиговая печь разгерметизирована, изделие выгружается из бункера на вибропитатели и конвейера.

Превосходная тепловая конструкция ППР — ПЕЧИ может быть удовлетворительно доказана посредством баланса теплоты. Сумма эффективной теплоты, то есть теплоты, требуемой для разложения, и тепловых потерь обеспечивает тепловую потребность обжиговой печи. Тепловые потери состоят;

* Потеря через футеровку обжиговой печи равняется приблизительно 170 кДж (40 килокалорий) / кг извести,

* Теплосодержание выгружаемой негашеной извести равняется приблизительно 80 кДж (20 килокалорий) / кг извести при разгрузке температура 100 °C,

* Теплосодержание, содержимое в отходящих газах приблизительно 290 кДж (70 килокалорий) / кг извести при разгрузке температура 100 °C.

Поскольку обжиговая печь не имеет никакого перемещения, как ротационная обжиговая печь, потери через стены может быть сокращенна к минимуму, используя соответствующее свойство теплоизоляционного огнеупора. Дополнительная изоляция, чтобы далее уменьшить стенные потери, была бы слишком дорогостоящая.

Достаточное количество воздуха на охлаждение используется, чтобы уменьшить температуру обожженной извести в охлаждающейся зоне. Нагретый воздух впоследствии используется в процессе, таким образом, улучшающем эффективности обжиговой печи.

Хотя теоретически возможно уменьшить температуру отходящего газа ниже 100 °C, это не желательно из-за уплотнения и проблем коррозии при действии в диапазоне точки росы газов.

Рассмотрение этих критериев проекта для тепловых потерей обжиговой печи при производстве извести с 96% СаО полное тепловое требование — приблизительно 3500 кДж (840 килокалорий) / кг.

ППР — ОБЖИГОВЫЕ ПЕЧИ типично разрабатываются с двумя шахтами прямоугольной или круглой формы. Шахты связаны соединительным каналом в нижней части зоны обжига. Соединительный канал служит как транспортный трубопровод, чтобы позволить горячим газам выходить из «горящей шахты» и входить в «не горящую шахту».

ППР — ПЕЧИ с двумя шахтами используют известняк фракции 40 мм — 120 мм. Когда требуется повышение производительности, используется известняк фракции меньше чем 40 мм, трёх шахтная печь. Маленькая фракция создает большее давление, и увеличивает давление внутри обжиговой печи. Когда используют три шахты, отходящие газы из горящей шахты распределяются в две шахты, таким образом, происходит сокращение газовой скорости и снижение давления приблизительно втрое. Техническое развитие и опыт позволили использовать обжиговых печей с двумя шахтами почти для всех условий и устранили потребность в обжиговых печах с тремя шахтами.

ППР-ПЕЧЬ работает под давлением, поэтому стальной корпус должен быть герметичен. Все открытия наверху обжиговой печи для загрузки известняка и пода шахт для выгрузки извести закрыты гидравлическими задвижками. Узкий диапазон размера камня идеален для любой обжиговой печи, но, из-за разрушительных свойств камня, широко изменяющийся размер по фракции — типичная ситуация в карьере. ППР-ПЕЧЬ может обжигать широкий диапазон по фракции из-за сложной системы загрузки. Их соотношение 4:1. Минимальный каменный размер для стандартного типа ППР-ПЕЧЬ — приблизительно 25 мм с максимальным размером 125 мм. При соответствующем оборудовании загрузки и подачи камня, максимальный размер — 180 мм.

1.2 КАЧЕСТВО ИЗВЕСТНЯКА

Что касается всех типов вертикальных шахтных печей использование твердых, высококачественных, чистых известняков — идеальное условие для безаварийной работы ППР — ПЕЧЕЙ. Однако, вследствие того, что шахты ППР — ПЕЧИ — фактически труба без любых устройств, которые могли затруднять свободный поток известняка и извести, движение материала — медленное и однородное истирание. Это означает, что, и мягкий известняк может быть обожжен в ППР — ПЕЧИ.

Высококачественный известняк и доломит с последовательными химическими свойствами часто не доступны или недостаточны. Изменение содержания карбонатов и примесей может привести к пережогу при производстве в ППР — печи.

1.3 ОСТАТОЧНЫЙ СО2

ППР — ПЕЧЬ позволяет производить известь и доломит известь с остаточными С02 0.5%, в некоторых случаях даже ниже. Сталелитейная промышленность, самый большой потребитель извести и доломит извести, вообще просит об остаточном содержании С02 меньше чем 2%.

