Термінова допомога студентам
Дипломи, курсові, реферати, контрольні...

Бактеріофаги

РефератДопомога в написанніДізнатися вартістьмоєї роботи

Хімічний склад бактеріофагів Вивчення хімічного складу фагів показало, що він досить простийпо суті фаги є нуклеопротеїдами, тобто складаються в основному з білка і нуклеїнової кислоти. Фагові частинки мають кілька різних білків, насамперед структурних, які становлять капсид головки і елементи відростка (чохол, стрижень, базальну пластинку і нитки). У головці булавоподібних фагів є також… Читати ще >

Бактеріофаги (реферат, курсова, диплом, контрольна)

РЕФЕРАТ на тему:

" Бактеріофаги" .

ПЛАН.

1. Будова бактеріофагів.

2. Хімічний склад бактеріофагів.

3. Взаємодія бактеріофагів з бактеріями, розмноження бактеріофагів.

Використана література

1. Будова бактеріофагів Припущення, що бактеріофаги мають корпус­кулярну природу, було висунуто ще Ф. д'Ерелєм. Однак тільки після винайдення електронного мікроскопа вдалося побачити і вивчити ультраструктуру фагів. Нагадаємо, що довгий час уявлення про мор­фологію та основні особливості фагів Грунтувалися на результатах вивчення фагів Т-групи — ТІ, Т2,…, Т7, які розмножуються на Е. соїі штаму В. Однак з кожним роком з’являлися нові дані щодо морфо­логії і структури різноманітних фагів, що зумовило необхідність їх­ньої морфологічної класифікації.

Основні частини найкраще вивчених булавоподібних фагів станов­лять головка з білковою оболонкою — капсидом і відросток. Субоди-ниці капсиду називають капсомерами. Структурні елементи склад­них відростків дістали назву зовнішнього чохла, внутрішнього стриж­ня і базальної пластинки, відростка з зубцями і нитками (рис. 1).

Детальні електронно-мікроскопічні дослідження, в поєднанні з деякими фізико-хімічними методами вивчення фагів Т-групи, пока­зали, що кожен фаг складається з різних морфологічних елементів.

Рис. 1 Структура бактеріофага Т2:

А — електронна фотографія фага Т2- Б — схема структури: / - білкові субодиниці капсиду- 2 — головка фага- 3 — ДНК- 4 — відросток- 5 — футляр- 6 — стрижень- 7 — пластинка з шістьма зубцями- 8- нитки відростка.

2. Хімічний склад бактеріофагів Вивчення хімічного складу фагів показало, що він досить простийпо суті фаги є нуклеопротеїдами, тобто складаються в основному з білка і нуклеїнової кислоти. Фагові частинки мають кілька різних білків, насамперед структурних, які становлять капсид головки і елементи відростка (чохол, стрижень, базальну пластинку і нитки). У головці булавоподібних фагів є також внутріш­ній білок (3−7% загального вмісту білка). У фагів виявлено фермен­ти лізоцим, фосфатазу та деякі інші. Білки виконують різні функції: захищають нуклеїнову кислоту від пошкоджень і дії ферментів нуклеаз, беруть участь у тісному контакті фага з бактеріальною клі­тиною, забезпечують через ферментативну дію процес зараження тощо.

Другою важливою складовою частиною фагів є нуклеїнові кисло­ти. У фагів, як і в інших вірусів, е тільки один тип нуклеїнової кислоти — ДНК або РНК. Цією властивістю віруси відрізняються від інших мікроорганізмів, в клітинах яких є обидва типи нуклеїнових кислот. У фагів виявлено дволанцюгову ДНК (найчастіше) і одно-ланцюгові ДНК та РНК. Залежно від типу своєї нуклеїнової кислоти фаги поділяють на ДНК-вмісні і РНК-вмісні. Нуклеїнова кислота щільно упакована у головці фага.

У деяких фагів знайдено невеличку кількість ліпідів (2,5−10,5%), переважно жирних кислот і фосфоліпідів, а також сліди вуглеводів. Значення цих компонентів поки що недостатньо вивчено. Вважають, що ліпіди та інші компоненти (подібно до інших вірусів) мають клітинне походження і фаговий геном не кодує їхнього синтезу.

Антигенні властивості фагів. Бактеріофаги володіють антигенни­ми властивостями. При багаторазовому парентеральному введенні фагів кролям або іншим тваринам можна одержати сироватки, які містять сферичні антитіла до відповідних фагів. Такі сироватки нази­вають антифаговими. Антитіла таких сироваток здатні давати з від­повідними фагами звичайні серологічні реакції - аглютинації, пре­ципітації, зв’язування комплемента, а також спричинюють нейтра­лізацію літичної активності фагів. Антифагові сироватки строго специфічні. Цю властивість часто використовують при серологічній класифікації фагів.

