Биполярные транзисторы

Тип работы:
Реферат
Предмет:
Коммуникации, связь, цифровые приборы и радиоэлектроника


Узнать стоимость

Детальная информация о работе

Выдержка из работы

Курс: Компьютерная системотехника

Тема: Биполярные транзисторы

1. Биполярные транзисторы

Определение.

Транзистор ППП с 3-мя электродами, служащий для усиления сигналов (в общем случае по мощности) или их переключения.

2. Типы биполярных транзисторов и их диодные схемы замещения

Различают кремниевые (рис. 1) и германиевые транзисторы (рис. 2).

Рис. 1. Рис. 2.

На рис. 1 и 2 показаны условные графические обозначения кремниевых (n-p-n) и германиевых (p-n-p) транзисторов и соответствующие им диодные схемы замещения.

Транзистор состоит из двух противоположно включенных диодов, которые обладают одним общим n — или p — слоем. Электрод связанный с ним называется базой (Б). Дав других электрода называются эмиттером (Э) и коллектором (К). Диодная эквивалентная схема, приведенная рядом с его графическим обозначением, поясняет структуру включения переходов транзистора. Хотя эта схема не характеризует полностью функции транзистoра, но она дает возможность представлять действующие в нем обратные и прямые токи и напряжения.

3. Физические явления в транзисторах

Эмиттерная область транзистора является источником носителей заряда, а область улавливающая эти носители заряда называется коллектром. Область, которая управляет потоком этих носителей, называется базой.

При подключении прямого напряжения между эмиттером и базой происходит инжекция носителей зарядов через открытый (смещенный в прямом направлении) переход Э-Б, т. е. переход их из области эмиттера в область базы.

Таким образом образуется эмиттерный ток (Iэ) через соответсвующий переход (ЭП эмиттерный переход).

Как известно, при «дырочной» проводимости типа «p» основными носителями заряда являются «дырки», а неосновными электроны. Часть «дырок» пришедших в базовую область рекомбинируют в электроны, появляется ток базы (Iб), который очень мал по сравнению стоком эмиттера, так как только малая часть инжектированных «дырок» (носителей заряда) рекомбинирует.

Между коллектором и базой прикладывается обратное напряжение, поэтому говорят что носители заряда из области базы экстрагируются (втягиваются) в коллекторную область и за счет этого образуется ток коллектора (Iк).

Таким образом, на основании приведенных выше рассуждений можно записать следующие простые соотношения между токами эмиттера, базы и коллектора:

Iэ= Iб+Iк (1); Iб< <Iк (Iэ) (2); Iк Iэ (3);

Iк = = Iк / Iэ (0,90,99) <1 (4);

Iк = Iэ + Iкбо (5),

где Iэ управляемый ток, Iкбо неуправляемый (обратный) ток, протекающий через переход Б-К в направлении противоположном прямому току Iк через этот переход.

Iк = = Iк / Iб (6);

Iк = Iб + Iкбо;

Uб Uэ — Uэб (7);

= / 1 — (8);

4. Подача напряжений питания

Обычно переход Э-Б смещен в прямом направлении, а К-Б в обратном. Поэтому источники напряжений питания транзисторов должны быть включены, как показано на рис. 3 и

Рис. 3 Рис. 4

Основная особенность транзисторов состоит в том, что коллекторный ток Iк является кратным базовому току Iб. Их отношение = Iк / Iб называют коэфициентом усиления по току.

5. Схемы включения и статические параметры

Существуют три основные схемы включения транзисторов:

1) ОЭ

2) ОБ

3) ОК

1) Схема с общим эмиттером применяется наиболее часто.

В этой схеме управляющее напряжение прикладывается к участку Б-Э, выходной сигнал снимается с резистора нагрузки, включенного в коллекторную цепь (потенциал эмиттера фиксирован).

Рис. 5. Включение транзистора по схеме с ОЭ (а) и эквивалентная схема (б) для данного случая.