1.4 РЕАКЦИОННАЯ СПОСОБНОСТЬ

Параллельный поток материала и газов сгорания в течение процесса обжига — идеальное условие производства высоко реактивной извести и доломит извести. Для специального производства пористого бетона, требуется известь со средней или низкой реакционной способностью. Приспосабливая операционные параметры, отношения избытка воздуха и входа теплоты, средняя негашеная известь может быть произведена в ППР — ПЕЧИ с адекватным качеством сырого камня. Производство твердой негашеной извести, однако, не возможном в этом типе обжиговой печи.

ППР-ПЕЧЬ имеет самую высокую эффективность всех современных обжиговых печей извести. КПД составляет 85%. Типичное потребление тепла находится в диапазоне от 3350 до 3600 кДж (от 800 до 860 килокалорий) на кг в зависимости от химического анализа и размера зерна камня и типа топлива. Срок службы футеровки обжиговой печи; идеальный диапазон — 2: 1, но возможно и большее. От 3 до 4 лет зона переходного канала, от 6 до 8 лет зона горения и подогрева шихты, от 9 до 12 лет, зона охлаждения извести.

Износ футеровки — меньше чем 0.3 кг на тонну произведенной извести. Первые ППР — ПЕЧИ были построены больше чем 35 лет назад и все еще работают. Несмотря на огромное техническое развитие, основной и уникальный принцип ППР — ОБЖИГОВАЯ ПЕЧЬ остаётся неизменным. Фактически тепловая эффективность этого типа обжиговой печи не может быть улучшена.

Наиболее важные факторы, которые делают модернизацию Обжиговой печи, желательной и интересной:

* Проблемы Окружающей среды

* Усовершенствование технологии ППР — печи

* Увеличение срока службы и безопасность производства

* Улучшение качества

Узкий диапазон размера зерна камня желателен в работе шахтной печи. Для использования мелкой фракции в производстве разработали так называемый метод «Система загрузки Бутерброда «для ППР — ПЕЧИ. Последовательная загрузка камня в слоях различного размера уменьшает давление в сравнении с загрузкой смеси из двух каменных фракций, В то же самое время качество продукта обжига улучшено. ППР — ОБЖИГОВЫЕ ПЕЧИ были построены суточной производительностью от 100 до 600 т продукта обжига. Обжиговые печи могут использоваться от 50% до 100% их номинальной мощности.

1.5 Объём воздуха

ОБЪЁМ ВОЗДУХА подразделяется на объём ВОЗДУХА НА ГОРЕНИЕ (иначе называемого первичным или верхним воздухом) и объём ВОЗДУХА НА ОХЛАЖДЕНИЕ (иначе называемого вторичным или нижним воздухом).

Воздух на горение и на охлаждение нагнетается воздуходувками. Регулировка объёма воздуха осуществляется при помощи регулировочных двигателей, Для каждой печи установлены воздуходувки со следующими приводами: 1. Воздуходувки воздуха на горение.

Воздуходувки переменного тока

тип НЯ 52 мощность 9600 м3/с разница давления 400 обороты 1350 об/мин привод асинхронным двигателем с пускателем тип 1АО 315 5- 4; 160 кВт; 380В; 1473 об/мин.

воздуходувка с регулирующим двигателем, постоянного тока

тип НК52

мощность 9600 м/с

разница давления 400

обороты двигателя от 980 до 2550 об/мин

обороты воздуходувки макс. 1350 об/мин.

привод, регулируемый двигателем постоянного тока

тип ЗНК 14 А1; 980 об/мин, (минимум); 2550 об/ мин. (максимум); 160 кВт, 440 В ,

включая охлаждение.

2. Воздуходувки воздуха на охлаждение

Воздуходувки переменного тока тип HR 52мощность 9600 мЗ/с разница давления 400мбар обороты 1350 об/мин привод асинхронным двигателем с пускателем ТШ1А3 153−4; 160 кВт; 380В; 1473 об/мин.

воздуходувка с регулирующим двигателем, постоянного тока

тип НК52 мощность 9600 м/с разница давления 400 мбар обороты двигателя от 980 до 2550 об/мин обороты воздуходувки макс. 1350 об/мин, привод, регулируемый двигателем постоянного тока

тип 8НК. 14 А1; 980 об/мин, (минимум); 2550 об/ мин. (максимум); 160 кВт, 440 В, включая охлаждение.

3. Воздуходувки воздуха на охлаждение стержневых горелок

воздуходувка

тип НИ 2 мощность 1560м/с разница давления 70мбар обороты 2950 об/мин привод асинхронным электродвигателем тип F250 МО2; 2950 об/мин; 55 кВт, 380 В.

4. Резервные воздуходувки для двух шахтных печей воздуха на горение, на охлаждение и на охлаждение стержневых горелок являются общими для обеих печей, разделённых шиберными задвижками.