3. Взаємодія бактеріофагів з бактеріями,.

розмноження бактеріофагів Застосування електронної мікро­скопії, методу мічених атомів та інших методів дало змогу докладно вивчити взаємодію фагів з бактеріальними клітинами. В цьому про­цесі розрізняють два типи взаємодії - літичний і лізогенний. Перший закінчується лізисом (руйнуванням) ураженої кліти­ни і призводить до виходу дозрілих фагових частинок з клітини, а другий не руйнує уражену клітину, а робить її своєрідним носієм фага.

Літичний тип взаємодії фагів з бактеріями часто ще називають (як і для інших вірусів) продуктивною інфекцією. При такому типі взаємодії фага з клітиною хазяїна розрізняють чотири стадії або етапи: 1) адсорбцію фагів на поверхні бактеріальних клітин- 2) проникнення активного вмісту (нуклеїнової кислоти) в бактеріальну клітину- 3) латентний період (екліпс) внутрішньо­клітинного розвитку фага- 4) руйнування (лізис) клітини і вихід з неї новоутворених фагів.

Найкраще вивчено першу стадію розмноження фагів — адсорбцію. Фаги, які мають відростки, адсорбуються на поверхні фагочутливих бактерій дистальним кінцем цих відростків, а базальна плас­тинка з шипами і нитками забезпечує тісний контакт. Фаги можуть прикріплятися до різних ділянок клітини, джгутиків, ворсинок чи інших виростів. Адсорбція фагів на клітинах — специфічна реакція. Вона зумовлюється утворенням тісного зв’язку між спеціальним рецепторним апаратом фага і специфічними рецепторами клітини. Фагорецептори бактеріальної клітини є складними антигенними комплексами або структурами, які розташовані в різних ділянках і шарах клітинної стінки.

Адсорбцію фагів на сприйнятливих до них бактеріях можна спо­стерігати в електронний мікроскоп. Вона залежить від фізичних і хімічних властивостей середовища, температури, природи фага, фізіологічного стану бактерій, а також від їхніх антигенних структур.

Після адсорбції фага на поверхні бактерій за допомогою фермен-та типу лізоцима, який міститься в нижній частині відростка, відбу­вається розчинення клітинної стінки, і в цей невеличкий отвір кінець відростка, стискуючись (завдяки енергії АТФ), як шприц, впорскує нуклеїнову кислоту головки фага в бактеріальну клітину. Білкова оболонка фага залишається на поверхні бактерії і подальшої участі в розмноженні фага не бере. Слід зазначити, що ще досі де­тально не з’ясовано механізм уведення нуклеїнової кислоти у фаго-чутливу клітину фагами, які не мають відростків, а також тими фага-ми, в яких відростки не скорочуються.

З моменту проникнення генома фага в бактерію починається третя стадія його взаємодії з клітиною — латентний (прихований) період внутрішньоклітинного розмноження фага. Тривалість цього періоду в різних фагів триває від 15−40 хв до 5 год. і більше. У цій стадії нуклеїнова кислота фага, завдяки закодованій у ній інфор­мації, спричинює швидку перебудову внутрішніх процесів у бакте­ріальній клітині, повністю спрямовуючи їх на утворення нових час­тинок фага.

На початку третьої стадії розмноження, у екліпс-фазі, виявити в зараженій клітині вегетативний фаг не вдається. Проте саме в цей час під його впливом відбувається пригнічення функції синтезу низ­ки клітинних ферментів і водночас індукується утворення фагових ферментів або так званих «ранніх» білків, які каталізують процеси реплікації фагової ДНК з використанням нуклеїнових кислот самої бактеріальної клітини.

Дещо пізніше в клітині починається синтез «пізніх» білків, які являють собою структурні білки фагів. У результаті агрегації таких білків відбувається побудова окремих елементів нових фагів: голо­вок, відростків, базальних пластинок тощо. Після утворення всіх компонентів фага здійснюється складання дозрілих віріонів фага від­повідної форми. Залежно від виду фага, стану бактеріальної клітини та інших чинників у одній клітині може утворитися від кількох де­сятків до кількох сотень фагових частинок.

Отже, в результаті дії вегетативного фага у зараженій бактерії з’являється значна кількість нових корпускул фагів і ми говоримо про репродукцію фагів бактеріальною клітиною на основі генетичної інформації, заданої нуклеїновою кислотою батьківського фага. Саме в цьому й виявляється своєрідна форма паразитизму фагів на суб­клітинному молекулярному рівні.