Вольт — амперные характеристики и режимы работы транзистора в данном случае приведены на рис. 5.2.

Входные характеристики приведены на Рис. 6а, выходные на Рис. 6б.

а) б)

Рис. 6. Входные и выходные вольт — амперные характеристики транзистора включенного по схеме с ОЭ.

На семействе выходных характеристик выделяют три области:

1) Область линейного усиления;

2) Область наыщения:

3) Область отсечки.

В соответствии с этим транзистор может работать в трех режимах.

В области линейного усиления, увеличение тока базы приводит к пропорциональному изменению тока коллектора, при этом динамическое сопротивление участка К-Э стремится к

rкэ = vUк / vIк;

В области насыщения, изменение тока коллектора не приводит к существенному изменению напряжения на коллекторе. Динамичнское сопротивление участка К-Э стремится к 0.

В области отсечки Iк = Iкбо 0. Динамическое сопротивление сопротивление участка К-Э стремится к.

Величина Iк сверху ограничена допустимой рассеиваемой мощностью на участке К-Э. Превышение предельного тока Iк max ведет к разрушению транзистора, поэтому необходимо обеспечить схемные средства ограничения Iк. В простейшем случае это резистор в коллекторной (или эмиттерной) цепи фиксирующий ток коллектора на уровне Iк max = Eп / Rк. Но, в этом случае, потенциал коллектора изменяется при изменении тока коллектора (т.е. Uк = f (Iк)). Эта зависимость определяется так называемой нагрузчной прямой, отсекающей на осях координат два отрезка:

1) на оси абсцисс напряжение питания Еп при Iк = 0;

2) на оси ординат Iк max = Eп / Rк.

Пересечение нагрузочной прямой и выходной характеристики при конкретном токе базы дает, так называемую, рабочую точку.

Т.о. транзистор может работать в одном из следующих режимов (для n-p-n):

1) нормальный активный режим: Uбэ> 0, Uкб> 0

2) инверсный активный режим: Uбэ< 0, Uкб< 0

3) режим насыщения: Uбэ> 0, Uкб< 0

4) режим отсечки: Uбэ< 0, Uкб> 0

Нормальный активный режим.

В этом режиме переход Б-Э смещен в прямом направлении, а Б-К в обратном.

При анализе основных схем включения транзисторов (здесь ОЭ, а далее ОБ и ОК) воспользуемся упрощенным (эквивалентным) представлением биполярного транзистора для низких частот, изображенном на рис. 5. б.

Входная цепь представлена динамическим входным сопротивлением rбэ, а в коллекторной цепи использован управляемый источник тока коллектора (Iк = S Uбэ),

где

При этом внутреннее динамическое сопротивление включено параллельно этому источнику тока, как и следует из теории электрических цепей (Теорема Теверена об эквивалентном генераторе). При определении основных характеристик и параметров схемы здесь и далее будем считать, что идеальные источники напряжений питания (Еп) и входного сигнала (Uвх).

Ток коллектора

1) Iк = / 1 — Iб + 1/1 — Iкбо = Iб + (1+) Iкбо Iб,

где: коэфициент передачи по току (т.е. коэфициент передачи тока из эмиттерной цепи в коллекторную) в схеме с ОЭ. Т. к. > >1, то в схеме с ОЭ возможно усиление по току (потому, что Iб< <Iк!).

2) Ток базы закрытого транзистора. При Uбэ = 0 (транзистор закрыт) Iб Iкбо, т. е. из базы вытекает ток, обратному тепловому току перехода К-Б.

3) Входное сопротивление

Тогда ток базы, который также зависит и от Uбэ можно примерно определить так:

Iб = Iк, где = h21 э

4) Коэфициент усиления по напряжению

5) Коэфициент усиления по току

6) Выходное сопротивление

Режим насыщения

В этом режиме оба перехода смещены в прямом направлении.