1.6 Загрузка известняка в весовые дозаторы

Каждая шахта шахтной печи имеет собственную весовую и транспортную трассу, в составе которой имеется следующее оборудование: вибропитатель, весовой дозатор, скиповый подъемник и дозировочный бункер. Загрузка печи начинается со стержневой задвижки под бетонным бункером, в котором хранится известняк соответствующей фракции. Вибропитатель с решеткой отсеивает мелкие осколки, которые по отдельной трассе поступают в бункер нижнего класса. Верхний класс поступает в весовой дозатор, расположенный на 3 весовых датчиках. Датчики представляют собой оборудование для преобразования механического усилия в электрический сигнал соответствующей величины. Датчик оснащен металлическими тензометрами сопротивления. Упругая деформация датчика передается на тензометры, а затем изменение их сопротивления обрабатывается разрешающей аппаратурой. Разрешающая аппаратура предназначена для обработки сигнала датчиков с тензометрами сопротивления и преобразования его в аналоговую и цифровую форму, введение поправки на вес тары и аналогового сопоставления сигнала с 3 заданными значениями.

Затем при помощи гидравлического цилиндра открывается задвижка весового дозатора и заданная партия известняка загружается в емкость скипового подъемника, который находится в своем нижнем концевом положении. В составе скипового подъемника (скипа) имеется несколько узлов, по которым далее, приводится краткое техническое описание и общие указания по эксплуатации, обслуживанию и регламентным работам. Путь скипов спаренный. По всей длине пути имеется съемное проволочное ограждение для защиты от падающих из скипа кусков материала. В составе пути имеются остановочные и концевые выключатели, расположенные в соответствующих точках нижней (загрузочной) и верхней (разгрузочной) станции. В составе пути также имеется датчик натяжения троса. В случае если трос по какой-либо причине провиснет, (скип остановился в нижней части пути, скип перекосило, скип наехал на препятствие) рычаг с противовесом смещается и размыкает выключатели, которые отключают подачу электротока.

На выгрузке известняка из скипа имеется наклонная течка в асимметричную воронку, прямоугольное сечение которой примыкает к кольцеобразному бункеру 1600 мм с гидравлической разгрузочной задвижкой. Над воронкой имеется крышка с лазом для выполнения регламентных работ. Колея пути скипа должна составлять 1940+ 2/-1 мм.

Параметры емкости скипа:

Полезный объем 2,8 мЗ Общий объем 3,5 мЗ Масса емкости в комплекте 1580 кг Полезная нагрузка 4700 кг Технические параметры подъемника:

Максимальное тяговое усилие 72,5 кН

Скорость 0,35 м/сек

Период 1-ой ходки (наверх, разгрузка. вниз) 270 сек.

Период загрузки 90 сек.

Количество ходок (макс.) 10 ходок/час

Обороты барабана 6,9 об/мин

Трос 31,5 мм

Электродвигатель 40 кВт

Уклон пути 75°

Подъемник оснащен аварийным ручным приводом, которым необходимо воспользоваться в случае, если емкость не остановится по сигналу остановочного выключателя (выключатель неисправен), а только по сигналу концевого выключателя на одной из станций. При отключенном главном выключателе, необходимо действовать следующим образом: Снять с предохранителя ножную педаль. Рычаг с маховиком ручного привода сместить в положение «ВКЛ.» и зафиксировать. Вращая маховик сместить емкость скипа в соответствующее положение. Ножную педаль поставить на тормоз и зафиксировать. Фиксировать открытый тормоз строго запрещено. Рычаг с маховиком сместить в положение «ВЫКЛ.» и зафиксировать.

После отъезда емкости скипа дается команда на загрузку и дальнейшую догрузку партия известняка. Весь процесс управляется по программе, заложенной в компьютере. Скорость загрузки бункера регулируется путем регулировки производительности вибропитателя при помощи потенциометров. Недозагрузка бункеров в срок сигнализируется как неисправность. При наличии такой неисправности, необходимо проверить, на какую производительность установлены вибропитатели, а при необходимости увеличить ее. Загрузка обеих шахт происходит одновременно при соблюдении постоянной массы партии загружаемого известняка вне зависимости от производительности печи. От производительности печи зависит лишь интервал загрузки отдельных партий. Если, например, при эксплуатации печи на полную мощность интервал составляет 12 минут, то при эксплуатации на 50% мощности данный интервал составит 24 минуты, однако масса партии известняка останется неизменной. Агрегат привода скипа расположен над нижней станцией на уровне + 8,5 м

1.7 ГАЗ

Технические параметры

Топливо нефтяной природный газ с теплотворной способностью 33,94 МДж/Нм3, образующий с воздухом взрывчатую смесь при концентрации порядка 5 — 15% (по объему).