Внутрішньоклітинний розвиток у фагів, які містять різні типи нуклеїнової кислоти, дещо відрізняється за характером її реплікації, зокрема, одноланцюгова ДНК і РНК фага спочатку повинні набути дволанцюгової реплікативної форми, а вже після цього в клітині нагромаджуються нові молекули відповідної фагової нуклеїнової кислоти.

Водночас із формуванням дозрілих віріонів у бактеріальній клі­тині утворюються літичні ферменти, детерміновані нуклеїновою кислотою фага. Ці ферменти можуть розкладати цупкий пептидо-глікановий шар клітинної стінкиз їхньою допомогою здійснюєть­ся четверта стадія взаємодії фага з бактеріальною клітиною — лізис клітинної стінки і вихід нового потомства бактеріофагів на­зовні.

Рис. 2. Схема циклу розмноження бактеріофага Т2:

І - фаги оточили бактерію- 2 — віріон фага прикріплюється до клітини- 3 — в клітину впорскується вірусна ДНК- 4 — капсид фага залишається ззовні бактерії- 5 — синтезуються нові молекули ДНК- 6 — утворюються білкові оболонки фагів- 7 — відбувається збирання нових віріонів- 8 — бактерія руйнується (лізується), і віріони фага виходять назовні.

Літичний, або продуктивний, цикл розвитку характерний для вірулентних фагів, які є справжніми паразитами бактерій. Однак у природі поширеними е й так звані помірні фаги. При зараженні ними бактерій гине тільки невелика частина клітин, а решта нор­мально розмножується і стає носіями відповідних помірних або сим­біотичних фагів. Явище фагоносіння бактеріями дістало назву лізогенії.

Докладне вивчення показало, що існують псевдолізогенні та справжньолізогенні бактеріальні культури. Пере­важна більшість клітин першого типу є стійкою до цього фага і тіль­ки невеличка кількість їх може заражатися фагом і давати його репродукцію. Справжньолізогенні - це культури, в яких кожна бактерія несе в собі фаг у певній прихованій формі і може за відповідних умов репродукувати його.

Встановлено, що особлива форма фага, яка перебуває у справжньо-лізогенних бактеріях (профаг) є нуклеїновою кислотою (геном фага), яка тісно інтегрована з генетичним матеріалом бактеріальної кліти­ни, і в разі поділу бактерії передається її потомству. Отже, в лізоген-ній клітині профаг поводить себе як нормальний її компонент.

Важливою властивістю лізогенної культури є її стійкість до фагів, які містяться в ній. У зв’язку з цим вивчення помірних фагів лізоген­ної культури можливе тільки тоді, коли є інша культура цього виду, чутлива до помірного фага даної лізогенної культури. Такі культури дістали назву індикаторних.

Лізогенія дуже поширена серед усіх систематичних груп мікробів. Вона спостерігається у збудників черевного тифу і паратифу, дифте­рійної палички, спороносних і бульбочкових бактерій, дріжджів, пе-ніцилу тощо.

Профаг лізогенної культури може спонтанно або в разі індукції перетворитися на дозрілий бактеріофаг. Натомість у деяких випадках під впливом різних чинників у профага виникають мутації, в резуль­таті яких при індукції він не здатний перетворюватися на повноцінну фагову частинку. Внаслідок цього в середовище можуть виділятися дефектні фаги, що складаються тільки з однієї головки або відростка. Такі фаги можуть адсорбуватися на бактеріях, але не можуть розмно­жуватися у них. Дефектні фаги привернули до себе увагу вчених, оскільки, як виявилось, багато описаних бактеріоцинів є дефектни­ми фагами. Дефектна лізогенія дуже поширена в природі.

Останніми роками одержано цікаві дані не тільки з вивчення суті лізогенії, а й щодо з’ясування ролі профагів як додаткових генетич­них факторів. Зміни, які зумовлюються помірними фагами в лізоген-ній клітині, дістали назву лізогенних конверсій. Слід за­значити, що немало досягнень сучасної генетики і молекулярної біо­логії ґрунтується на вивченні явищ спадковості і мінливості у фагів, оскільки помірним фагам властиве явище трансдукції.

Використана література:

  1. 1.Воробьев А. А. Микробиология и иммунология. М., 1999.

  2. 2.ЛабинскаяА. С. Микробиология с техникой микробиологических исследований. М., 1982.

  3. 3.Покровский В. И. Медицинская микробиология. М., 1999.

  4. 4.Черкес Ф. К. Микробиология. М., 1987. Краснуха. СПб., 1997.

Показати весь текст
Заповнити форму поточною роботою