Внешним проявлением режима насыщения является отсутствие зависимости Iк от Iб. Для схемы с ОЭ существует некоторый «граничный» ток Iбн, при котором достигается насыщение коллекторного тока

Iкн = Iбн

При дальнейшем увеличении тока базы ток коллектора не увеличивается и может быть введен некоторый коэфициент, характеризующий:

1) Степень насыщения

N = Iб / Iбн Iкн = N Iк

2) Входное сопротивление

Rвхн = Rвх / ,

где Rвх входное сопротивление в активной линейной области.

3) Выходное напряжение

Uвых = Uкэн Uбэ

Это так называемое остаточное напряжение на участке К — Э, слабо зависящее от величины коллекторного тока.

4) Выходное сопротивление

Rвых rкэ Rвых / Rк / ,

где Rвых выходное сопротивление в активной линейной области.

Режим отсечки

В этом режиме оба перехода смещены в обратном направлении.

1) Iэ 0

2) Iк Iкбо

3) Iб Iкбо

Границей режима отсечки является обратное напряжение (напряжение отсечки) на переходе Б-Э (Uбэобр), при котором Iэ = 0!

В большинстве цифровых схем Uбэобр такое, при котором Iб уменьшается в 100 200 раз!

2) Схема с общей базой

В этой схеме управляющее напряжение прикладывается к участку Э-Б, а входной сигнал снимается с резистора нагрузки, вкюченного в коллекторную цепь. Потенциал базы при этом фиксирован, а потенциал Э должен быть меньше потенциала Б, если переход Б-Э смещен в прямом направлении.

а) б)

Рис. 7

На рис. 7 показана схема включения транзистора с ОБ и ее эквивалентная схема на низких частотах.

Вольт амперная характеристика и режимы работы

а) б)

Рис. 8 Входные а) и выходные б) характеристики.

Нормальный активный режим.

В этом режиме, как и в схеме с ОЭ, переход Б-Э смещен в прямом направлении, переход К-Б в обратном.

1) Iк = Iэ + Iко (eUкб/Uт 1) = Iэ + Iкбо Iэ

Т. к. < 1, то усиление по току в такой схеме невозможно Iк = Iб.

2)

3) Ki = 1

4) Rвх rбэ / Uвх / Iвх, т. е. в раз меньше чем всхеме с ОЭ!

5)

,

т.е. такое же как и в схеме с ОЭ.

Режим насыщения

в данной схеме возможно только при Uк < Uб, что недостижимо при фиксированной полярности питания. Т. е. режима насыщения нет.

3) Схема с общим коллектором

Это по сути частный случай схемы с ОЭ при Rк = 0! Поэтому, практически все соотношения для токов транзистора и потенциалов на его переходах, характерные для схемы с ОЭ, могут быть применим и в данном случае.

В этой схеме управляющее напряжение приложено к участку Б-Э, выходной сигнал снимается с резистора нагрузки, включенного в эмиттерную цепь. Потенциал коллектора при этом фиксирован!

Причем, в этой схеме, также как и в схеме с ОБ, отсутствует режим насыщения, поскольку потенциал коллектора никогда не может быть ниже потенциала базы!

Параметры схемы в режиме отсечки аналогичны таковым в схеме с ОЭ!

На рис. 8 приведены схема включения и ее эквивалентная схема.

Рис. 8

1)

2)

3) Rвх = rбэ + Rэ, т. е. во много раз больше чем Rвх в схемах с ОЭ и ОБ! (десятки и сотни кОм).

4)

Т. е. такая схема имеет высокий Ki, малое Rвых и большое Rвх!