избыточное давление в газопроводе подачи газа к печам — 0,35МПа Температура газа 20°С

Расход газа

Для покрытия технологического расхода тепла в каждой двухшахтной печи при стабильной эксплуатации и с учетом номинальной производительности печи необходимо: средний расход газа 2. 750 Нм /час для обеих печей 5. 500 НмЗ/час

Для «холодного запуска» каждой печи устанавливается обогревательная горелка со встроенной растопочной («управляющей») горелкой, оснащенная комплектом автоматики для безопасной эксплуатации и программой растопки. Расход каждой горелки составляет:

растопочная горелка

давление газа на подаче 5 -15кПа

расход газа 17 м3/час (макс.)

обогревательная горелка

давление газа на подаче

0,35 МПа расход газа

200 нмэ/час

1.8 ТОПЛИВО

Природный газ с теплотворной способностью 33 940кДж/м. Избыточное давление в трубопроводе — 0,35мРа. Температура газа 20 °C. Для покрытия технологического тепла, для одной двухшахтной печи при номинальной производительности необходимо:

— Средний расход газа до 2750 нм3

— Для двух печей до 5500 нм3

Для «холодного пуска» в печь устанавливается нагревательная горелка совместно с зажигательней горелкой.

1.9 ЗАЖИГАТЕЛЬНАЯ ГОРЕЛКА

Давление — 5 -15 кРа; Расход газа — 17. м/ч

1. 10 НАГРЕВАТЕЛЬНАЯ ГОРЕЛКА

Давление — 0,35 мРа; Расход газа- 20нм3

1. 11 ЭКСПЛУАТАЦИЯ ПЕЧИ

Если при запуске нового времени обжига давление воздуха на горение, давление воздуха на охлаждение и давление в переходном канале отличаются от параметров предыдущего цикла -это указывает на не герметичность клапанов в верхней части печи.

Если в одинаковом режиме работы все параметры давления имеют тенденцию к увеличению, то это указывает на загрязненность каналов.

Другой причиной повышения или падения давления является изменение фракции. Чем больше мелкой фракции или чем больше разница между самой мелкой и самой крупной фракцией, тем выше давление. При появлении разности давления в канале и воздуха, как на охлаждение, так и на горение между шахтами 1 и 2, но не очень значительно, то печь должна работать в течение 30 загрузок без остановок.

В течении этого времени разница в давлении обычно падает. Значит, в зоне переходного канала образовалось налипание, которое теперь уходит.

Если изменений не происходит, то нужно поработать 2−3 цикла без подачи газа, для успокоения печи. При появлении разницы н чначениях давления воздуха на горение и в переходном канале между шахтами и в незначительной степени воздуха на охлаждение, необходимо уменьшить объем подачи газа. Существует опасность образования сводов и сваров. Через 2−4 цикла с меньшим количеством газа можно снова работать в нормальном режиме. Разность в показаниях термопары и ардометра может составлять до 120 °C. При показаниях температуры на ардометре 1150−1200 °C необходимо отработать один цикл без газа. В случае наблюдения тенденции к постоянному увеличению температуры следует уменьшить подачу газа на 2−3 нмЗ/час. Если давление в переходном канале имеет значение 22−25 кПа необходимо отработать один цикл без газа. При уменьшении времени цикла и увеличении производительности возрастает запыленность переходного канала. В зависимости от срока приостановки печи скачивание производят в ручном режиме при необходимости производят досыпание шихты. При увеличении количества нижнего воздуха растет температура отходящих газов. При низкой температуре в переходном канале (850 -900 С) необходимо уменьшить подачу воздуха на горение. Пря дальнейшем падении температуры, необходимо уменьшить количество загружаемого материала. В случае обрушения шихты в шахте, работающей в прямотоке необходимо отсечь подачу топлива. Если процесс обрушения носит частый характер по ходу цикла, следует провести 2−3 цикла без подачи газа. При вводе печи в эксплуатацию добиваются получения извести более низкого качества (88 -90,6% СаО), чтобы знать какое количество ккал/кг СаО необходимо для получения извести с более высокими показателями СаО. При обнаружении спеченных кусков на выходе из печи и на выгрузочных столах продувают шахты 1−3 цикла, отсекают 1/6 или ½ часть заданного количества топлива от 2 до 6 раз в сутки.

1. 12 Известковая печь как объект управления

Производство извести представляет собой непрерывно-циклическое со сложными организационными связями производство, имеющее в своем составе ряд технологических процессов.

Главной задачей управления производством является получение заданного состава извести по СаО, что в основном сводится к расчету необходимого объема газа на горение и объема продувочного воздуха. Эта задача сложна тем, что непосредственная информация о содержании СаО отсутствует. Также необходимо сказать, известковая печь является агрегатом временного действия в отличие от таких агрегатов как доменная печь или агломашина.