6. h и Y параметры транзисторов

Транзистор можно рассматривать как четырехполюсник где

Uвх = U1,Iвх = I1, Uвых = U2, Iвых = I2.

h11э = Uбэ / Iбэ Uк = const = Rвх

h12э = Uбэ / Uк Iб = const

коэффициент внутренней ОС (очень малая величина, которой в инженерной практике пренебрегают и принимают = 0)

h21э = Iк / Iб Iб = const =

h22э = Iк / Uк Iб = const

Выходная проводимость

([Сименс] = 1/Ом)

Rвых = 1/ h22э

В настоящее время для практических расчетов h и y параметры практически не используются!

7. Влияние температуры на статистические характеристики транзистора. Динамические параметры

Это параметры, которые совместно с такими же параметрами других компонентов схемы определяют вид АЧХ линейной схемы или характер переходных процессов в ключевых схемах.

Частотные свойства транзистора в активном режиме определяются:

инерционностью процессов распространения подвижных носителей в транзисторной структуре (в основном на базе);

наличием емкостей переходов (в частности барьерной емкостью коллекторного перехода) и конечным значением внутренних сопротивлений;

эффектами накопления и рассеивания зарядов.

Обычно, для упрощения анализов динамических процессов, большую часть источников инерционности процессов в транзисторе сводятся к эквивалентным емкостям (зависящим, в общем случае, от напряжения и частоты). За счет этого получают достаточно простые эквивалентные схемы транзистора на переменном токе, приведенные на рис. 5.6.

Рис. 9. Эквивалентные схемы для активного режима а) и режима отсечки б).

Коэффициент передачи по току может быть представлен характеристикой ФНЧ первого порядка

,

где частота среза.

Во временной области эта зависимость имеет вид:

,

где = 1/ постоянная времени изменения коэффициента передачи по току.

Граничной частотой усиления (или «частотой единичного усиления») называют частоту, при которой модуль коэффициента усиления уменьшается до

В практических в расчетах используется соотношение

гр =

= / (1+) или = (1+) ,

где = ½f, f граничная частота усиления для схемы с ОЭ, которая приводится обычно в справочных данных!

Кроме f в справочных данных приводятся значения и, а также величины емкостей эмиттерного (С*эо) и коллекторного (С*ко) переходов при Uкб=0, Uэб=0, Uкк и Uэк контактная разность потенциалов переходов К-Б и Э-Б.

Особенности переходных процессов в ключевом режиме работы транзистора включенного, например, по схеме с ОЭ заключается в наличии времени рассасывания заряда неосновных носителей, накопленного в базе при протекании тока в отрытом и насыщенном состоянии. Причем, с увеличением Iкн увеличивается р!

Iк (t) = (t) Iб

Iкн = о Iбн Iбн = S Iбо

9. Предельно допустимые параметры

1) Uэбобр электрический (Зенеровский) или тепловой пробой перехода Б-Э

2) Uкбобр

Это max допустимые обратные напряжения на переходах Э-Б и К-Б. Причем,

Uэбобр < Uкбобр (иногда в 2 раза!)

3) Uкэmax

4) Pрmax максимально допустимая рассеиваемая мощность

Pр Uкэ Iк

В паспорте обычно указывается Pрmax при температуре корпуса, равной 25оС. С увеличением tоС необходимо уменьшение Pр ниже Pрmax!

Литература

1. Волович Г. И. Схемотехника аналоговых и аналого-цифровых электронных устройств. М., 2005. — 530с.

2. Лысенко А. П. Статический коэффициент передачи тока базы транзистора и его зависимость от режима и температуры. Учебное пособие — Московский государственный институт электроники и математики. М., 2005. — 29 с.

3. Нефедов А. В. Интегральные микросхемы и их зарубежные аналоги. Справочник. Том 1. Издательство: РадиоСофт, 2000. — 512с.

4. Петухов В. М. Биполярные транзисторы средней и большой мощности сверхвысокочастотные и их зарубежные аналоги. Справочник. Том 4. Издательство: КУбК-а, 1997. — 544с.

5. Чижма С. Н. Основы схемотехники. СПб., 2008. — 424с.

ПоказатьСвернуть
Заполнить форму текущей работой