В качестве управляющего устройства может выступать либо электронная вычислительная машина, либо регулирующий микроконтроллер. Известковая печь как объект системы управления называются замкнутыми или управления. системами с обратной связью. В них управляющее устройство получает сведения о действительном состоянии Хт объекта, заданиях Хз или входных параметрах и информацию о контролируемых возмущающих воздействиях.

Алгоритм управления может быть построен на принципе компенсации, либо на принципе обратной связи, либо с использованием обоих принципов. В первом случае управляющее устройство, получая результаты измерения контролируемых возмущающих воздействий, рассчитывает и выдает такие управляющие воздействия которые компенсируют влияние возмущения и приводят выходную величину в лучшее соответствие с требованиями к ней. Во втором случае управляющее устройство, анализируя различие между выходной величиной и заданием оказывает такое воздействие на объект, чтобы приблизить к заданному значению.

Принцип обратной связи во многих отношениях проще и эффективнее, чем метод компенсации. Однако использование его при управлении обжигом извести весьма ограничено в связи с невозможностью измерения многих выходных параметров процесса.

Все управляющие воздействия можно разделить на две группы: статические и динамические. В соответствии с этим и управление можно разделить на статическое и динамическое. Статическое управление сводится к нахождению оптимального объема природного газа, продувочного воздуха и фракционного состава известняка, обеспечивающих получение конечных параметров извести как можно ближе к заданным. С этими целями строятся статические модели обжига извести, которые реализуются на ЭВМ и микроконтроллерах. Динамическое управление в отличии от статического предусматривает определение оптимальных значений управляющих воздействий, являющихся функциями времени продувки. Оно реализуется на основе измерений динамических параметров процесса. К динамическим управляющим воздействиям относятся параметры;

1) расход природного газа;

2) расход продувочного воздуха.

Основной задачей для реализации динамического регулирования является непосредственное измерение параметров процесса — температуры и состава извести. Однако недоступность печи для прямых измерений практически исключает это. Что касается определения химического состава извести, то здесь наиболее перспективно использование косвенных параметров, доступных измерению и несущих в себе необходимую информацию.

Также, в задачу управления входит контроль ряда параметров:

Таблица 1.

Контролируемый параметр

Способ выражения физической величины контролируемого параметра (А) в единицах СИ

Заданное значение

Предельные значения

Допуск заданный

Температура в соединительном канале печи, С°

950−1200

750−1350

±200

Давление в соединительном канале печи, кПа

10−30

8−38

±3

Температура извести из шахт № 1 ,№ 2, °С

100

120

±10

Температура отходящих газов извести из шахт № 1,№ 2,С°

120

200

±10

Давление верхнего воздуха (на горение), кПа

25

8−38

±5

Давление нижнего воздуха (на охлаждение), кПа

24

8−30

±5

Давление воздуха на продувку, кПа

50−70

30−90

±5

Расход верхнего воздуха (на горение), м /час

32 000

20 000 -40 000

±2000

Расход нижнего воздуха (на охлаждение), м. «7час

15 000

10 000−22 000

±2000

Температура природного газа на печь, °С

20

-10−40

Расход природного газа на печь, Нм /час

2200

1600−2400

±30

2. Построение функциональной схемы автоматизации и выбор технических средств

­ Система управления обжигом в печах ИОЦ представляет собой комплекс технических средств, обеспечивающих следующие функции;

­ обеспечение работы печи и ее механизмов в точном соответствии с требованиями технологии в автоматическом режиме;

­ предупреждение и диагностирование аварийных ситуаций, что обеспечивает безопасность труда и целостность оборудования цеха;

­ визуальное отображение хода технологического процесса и работы печи на экране компьютера оператора;

­ запись и архивирование данных об основных параметрах технологического процесса в базе данных компьютера.

Автоматизированная система управления технологией производства (в дальнейшем АСУТП) известково-обжигательной печи состоит из трёх уровней.

Первый уровень: комплекс средств, для получения данных о технологическом процессе и его параметрах.

Этот уровень включает в себя датчики, осуществляющие сбор информации о температуре, давлении, расходе, положения механизмов и других параметров техпроцесса.

Второй уровень: программируемый логический контроллер «SIМАТIС» 87−300 фирмы SIЕМЕМ5.

Данный контроллер, получив информацию с первого и с третьего уровней, осуществляет управление технологическим процессом по программе, загруженной в него с помощью программирующего устройства -- программатора. Управление осуществляется путем подачи команд на исполнительные механизмы.

Третий уровень: комплекс средств, для отображения технологического процесса, а также для передачи параметров управления в контроллер.

Этот уровень выполнен на базе современных персональных компьютеров промышленного исполнения фирмы Advantech, оснащенных специальными платами -- коммуникационными процессорами для связи с контроллерами через шину PROFIBUS. По существу эти компьютеры представляют собой собственно рабочее место обжигальщика. Через эти компьютеры осуществляется задание параметров и режимов работы печи, а также осуществляется управление печью в ручном режиме в случае возникновения внештатных ситуаций. Программным обеспечением на этом уровне является система визуализации In Touch7.1 американской фирмы Wonder Ware.

В соответствии с поставленными задачами нам необходимо разработать контуры контроля — основных технологических параметров (табл. 1) и управления подачей топливного газа в печь. Следовательно, можно синтезировать следующие контуры контроля и управления (приложение Б):

1. Контур контроля и регистрации температуры в переходном канале. В нем используются первичный датчик — пирометр радиационного излучения Ardometr М250АЗ, в комплекте с преобразователем сигнала — линеаризатором М5533, самопишущий прибор Zерагех 49 с унифицированным входным сигналом 4−20 mА, сигнал с которого поступает в микроконтроллер.

2. Контур контроля давления продувочного воздуха. В нем используется датчик давления ипргезн 62 с унифицированным входным сигналом 4−20 mА, сигнал с которого поступает в микроконтроллер.

3. Контур контроля и регистрации давления в соединительном канале. Состоит из датчика давления Impress 62 и самопишущего прибора Zераrех 49 с унифицированным входным сигналом 4−20 mА, сигнал с которого поступает в микроконтроллер.

4. Контур контроля расхода воздуха на горение (верхний воздух). Построен на основе скоростного расходомера (группа — гидродинамических трубок) — измерительный зонд М08−023−892−5-НР, в комплекте с преобразователем перепада давления INDIF 51, выходной сигнал 4−20 mА. Сигнал с INDIF 51 поступает в корнеизвлекающий преобразователь INМАТ выходной сигнал 0−20 mА, далее сигнал поступает в микроконтроллер.

5. Контур контроля давления воздуха на горение (верхний воздух). В нём используется первичный датчик давления Impres 62 с унифицированным входным сигналом 4−20 mA, сигнал с которого поступает в микроконтроллер.

6. Контур контроля расхода воздуха на охлаждение (нижний воздух). Построен на основе скоростного расходомера (группа — гидродинамических трубок) — измерительный зонд МОЗ-023−622−5-НР в комплекте с преобразователем перепада давления INDIF51, выходной сигнал 4−20 mА. Сигнал с INDIF51 поступает в корнеизвлекающий преобразователь INМАТ, выходной сигнал 0−20 mА, далее сигнал поступает в микроконтроллер.

7. Контур контроля давления воздуха на охлаждение (нижний воздух). В нём используется первичный датчик давления Impress 62 с унифицированным входным сигналом 4−20 mА, сигнал с которого поступает в микроконтроллер.

8. Контур контроля и регистрации температуры извести из шахты. Используется термометр сопротивления ТСП-Рt100, вторичный нормирующий преобразовательINPAL, с выходным сигналом 4−20 mА, и регистрирующий прибор Zераrех 49 с унифицированным входным сигналом 4−20 mА, сигнал с которого поступает в микроконтроллер.

9. Контур контроля температуры отходящих газов из шахты. Используется термометр сопротивления ТСП-Рt100 и вторичный нормирующий преобразователь INPAL с унифицированным входным сигналом 4−20 mА, сигнал с которого поступает в микроконтроллер.

10. Контур контроля температуры природного газа. Используется термометр сопротивления ТСМ-50M, вторичный нормирующий преобразователь INPAL, с выходным сигналом 4−20 mА, и показывающий (стрелочный) прибор Indicomp 2 с унифицированным входным сигналом 4−20 mА, сигнал с которого поступает в микроконтроллер.

11. Контур контроля и регулирования расхода топлива (природный газ). Состоит из турбинного газового счётчика «Rombach» Т2−150-О1000, механически связанного с преобразователем (частота/ток) WЕ-77/ЕХ-UТ (поз. 11−2), с дискретным выходным сигналом. Сигнал с преобразователя поступает в микроконтроллер, где текущая частота импульсов преобразуется в текущий расход газа, после чего данные передаются на пульт в ЭВМ, откуда они поступают в следующий микроконтроллер, где расход преобразуется в токовый сигнал и поступает на регистрирующий прибор Zерагех 49 с унифицированным входным сигналом 4−20 mА. В том же микроконтроллере генерируется сигнал на открытие или закрытие регулирующего органа. Данный сигнал поступает на пускатель сервопривода АUМА 8А-07. 1, который открывает или закрывает регулирующий орган.

3. Построение принципиальной схемы контура контроля

Принципиальные электрические схемы в проектах автоматизации служат для изображения взаимной электрической связи аппаратов и устройств, действия которых обеспечивают решение задач автоматического контроля, регулирования, сигнализации и управления технологическим процессом. Эти схемы являются важными проектными материалами, которые используются не только в процессе проектирования, но и в процессе наладки и эксплуатации технологической установки.

В качестве рассмотрения выбран контур контроля температуры в соединительном канале печи. Принципиальная электрическая схема контура приведена в графической части проекта.

Данный контур решает одну из основных задач, относящуюся к тепловому режиму работы печи, а именно поддержание оптимальной температуры в рабочем пространстве печи. На работу данного контура имеют прямое влияние такие параметры, как:

— химический состав известняка;

— фракция известняка;

— уровень известняка в печи;

— температура известняка;

В свою очередь, рассматриваемый контур влияет на работу других контуров и на работу всего агрегата в целом.

Поэтому, разработке и анализу режимов работы в различных внештатных ситуациях принципиальной электрической схемы контура контроля температуры в соединительном канале печи следует уделить особое внимание.

В контуре используются следующие технические средства автоматизации:

Радиационный пирометр Ardometer

М — 250 А 3

700−1350°С 0,9−15тУ

Линеаризатор

М-55 332

4−20 мА.

Вторичный одноканальный самописец

Zeparex 49

700 -1350 «С 4 — 20 мА

канал АЦП контроллера

87−300

700 — 1 350°С 4−20мА

Радиационный пирометр Ardometr преобразует параметр температуры в термо ЭДС. Сигнал с пирометра поступает на линеарезатор, который линеаризирует этот сигнал и преобразует его в токовый (4−20мА). Токовый сигнал с выхода линеарезатора последовательно поступает на показывающий прибор Zeparex 49

и на вход канал АЦП контроллера 37−300.

Питание 220 В на приборы подается по линиям М, 12 и заземление РЕ от электросети.

Принципиальная схема приведена в приложении С.

Техника безопасности и охрана труда Общие сведения

Охрана здоровья трудящихся и обеспечение безопасных условий труда являются одной из главных задач Советского государства. В результате проводимых в стране мероприятий по охране труда неуклонно снижается производственный травматизм и профессиональная заболеваемость трудящихся.

Для снижения травматизма важную роль играет укрепление трудовой и производственной дисциплины, строгое выполнение рабочими и служащими правил и норм по технике безопасности, точное соблюдение технологии производства, правильная эксплуатация машин, механизмов и инструментов, бережное отношение к спецодежде и средствам индивидуальной защиты.

Современные предприятия представляют собой сложный комплекс технических систем, нередко с высоким уровнем автоматизации. Осо-бенности технологических процессов и условия безопасности работ разнообразны, в связи с чем на каждом предприятии администрацией совместно с профсоюзной организацией разрабатываются и утверждаются правила внутреннего распорядка и инструкции по обеспечению безопасных условий труда. Отраслевые министерства и ведомства совместно с центральными комитетами профессиональных союзов разрабатывают и утверждают типовые инструкции по охране труда для рабочих основных профессий в данной отрасли.

На работах, связанных с загрязнением одежды, вредными условиями труда, рабочим и служащим выдается бесплатно по установленным нормам специальные одежда и обувь, мыло, различные обезвреживающие средства, а также молоко и лечебно-профилактическое питание.

Рабочие и служащие, занятые на тяжелых работах с вредными или опасными условиями труда, а также связанных с движением транспорта и подъемно-транспортных механизмов, при поступлении на работу проходят предварительный медицинский осмотр для определения пригодности их по состоянию здоровья. По различным отраслям промышленности и по определенным профессиям (электромонтеры, сварщики и др.) установлены сроки периодических медицинских осмотров в целях предупреждения профессиональных заболеваний.

На современных предприятиях не только внутри помещений, где работают станки, машины, требуется внимание, осторожность работающих и строгое соблюдение ими инструкций по безопасности охране труда, но и в равной мере это относится к территории предприятия, обычно насыщенной различными коммуникациями (сжатого воздуха, газов, пара, воды) с внутризаводским транспортом как рельсовым, так и автомобильным.

Для обеспечения безопасных условий на предприятиях утверждена типовая сводная номенклатура мероприятий по охране труда. В соответствии с типовой номенклатурой, обязательной для всех отраслей промышленности, предприятия обязаны проводить мероприятия по предупреждению несчастных случаев, заболеваний на производстве (устройства по защите от вредного действия газов, пыли, различных излучений, вредного шума и вибраций), общему улучшению условий труда (рациональное освещение, устройство надлежащих гардеробов, умывальников, душевых, туалетов, комнат для кормления грудных детей, приема пищи, курения, хранения спецодежды, для отдыха рабочих и т. д.).

Проведение администрацией установленных мероприятий по охране труда контролируется инспекцией по охране труда городских, областных и центральных комитетов профсоюзов, а также общественными инспекторами фабрично-заводских и местных комитетов профсоюза.

После медицинского осмотра поступающие на работу получают до начала работы на предприятии вводный инструктаж. Вводный инструктаж проводится в рабочее время, индивидуально или с группой в виде собеседования. В вводном инструктаже освещаются основные вопросы техники безопасности: правила внутреннего распорядка, поведения на участках с повышенной опасностью, при погрузочно-разгрузочных работах; правила работы на высоте более 5 м и с электроинструментами и механизмами; нормы выдачи и сроков замены спецодежды, рекомендации по пользованию индивидуальными защитными средствами (рукавицы, очки, боты, перчатки); краткая характеристика причин производственного травматизма и меры предохранения от профессиональных заболеваний; оказание первой доврачебной помощи при ожогах, переломах, поражении электрическим током; ответственность за нарушение правил техники безопасности. Проведение вводного инструктажа отмечается в специальном журнале.

Правилам техники безопасности обучают всех рабочих, не окончивших профессионально-технических училищ и других специальных учебных заведений. Обучение начинают с момента поступления на работу. Единая программа обучения рассчитана на 12--18 ч. После окончания обучения проводится проверка знаний комиссией. Результаты проверки знаний заносят в протоколы, на основании которых каждому рабочему выдается удостоверение по технике безопасности.

Некоторые виды работ требуют специального обучения и проверки знаний. К последним относят: работу с пиротехническим инструментом (строительно-монтажные пистолеты и прессы взрывного действия); монтаж соединительных и концевых муфт напряжением выше 1000 В, электро- и газосварку, монтаж аккумуляторов, ртутно-выпрямительных агрегатов, крупных электрических машин и трансформаторов; работу с электрифицированным инструментом.

ЭЛЕКТРОБЕЗОПАСНОСТЬ

Воздействие электрического тока на организм человека зависит от многих факторов: напряжения и силы тока, частоты и продолжительности воздействия тока, состояния кожи (сухая, влажная), некоторых болезней сердца, характера прикосновения (кратковременное -- точечное или плотное), от пола, на котором стоит человек (металлический, бетонный, деревянный). Состояние опьянения сильно понижает сопротивление организма электрическому току.

Поражения электрическим током могут произойти как при высоком, так и при низком напряжениях. Статистика показывает, что больше всего несчастных случаев происходит при напряжениях 380 и 220 В, т. е. в таких установках, где чаще всего работают люди, не всегда имеющие достаточную специальную подготовку.

Постоянный ток оказывает менее сильное воздействие, чем перемен-ный ток той же силы. Принято считать, на основании экспериментальных данных, безопасной для человека силу тока: переменного до 10 мА, постоянного до 50 мА. При воздействии более высоких токов происходят непроизвольные судорожные сокращения мышц; человек не может самостоятельно оторвать руку от токоведущей части и, если ему не будет оказана помощь, происходит паралич дыхания и сердца.

Опасно не только непосредственное прикосновение к токоведущим частям. Часто причиной поражения электрическим током является повреждение изоляции токоприемников. В этом случае металлический корпус токоприемника находится в контакте с оголенными токоведущими частями и, следовательно, прикосновение к металлическому корпусу может стать таким же опасным, как и прикосновение к оголенным токоведущим частям.

К персоналу, обслуживающему электроустановки, предъявляют специальные требования. При приеме на работу по эксплуатации электроустановок поступающий обязательно проходит медицинский осмотр, при котором проверяют его здоровье, отсутствие болезней, увечий и дефектов, при наличии которых работа по эксплуатации электроустановок противопоказана.

В процессе работы проводят повторные медицинские осмотры не реже 1 раза в 2 года. Для некоторых установок, связанных с повышенной вредностью (например, эксплуатация ртутных выпрямителей, работы верхолазов на высоте, высокочастотные установки), повторные медицинские осмотры осуществляют 1 раз в 6--12 мес.

После медицинского осмотра поступающий на работу проходит вводный (общий) инструктаж по технике безопасности и проверку в квалификационной комиссии, присваивающей квалификационную группу соответственно его знаниям правил техники безопасности и опыту работы и выдающей удостоверение на право работы в данной электроустановке.

Установлено пять квалификационных групп.

I группа. В эту группу входят лица, связанные с обслуживанием электроустановок, но не прошедшие проверку знаний правил техники безопасности. Они не имеют электротехнических знаний и отчетливых представлений об опасности поражения электрическим током и мерах предосторожности. Работников этой группы инструктируют при допуске к работам. Работают они под непрерывным наблюдением лиц, имеющих квалификационную группу II и выше.

ПоказатьСвернуть
Заполнить форму текущей работой